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Abstract The AMP-activated protein kinase (AMPK) is a
key regulator of catabolic versus anabolic processes. Its
properties as an energy sensor allow it to couple the energy
status of the cell to the metabolic environment. These
adaptations not only take place through the acute modula-
tion of key metabolic enzymes via direct phosphorylation,
but also through a slower transcriptional adaptative
response. The question of how AMPK regulates the
expression of a number of gene sets, such as those related to
mitochondrial biogenesis, energy production and oxidative
protection, is only beginning to be elucidated, and still
many questions remain to be answered. In this review we
will try to integrate our current knowledge on how AMPK
regulates transcription in muscle and liver, which will serve
as examples to illustrate the major advances in the field and
the key challenges ahead.

Keywords AMPK - Energy metabolism - PGC-1a -
SIRT1
Introduction

One and a half centuries ago, Darwin shocked the world
with one of the brightest concepts to ever impact biological
sciences, i.e., that the ability of organisms to respond and
adapt to environmental challenges has been vital for evo-
lution. To the amazement of the scientific community, this
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remarkable feat to adapt to environmental changes is
consistently found not only in organisms as a whole, but
also at the tissue and cellular levels. Given that most bio-
logical processes (cell growth, division, movement, etc.)
depend on energy consumption, it is not surprising that one
outcome of evolution is that cells and organisms can sense
energy levels and adapt their energy production to their
energy demands.

In order to sustain proper biological functions, ATP
levels, the energy currency in cells, are maintained in the
low millimolar range, hinting at the existence of molecular
mechanisms that keep an appropriate balance between
energy-consuming and -producing processes. AMP-acti-
vated protein kinase (AMPK), an enzyme that senses AMP
levels and that is conserved along the eukaryote kingdom,
could be a key molecular player in this adaptation process.
This review will focus on mammalian AMPK, but we refer
the reader to some recent reviews in order to gain some
insight on AMPK homologs in different eukaryotes [1-4].

Deconstructing AMPK: enzyme bricks and regulation
of its activity

AMPK is a heterotrimeric enzyme

AMPK is a heterotrimeric Ser/Thr kinase composed of an
o, f and y subunit [3]. There are two different forms of
o (op and o) and B (B, and f,) subunits, while three dif-
ferent y isoforms (71, 7, and y3) exist [3]. The o subunits are
the catalytic subunits of the functional heterotrimer and
contain the Thr'’® residue, whose phosphorylation is
required for full enzymatic activity [5]. The o subunit
partners with the f# and y subunits through its C-terminal
region [6]. The f subunit also interacts with both the o and y
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subunits, and its mid-region contains an evolutionarily
conserved carbohydrate-binding domain, which allows
AMPK to interact with glycogen particles [7]. The y sub-
units contain one of the critical features of the enzyme, the
four tandem repeats known as cystathionine [-synthase
(CBS) motifs, which form an interface for interaction with
two AMP or ATP molecules in a mutually exclusive way
and a third AMP molecule in a non-exchangeable fashion
[8]. While the binding of ATP keeps the activity of the
enzyme low, the exchange of ATP for AMP is enough to
promote a mild, less than fivefold, activation of the kinase
through an allosteric mechanism [5]. More importantly,
AMP binding renders AMPK a poorer substrate for the
o subunit Thr'”? phosphatase, which results in increased
Thr'”? phosphorylation [9]. The combination of the allo-
steric and phosphorylation effects promoted by AMP leads
to a >1,000-fold activation of the enzyme [10]. Due to the
reaction catalyzed by adenylate kinase, transforming two
ADP molecules into one ATP and one AMP, the AMP/ATP
ratio is a very sensitive reflection of metabolic disturbances
of the cell [11], and, therefore, transforms AMPK into an
exquisite sensor of energy balance.

Regulation of AMPK phosphorylation

As described above, AMPK is maximally active when
phosphorylated. Consequently, there has been great interest
in identifying the regulators of the phosphorylation state of
this enzyme. During the last decade, a number of upstream
kinase activities have been identified, and, even though the
exact identity of the phosphatase activity remains elusive,
it seems to belong to the PP2C family [9, 12]. Among the
different kinases proposed to act as AMPKKs, LKB1 and
CAMKK are now widely accepted to be key. Others, like
transforming growth factor-f-activated kinase 1 (TAK1),
can certainly phosphorylate AMPK in vitro [13], but the
“in vivo” evidence of their capacity to activate AMPK is
still not conclusive. The reasons and scenarios justifying
the need for different AMPK upstream kinases are yet to be
fully understood.

LKBI/STRAD/MO25

LKBI1 is a Ser/Thr kinase that was originally identified as a
tumor suppressor mutated in an inherited form of suscep-
tibility to cancer, the Peutz-Jeghers syndrome [14]. LKB1
requires the formation of a heterotrimeric complex with
two additional proteins in order to function, Sterile-20-
related adaptor (STRAD) and Mouse protein 25 (MO25)
[15]. In their absence, LKB1 is weakly active [15]. A
number of post-translational modifications can impact
LKBI1 and potentially modulate its activity [14, 16].
However, most evidence points towards the hypothesis

that, in normal physiological settings, the LKB1/STRAD/
MO25 complex is a constitutively active kinase [17] and
that the regulation of AMPK happens through different
accessibility for the phosphatase activity [9]. This partic-
ularity might be explained by the fact that the LKBI1
complex acts as a master kinase for the 13 members of the
entire family of AMPK-related kinases [18], making it
necessary to create substrate specificity through additional
methods. In this sense, increased AMP only leads to acti-
vation of AMPK, and not of the other 12 family members
[17]. Studies in the LKB1-deficient mouse have shown that
LKBI1 is the main AMPK kinase in muscle and liver
[19-21]. Muscle-specific LKB-1 KO mice display severely
impaired AMPKa, phosphorylation after stimulation of
AMPK with the phamacological AMP-mimetic AICAR
(aminoimidazole-4-carboxumide-1-f-p-ribofuranoside) or
ex-vivo contraction, demonstrating that LKB1 is the major
AMPK kinase in skeletal muscle [19, 21]. In liver, deletion
of LKB1 prevented the effects of metformin on AMPK
activation and glucose production [20].

CaMKK

Simultaneous work by David Carling and Grahame
Hardie’s groups found a second alternative AMPK kinase
in brain and LKBI-deficient cells: the Ca*"/calmodulin-
dependent kinase kinases (CaMKKs) [22, 23]. Other
tissues, like muscle, also express CAMKKua and, not so
clearly, CAMKK}f, although at lower levels than brain
[24, 25]. The activity of CAMKKSs depend on increases in
intracellular Ca®" levels and act on AMPK independently
of changes in AMP [10]. It has been hypothesized that
CAMKKSs could be the main AMPKK during the initial
phase of mild-tetanic muscle contraction [26]. Overex-
pression of CAMKKa or CAMKKf in muscle is enough to
increase AMPK phosphorylation [27], and muscle overload
is known to increase AMPK activity in LKB1 knock-out
mice, in correlation with an increase in CAMKK expres-
sion [25]. However, it must be said that a number of
experiments studying the role of CAMKK in muscle have
relied on the use of STO-609 as a CAMKK inhibitor,
whose specificity is not fully clear [19, 26].

AMPK actions

As mentioned before, AMPK acts as an energy sensor by
sensing the AMP/ATP ratio. AMPK activation is gener-
ally linked to the stimulation of metabolic responses in
order to prevent metabolic and energetic crisis in situa-
tions where ATP synthesis is compromised (hypoxia,
ischemia, low nutrient availability) or ATP consumption
is accelerated. Consequent to this principle, AMPK acti-
vation stimulates catabolic processes to generate ATP and
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inhibits ATP-consuming anabolic processes that are not
required for the immediate survival of the cell. Even
though this review aims to focus on the transcriptional
events regulated by AMPK, it is necessary to understand
the acute effects of AMPK activation in order to under-
stand the global physiological actions of AMPK and the
implications of its pharmacological activation. Therefore,
we will briefly mention the most notable acute effects of
AMPK and refer the reader to some recent reviews for
more details [3, 28, 29].

One of the immediate whole-body consequences of
AMPK activation is an increase in glucose uptake by
skeletal muscle through the induction of GLUT4 translo-
cation to the plasma membrane [30]. In fact, AMPK has for
a long time been hypothesized as a crucial mediator of the
effects of muscle contraction on glucose transport [19, 28,
31]. Muscle contraction activates AMPK as a consequence
of ATP depletion [19], and, probably, also through the
activation of CAMKK in response to the fluctuations in
cytosolic Ca®" during contraction [26]. The downstream
events bridging AMPK activation to GLUT4 translocation
are still nebulous. A number of studies have focused their
attention on the attractive link provided by TBC1D1 and
TBC1D4, two highly related proteins of the same family,
that are predominant in glycolytic and oxidative muscle,
respectively [32]. TBC1DI1 and D4 are Rab GTPase-acti-
vating proteins (GAPs), which are believed to slow down
or prevent GLUT4 exocytosis by keeping GLUT4-vesicle
associated Rab proteins in their GDP-bound form [33].
AMPK phosphorylates TBC1D1 and D4, and this disso-
ciates them from GLUT4 vesicles, allowing GLUT4
translocation [33]. While this conforms an interesting
mechanism of action, a number of concerns [28] indicate
that there are still many questions open regarding the
molecular mechanisms by which AMPK regulates glucose
uptake.

Acute activation of AMPK is also associated with
decreases in glycogen synthesis rates. This can be achieved
through the direct phosphorylation of glycogen synthase on
Ser’, which inhibits its activity [34]. The decreased
glycogen synthesis rates upon acute AMPK activation are
generally coupled to an increase in the glycolytic flux,
thanks to the activation of 6-phosphofructo-2-kinase
(PFK-2) through direct phosphorylation on Ser*®® [35].
PFK-2 catalyzes the synthesis of fructose 2,6-bisphosphate,
a potent stimulator of glycolysis. Therefore, activation of
AMPK rapidly mobilizes glucose into ATP-generating
processes.

AMPK also stimulates fatty acid oxidation as a way to
increase energy levels. To achieve this goal, AMPK
directly phosphorylates acetyl-coA carboxylase (ACC) 1
and 2 isoforms on Ser’® and Ser*'? [36], respectively. ACC
is the enzyme that catalyzes the reaction forming malonyl

coA from acetyl coA and that constitutes the initial step in
lipid synthesis [36]. In addition, malonyl coA is an allo-
steric inhibitor of CPT1b [37], the protein responsible for
fatty acid intake into the mitochondria for f-oxidation. The
phosphorylation of ACC by AMPK renders ACC inactive
[36], which translates into a decrease in lipid synthesis
rates and the relieve of CPT-1b inhibition, leading to
increased fatty acid flux into the mitochondria for f-oxi-
dation. This induction of S-oxidation contributes, together
with the increased glycolytic rate, to stimulate ATP syn-
thesis in order to meet the energy requirements of the cell.

Also protein metabolism is affected by AMPK activa-
tion. Through phosphorylation of TSC2 [38] and raptor
[39], AMPK blocks the mTOR pathway, a major controller
of protein synthesis and biomass generation. This not only
translates into the attenuation of protein biosynthetic pro-
cesses [40], but also into the induction of protein
degradation through autophagy and the ubiquitin-protea-
some system [40]. While AMPK activation is generally
linked to both degrading processes, this action seems to be
largely indirect via mTOR inhibition and, probably, relying
on transcriptional events [28].

The importance of different AMPK trimers

The existence of different isoforms for each AMPK subunit
highlights the possibility that 12 different combinations of
AMPK trimers can exist. To date, however, we know that
all combinations are not found in different tissues and,
furthermore, that every trimer combination displays a
distinct spectrum of biochemical properties.

At the tissue level, AMPK trimer composition is extre-
mely varied. For example, the «; is the predominant isoform
in white adipose tissue, blood cells, smooth muscle, endo-
thelial cells and nerve. In contrast, o, is the predominant one
in tissues such as muscle or heart. Other tissues, like liver,
contain both catalytic subunits at similar levels [41]. This
tissue-specific pattern is especially clear for the y3; subunit
of AMPK, whose expression is almost restricted to glyco-
Iytic skeletal muscle, where it is the predominant 7 isoform
[42]. A second degree of specificity, yet to be understood, is
how a similar subunit repertoire in different tissues does not
necessarily lead to equal trimer composition. A clear
example of this can be found in the fact that the | subunit is
the predominant subunit associated to o, in oxidative
muscle, while both f; and f, equally bind o, in glycolytic
muscle [43]. An additional layer of complexity is composed
by the observation that different trimer compositions can
also influence the intracellular localization. Several AMPK
subunits (i.e., o, B2, 71. ¥3) have been found to partly reside
in the nuclear compartment [44—46] (see below for dis-
cussion), suggesting that they might be involved in the
regulation of gene expression.
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Most of the studies on AMPK trimer composition have
been performed in mouse skeletal muscle, where it has
been postulated that distinct trimers might have different
biochemical properties. For example, while AMPK activity
has long been known to increase in response to muscle
contraction [47, 48], recent studies indicate that ex-vivo
contraction at different intensities and time periods can
promote trimer-specific activation (see [28] for review).

The use of transgenic mice has contributed to the
understanding of isoform-specific contributions to general
AMPK functions and global metabolism. For example, the
AMPKoa, knock-out mice, but not the oy, are insulin
resistant, glucose intolerant and resistant to the hypogly-
cemic action of AICAR [49, 50]. This is a clear indication
that the lack of one subunit cannot be compensated by the
other by specificity in the localization, the activation
mechanism or the functional output.

As of now, it is clear that we are only at the tip of the
iceberg on our knowledge of the significance of the dif-
ferent AMPK trimers. However, the fact that the AMPK
trimer composition is regulated in a tissue/compartment-
specific fashion, that different AMPK trimers can be
selectively activated and that different isoforms can affect
specific processes clearly indicates that AMPK trimer
composition is non-random and aimed to the regulation of
specific functions and/or respond to different kinds/inten-
sities of stresses.

Transcriptional actions of AMPK
Nuclear localization of AMPK

The consequences of AMPK activation expand far beyond
acute responses. This is due to the ability of AMPK to
directly and indirectly regulate transcriptional programs
through phosphorylation events. AMPK modulates the
transcription of a number of genes that increase ATP
production through glycolysis and the use of lipid as a
mitochondrial energy source. Studies in yeast described
how snfl, the AMPKu subunit yeast homolog, is present in
the nucleus and regulates transcription even through the
direct phosphorylation of histones [51]. Pioneering studies
by Grahame Hardie’s laboratory showed how mammalian
AMPK complexes containing the o, subunit were, at least
partly, distributed in the nuclear compartment [44]. This
work was further extended by the demonstration that
complexes containing the o, subunit translocate to the
nucleus in response to muscle contraction [45] or leptin
treatment [52]. This specificity by which AMPKo, trans-
locates to the nucleus is still largely unknown, but seems
to depend on the presence of a nuclear localization signal
that is not found in the «; subunit [52]. A recent report,

however, also suggests that «;-trimers might translocate to
the nucleus, too [53]. Elucidating how AMPK shuttles in
and out of the nucleus warrants future investigation.

By merging the observations that activation of AMPK
promotes its nuclear translocation and that AMPK leads to
specific changes in gene-expression patterns, it is easy to
postulate that AMPK might be targeting nuclear proteins
involved in transcriptional regulation. In the chapters
below, we will discuss AMPK-regulated gene expression in
different tissues, the key transcriptional regulators involved
in this process, and how AMPK modulates their activity.

AMPK transcriptional regulation in muscle

Skeletal muscle is the predominant site of post-prandrial
glucose uptake and the major affected tissue in insulin-
resistant subjects [54]. Upon nutrient scarcity, as occurs
during fasting or calorie restriction, the muscle decreases
glucose consumption and switches to fatty acid utilization
as main energy source [55]. Similarly, with endurance
training, skeletal muscle suffers a number of changes, such
as fiber-type switch from type IIx to Ila and an increase in
mitochondrial biogenesis [56—58], aimed to optimize and
enhance energy production. As we will see below, AMPK
might act as a key mediator of these adaptations.

Chronic treatment of rodents with AMPK-activating
compounds, such as AICAR, f-guanadinopropionic acid
(a phosphocreatine depleting agent) or resveratrol, all
increase mitochondrial biogenesis in skeletal muscle
[59-62]. The actions of these agents on mitochondrial
content and gene expression is robustly impaired in models
with defective AMPK activity [61, 63—65], implying that
AMPK is a master regulator of the transcriptional mecha-
nisms controlling mitochondrial biogenesis. This notion
was further confirmed by a number of different gain-of
function and loss-of function transgenic approaches. For
example, mice overexpressing a kinase dead (KD)
AMPKu, subunit in muscle displayed less voluntary run-
ning activity and reduced endurance perfomance than wild-
type littermates [31], indicating impaired mitochondrial
function. Similarly, muscle-specific expression of an
inactive form of AMPKo,, in which Asp157 is mutated to
Ala, promoted a marked decrease in mitochondrial gene
expression and rendered the mice exercise intolerant [66,
67]. These defects in mitochondrial gene expression were
also prominent in resting muscles from global AMPKa,
knock-out mice [63, 68]. Conversely, different genetic
manipulations aimed to promote AMPK activation clearly
illustrate the positive effects of AMPK activation on
mitochondrial activity. Genetic AMPK activation in mice
is achieved through different mutations in the y subunits.
Muscle-specific overexpression of a mutated form of
AMPK, in which Arg70 from the y; subunit is mutated to to
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Gln, promoted a three-fold higher basal AMPK activity
[69], which translated into an increase in mitochondrial
markers’ gene expression [67]. A different gain of function
model, in which a mutated form of the y; subunit
(Arg225Gln) is overexpressed, also displayed a prominent
increase in mitochondrial gene expression and muscle
oxidative profile [70]. Altogether, both pharmacological
and transgenic manipulations clearly indicate that AMPK
acts as a master transcriptional regulator of mitochondrial
genes.

The effects of AMPK activation on mitochondrial genes
can be achieved through the regulation of a number of
transcriptional factors and cofactors (Fig. 1). For example,
AMPK is a master controller of PGC-1a [60, 65, 71, 72], a
transcriptional coactivator that orchestrates a constellation
of transcription factors, such as ERRa, NRF1, NRF2 or
PPARs, to induce mitochondrial gene expression [73-75].
The link between AMPK and PGC-1« is further reinforced
by the phenotypic similarities of mice with muscle-specific
deletions of PGC-1o or AMPK, both of which have a gen-
eral reduction in mitochondrial gene expression and
exercise intolerance [31, 66-68, 76]. Conversely, a number
of pharmacological or transgenic strategies that increase
AMPK or PGC-1« activity in muscle have all consistently
potentiated the endurance capabilities of mice and led to a
higher oxidative profile of muscle fibers [60, 62, 70, 77, 78].
Firm proof for this link was provided by the fact that AICAR
was unable to increase mitochondrial gene expression in
muscles of mice lacking PGC-1a [71]. As such, PGC-1«
seems the key downstream mediator of the effects of AMPK
on mitochondrial biogenesis. Several mechanisms explain
how AMPK impacts PGC-1a. AMPK can directly phos-
phorylate PGC-1o at Thr'”” and Ser™® in in vitro assays
[71]. PGC-10o phosphorylation might not directly affect its
intrinsic coactivation activity, but, rather, release it from its
repressor protein p160myb [79] and/or allow deacetylation
and subsequent activation by SIRT1 [65, 72]. Additionally,
AMPK activation increases PGC-1o expression in muscle
[60, 80], an effect that is likely to be achieved though
PGC-1a autoregulation on its own promoter [72, 81-83].
Trimers containing the y; subunit are responsible for the
majority of the effect of AMPK on PGC-1a deacetylation
and activation upon exercise or fasting [65]. This is an
interesting finding with long-reaching consequences, as the
y3 subunit is enriched in fast glycolytic muscle, while it is
almost absent in oxidative muscle [42]. This helps explain
why PGC-1o is not deacetylated in the oxidative soleus
muscle or in the heart upon AMPK activation, but only
in glycolytic skeletal muscle [62, 72]. Similarly, trimers
containing the y; subunit are the ones more sensitive to
exercise-induced energy stress in mouse muscle [28],
making them the more apt to fine-tune exercise intensity/
duration to transcriptional outputs.

However, PGC-1a is a coactivator, and its transcrip-
tional effects depend on the transcription factors it
coactivates. Therefore, it is also likely that AMPK can
somehow target PGC-1a towards the transcription factors
of interest. This is important, as discussed below for liver
metabolism, and helps to understand how AMPK activa-
tion does not activate all possible PGC-1a-regulated gene
programs. A key transcriptional factor coactivated by
PGC-1a in muscle to promote oxidative metabolism is
MEF2 [78], which in turn also regulates PGC-1o expres-
sion through directly binding the PGC-1o promoter [84].
Interestingly, MEF2 activity is also crucially regulated by
AMPK [85, 86], as demonstrated by studies on the GLUT4
promoter [86]. Activation of AMPK leads to the translo-
cation of MEF2 to the nucleus and its binding to its target
promoters in vivo in a time frame concordant with the
increased expression of GLUT4 and PGC-1« in exercised
or AICAR-treated mice [84, 86, 87]. The mechanism by
which AMPK impacts on MEF2 is likely to be indirect, as
AMPK does not phosphorylate MEF2 [86] and no inter-
action has been reported to date. One suggested hypothesis
was that MEF translocation could be aided by its inter-
acting partner GEF (GLUT4 Enhancer Factor) [86, 88].
Interestingly, AMPK phosphorylates GEF and promotes its
import into the nucleus and DNA binding [86], strength-
ening the possibility that both transcription factors are
regulated in coordination by AMPK as a unit.

The CREB family of transcription factors has also been
implicated in muscle metabolism through the regulation of
hexokinase II or PGC-1a, among others [84, 89]. Recent
data indicate that AMPK can phosphorylate the CREB
family of transcription factors, including CREB1, ATF1
and CREM [90]. AMPK phosphorylates CREB at the same
residue as PKA, Serm, and enhances CREB-dependent
transcription [90]. As discussed in the next chapter this
coordination between AMPK and CREB might be condi-
tioned by a number of circumstances and display some
tissue/time specificity, as AMPK is also known to block the
action of some CREB coactivators [91]. While phosphor-
ylation of CREB is not essential for the binding of CREB
to CRE sites, it promotes the recruitment of essential
coactivators like CBP/p300 [92]. Interestingly, AMPK has
also been shown to directly phosphorylate CBP/p300 at
Ser® [93]. This phosphorylation presumably alters the
structure of the N-terminal region of the protein, impeding
its interaction with nuclear receptors, such as PPARs, but
not with other families of transcription factors, such as
CREB [93]. While this constitutes a beautiful model to
explain a “channelled” activation of gene expression, it
potentially contradicts the notion that AMPK exerts a
number of its biological effects on lipid oxidative genes
through the activation of PPAR« [52, 94]. Indeed, PPAR«
and PPARPf/J constitute attractive mediators for the
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Energy stress

|

Fig. 1 AMPK regulates muscle transcriptional events through dis-
tinct mechanisms. Activation of AMPK upon energy stress increases
mitochondrial and oxidative metabolism gene expression through
direct and indirect events. SIRT1 is an example of a transcriptional
regulator whose activity is increased by AMPK through an indirect
mechanism (i.e., by promoting an increase in NAD+). Direct
phosphorylation of AMPK occurs, for example, on the coactivator
PGC-1a and the FOXO family of transcription factors, whose
subsequent deacetylation by SIRT1 increases their activity. The

transcriptional actions of AMPK, as the metabolic profile
achieved by AMPK activation shares many common fea-
tures with that obtained through PPARo and PPARp/
activation, i.e., stimulation of mitochondrial biogenesis, of
endurance performance and of lipid oxidation metabolism
[95-99]. Some results already support that PPARa medi-
ates the transcriptional actions of AMPK on oxidative
metabolism [94], and recent data suggest that simultaneous
AMPK and PPARa or PPARf/6 activation may act syn-
ergistically in the induction of such genes [77, 100]. It has
also been proposed that the AMPK can interact with
PPARo or PPARS/6 through the o subunit, leading to a
synergistic effect with the ligand-dependent activation of
the nuclear receptor [77, 100, 101]. Interesting in this
context, despite many efforts, no consistent evidence exists
for the requirement of a direct phosphorylation event to
link AMPK with PPARo or PPARS/S activity [77, 101].
Another plausible explanation for the synergism between
AMPK and PPAR activation could be the fact that the
activation of PGC-1oo by AMPK would further increase
transcriptional co-activation of the ligand-bound PPAR« or
PPARJf/0. The ability of AMPK to acutely promote lipid
oxidation could provide endogenous ligands for PPARs,
hence contributing as such to the synergism between the
kinase and the PPARs. Unravelling these links between
AMPK and PPARs will constitute a promising ground for

activation of PGC-luo leads to the coactivation of a myriad of
transcription factors, such as PPARa, PPAR /6 and CREB, which is
also phosphorylated and activated by AMPK. Phosphorylation of
GEF promotes co-translocation with MEF2 to the nucleus. Further-
more, phosphorylation of HDACS5 by AMPK relieves the inhibition
on the MEF2/GEF complex and allows transcriptional activation.
These examples illustrate the mechanisms involved when AMPK
directly and indirectly regulates transcriptional events

investigation in the years to come. Expanding on this field,
it will be interesting to test the possible relationship and
synergistic effects that AMPK could have with other
nuclear receptors that strongly influence mitochondrial
biogenesis, such as the estrogen-related receptors (ERRs)
[102].

The FOXO family of transcription factors is another
seducing target for AMPK. The actions of FOXO have been
linked to lifespan extension [103], and in muscle they are
commonly associated with protection against oxidative
stress, enhancement of lipid metabolism and induction of
autophagy [104]. The relation of AMPK with FOXOs was
brought to light when FOXOs were reported as possible
mediators of the effects of AMPK on autophagy [105].
Furthermore, AMPK can directly phosphorylate different
members of the FOXO family of transcription factors [106].
Among them, FOXO3 is phosphorylated by AMPK in up to
six residues [106]. Mutation of these residues impaired the
ability of AMPK to promote key transcriptional responses
during glucose deprivation, including the transcriptional
activation of oxidative protection genes [106]. FOXO
phosphorylation by AMPK does not influence FOXO sub-
cellular localization, but rather its activity [106]. However,
it must be noted that, as with PGC-1a, FOXO activity is also
critically controlled through acetylation/deacetylation,
which is altered by SIRT1 [107-109]. It is tempting to
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speculate that AMPK phosphorylation of FOXO could also
serve as a signal for the deacetylation by SIRT1, which, in
turn, seems to provide FOXO with specificity towards the
regulation of oxidative stress genes [107], suggesting that
the modifications of FOXO by AMPK and SIRT1 might be
interconnected.

The transcriptional actions of AMPK in muscle not only
take place through the activation of transcriptional factors,
but also through the modulation of corepressors and histone
deacetylase activities. For example, SIRT1 has already
been mentioned as an enzyme whose activity is highly
linked to AMPK [72, 110]. SIRT1 is an evolutionarily
conserved NAD'-dependent deacetylase, whose action
impacts on a number of transcriptional regulators [111].
Activation of SIRT1 has generally been linked to the
induction of lipid oxidation and mitochondrial metabolism
in muscle [112]. The similar phenotypic outputs from
AMPK and SIRTI activation suggest that there might be a
functional link between both activities. Direct interaction
or phosphorylation events, however, do not seem to take
place between these enzymes [72, 106]. Rather, AMPK
seems to influence SIRT1 activity through an AMPK-
induced modulation of NAD™ metabolites [72, 110], which
are critical determinants of SIRT1 activity [113, 114]. For
example, pharmacological or physiological activation of
AMPK is followed by a robust increase in NAD" within
hours, which derives from the metabolic rearrangements
promoted by an increase in fatty acid oxidation rates [72].
This metabolic and fast increase in NAD™ levels induced
by AMPK is sustained by the induction of Nampt expres-
sion, a gene that resynthesizes NAD™ from its metabolic
breakdown product, nicotinamide [110]. This constitutes a
two-way impact of AMPK on SIRT1 activity as it gener-
ates the SIRT1 activator NADY, while reducing the levels
of nicotinamide, a physiological inhibitor of SIRT1 activity
[114]. The intimate link between SIRT1 and AMPK is
further reinforced by studies using resveratrol, a polyphe-
nol compound that has long been used as a SIRT1 agonist.
Resveratrol increases lifespan in a number of lower
eukaryotes [115]. In higher eukaryotes, resveratrol increa-
ses muscle mitochondrial content and enhances endurance
perfomance [62]. This increased ability to oxidize lipids
confers the mice with protection against metabolic disease
upon high-fat feeding [62, 116]. While it is true that an
important number of biological actions of resveratrol
depend on SIRT1 [115], the initial belief that resveratrol
could act as a direct SIRT1 agonist [117] is long gone now,
as in vivo evidence suggests that resveratrol rather acts
primordially through AMPK, and any effect on SIRTI
activity is a downstream consequence of AMPK activation
[64, 65]. These observations stress the relevance of AMPK/
SIRT1 as a conserved signaling axis that is activated upon
energy stress. Resveratrol effects on AMPK probably

derive from the overlooked fact that resveratrol can act as a
mild mitochondrial “poison” by inhibiting complex III and
V of the mitochondrial respiratory chain [118, 119].
Therefore, resveratrol’s actions, like those of metformin
[20, 120], likely derive from a mild impairment in ATP
synthesis.

Another enzyme, HDACS, is the predominant type II
histone deacetylase in adult skeletal muscle. In general,
HDACS acts as a transcriptional repressor by direcly
deacetylating histone lysine residues within the nucleo-
some, forming a compact structure that limits the
accessibility of transcriptional regulators to DNA [121].
The specificity of genes repressed by HDACS is provided
by the ability of this deacetylase to bind only certain
transcription factors, such as MEF2 [122, 123]. This way,
HDACS controls a myriad of processes in skeletal muscle,
from glucose and oxidative metabolism [124, 125] to
myocyte differentiation [126]. GLUT4 expression is con-
trolled by interactions among AMPK, HDACS and MEF2.
This involves an interesting cascade of events in which
translocation of certain AMPK trimers to the nucleus upon
activation allows the direct phosphorylation of HDACS
in two residues, Ser® and Ser*”® [124]. This AMPK-
dependent phosphorylation of HDACS triggers its disso-
ciation from MEF2 and provides binding sites for 14-3-3
proteins, which export HDACS5 out from the nucleus [124].
The release of HDACS will increase histone acetylation
and enable the recruitment of MEF2 coactivators, such as
PGC-1a [127], and the basic transcriptional machinery to
the GLUT4 promoter. The mutation of these HDACS
phosphorylable residues is enough to prevent AMPK-
dependent induction of the GLUT4 gene [124], clearly
illustrating the relevance of this mechanism of action.

Transcriptional regulation by AMPK in liver

The liver is key to maintain the whole body’s nutrient
homeostasis, as it adapts its ability to store and release
carbohydrates to the metabolic needs of the organism.
Deficiencies in this regulatory mechanism are manifested in
type 2 diabetic patients, where elevated hepatic glucose
production leads to hyperglycemia. Consequent to the fact
that energy stress triggers its activity, AMPK activation in
liver shuts down glucose, cholesterol and triglyceride bio-
synthetic pathways in liver while promoting fatty acid
oxidation [41]. Most manipulations of AMPK activity in
liver confirm this paradigm. Deletion of the o, subunit of
AMPK in the liver promotes hyperglycemia and glucose
intolerance because of increased hepatic glucose production
[128]. Similarly, defective AMPK activity compromises
fatty acid metabolism as a consequence of decreased
mitochondrial gene expression [129], leading to increased
plasma free fatty acids and decreased production of ketone
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bodies. Conversely, overexpression of an active form of
AMPKu in liver is enough to improve glucose profiles in
diabetic mice [130]. Similarly, overexpression of the o,
subunit in the liver decreases plasma triglycerides and
increases production of ketone bodies, reflecting an increase
in lipid oxidation versus synthesis [130].

Some of the above-mentioned actions of AMPK happen
through direct phosphorylation of key enzymes. This is the
case with, for example, the regulation of cholesterol bio-
synthesis, which is rapidly decreased by AMPK through
direct phosphorylation and inhibition of the rate-limiting
enzyme hydroxy-3-methylgltaryl-coenzyme A (HMG-
CoA) reductase [131]. Another example is ACC, whose
phosphorylation by AMPK prevents lipid synthesis and
favors fatty acid import into the mitochondria for oxidation
[36]. However, processes like gluconeogenesis and lipid
biosynthesis are also highly regulated by transcriptional
changes. Most of them are crucially affected by AMPK, as
described below.

Gluconeogenesis, the de novo synthesis of glucose,
takes place in liver through the fast induction of genes
encoding rate-limiting enzymes of this process, such as
phospho-enol pyruvate carboxykinase (PEPCK) or glu-
cose-6-phosphatase (G6P). Gluconeogenesis is triggered by
an increase in intracellular cAMP, as a consequence of low
insulin and increasing glucagon blood levels. Through a
cascade of events, increased cAMP levels will activate the
transcription factor CREB, which binds to and activates the
promoters of the above-mentioned genes [132]. Further-
more, binding of the CREB coactivator CRTC2 to CREB
allows the recruitment of the transcriptional machinery
[133]. AMPK regulates CRTC2 in a similar fashion to that
described above for HDACS [91]. AMPK can directly
phosphorylate CRTC2 on Ser'”' [91]. Interestingly, the
ability to phosphorylate this residue is shared by other
members of the AMPK-related kinases subfamily, such as
SIK2 [133]. This phosphorylation event promotes the
binding of 14-3-3 to CRTC2 and induces its export to the
cytosol [133]. The immediate consequence of this is
that CREB loses the interaction with its coactivator
and, consequently, CREB-dependent gluconeogenic gene
expression is reduced. It is important to note that activation
of AMPK led to increased CRTC2 cytoplasmic localization
even in the presence of cAMP agonists [91], indicating that
cellular energy stress overrides the systemic needs for
glucose synthesis. Importantly, this characteristic is unique
to AMPK, as phorphorylation of CRTC2 by SIK2 is
prenvented by cAMP agonists [133]. This model also raises
a number of questions. For example, there are situations
in which agents that increase cAMP, such as forskolin,
isoproterenol or glucagon, lead to AMPK activation [134,
135] which, in liver, would be antagonistic with the
induction of gluconeogenic genes. Recent results indicate

that PKA can phosphorylate and negatively regulate certain
AMPK trimers containing the o subunit [136], which
could keep AMPK activity low during gluconeogenic
periods. Another complexity relies in the fact that, at least
in muscle, AMPK can phosphorylate and activate CREB
[90]. If this happened in liver, then there should be addi-
tional mechanisms targeting CREB to non-gluconeogenic
gene sets.

An additional critical transcription factor regulating
glucose metabolism in liver is HNF4o, which controls the
expression of GLUT2, pyruvate kinase (L-PK) and aldol-
ase B, among others [137]. Initial findings showed how
pharmacological activation of AMPK by AICAR led to a
downregulation of HNF4« target genes [138]. This phe-
nomenon was linked to a robust reduction in HNF4«
protein levels, apparently caused by a decrease in HNF4«
protein stability [139]. Furthermore, HNF4a was identified
as a direct target for AMPK. Specifically, AMPK phos-
phorylated Ser?%? (Selr3 3 in humans) [139], a residue
located in the ligand-binding domain that directly partici-
pates in homodimerization, the functional form of these
transcription factors. Consequently, it was reported that
mutation of Ser’* to Asp, mimicking constant phosphor-
ylation, impeded HNF4a homodimerization and DNA
binding [139]. Of note, the implications of these findings
might not be limited to the liver, as HNF4o is a critical
regulator of glucose metabolism through actions in the
pancreas, kidney and intestine [137].

AMPK might also participate in the modulation of a
third transcription factor involved in the sensing and reg-
ulation of liver glucose metabolism. The carbohydrate
response element binding protein (ChREBP) is a liver-
specific transcription factor that promotes the expression of
glycolytic and fatty acid synthesis genes in situations of
high glucose availability [140]. Like HNF4o, ChREBP
induces L-PK expression by binding to its promoter [141].
It has been reported that AMPK phosphorylates ChREBP
on Ser’®, thereby compromising its DNA binding and
transcriptional activities [142]. By inhibiting ChREBP,
AMPK promotes the use of fatty acids as the main energy
source. These findings, however, have been challenged by
a report showing that ChREBP nuclear translocation is
normal in AMPK-deficient animal models [143]. It must be
remembered, however, that as with CREB and CRTC2,
AMPK may not be the only kinase acting on ChREBP, and
compensatory mechanisms could explain the unaltered
phenotype in AMPK-deficient models.

Some conflicting points arise from the extrapolation of
AMPK’s effects on certain transcriptional regulators in
muscle, such as FOXO, SIRT1 and PGC-1a. AMPK acti-
vation in liver promotes an increase in the ratio between
f-oxidation and lipogenesis, in part through the induction
of mitochondrial content and function ([116], Cant6 C and
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Auwerx J, unpublished observations). Conversely, ablation
of AMPK in liver reduces mitochondrial content and
activity [129, 144], probably as a consequence of decreased
PGC-1a expression and activity [129]. However, in con-
trast to the role of AMPK, most reports to date indicate that
PGC-1u induces gluconeogenesis [145, 146]. Activation of
PGC-1a through SIRT1-mediated deacetylation seems to
be a key step in the induction of the gluconeogenic pro-
gram [147, 148]. Intriguingly, AMPK-induced PGC-1lu«
expression and deacetylation can also be observed in liver,
indicating that AMPK increases SIRT1 and PGC-lua
activity (Canté C., Auwerx J., unpulished observation).
This being so, why does AMPK activation not promote
gluconeogenesis? A very likely explanation lies in the fact
that PGC-1a is a coactivator, and consequently, its action
depends on the transcription factors it binds to. As AMPK
inactivates CRTC2 and HNF4 actions, it is possible that
PGC-1a cannot properly bind CRTC2/CREB and HNF4
transcriptional complexes, therefore redirecting its coacti-
vating activities to other transcription factors linked to
mitochondrial biogenesis. While such an explanation might
be valid in the case of PGC-1q, it is more difficult to apply
to the case of the FOXO family of transcription factors,
which are activated by AMPK and mediate a significant
part of AMPK’s effects in a number of tissues [106, 149,
150]. Most results to date make it unlikely that this also
should be the case in liver, as the FOXO transcription
factors are critical positive gluconeogenic regulators [104].
Furthermore, deacetylation by SIRT1 seems to promote
nuclear trapping of FOXOs and transcription of glucone-
ogenic genes [109], which is diametrically opposite to what
would be expected for AMPK activation. Strikingly, a
great deal of evidence show that resveratrol, which acti-
vates AMPK in liver and cultured hepatocytes [116, 151],
leads to FOXO deacetylation [109]. Therefore, the para-
digm that SIRTI is pro-gluconeogenic through its actions
on FOXO and PGC-1a need to be revised in light of the
number of conflicting observations, for example:

(1) While SIRT1 downregulation in liver through aden-
oviral delivery of SIRT1 shRNAs leads to fasting
hypoglycemia and decreased expression of glucone-
ogenic genes [148], liver-specific SIRT1 knock-out
mice show normal blood parameters upon fasting and
nicely adapt to calorie restriction [152].

(2) SIRTI activation in liver does not seem to happen in
the initial phase of gluconeogenesis, which is con-
trolled by CRTC2, but rather occurs during a later
phase, leading to the deacetylation and degradation of
CRTC2, which attenuates gluconeogenic rate [153].

(3) Mice mildly overexpressing SIRT1 are largely normal
when fed a standard chow [154—156], with a tendency
towards lower fasting blood glucose levels [155].

SIRT1 overexpression, however, effectively protected
against hyperglycemia in a number models of meta-
bolic disease because of reduced hepatic glucose
output [154, 156] and lower FOXO and PGC-lu«
acetylation levels [154], indicating that SIRT1 activity
can actually be linked to a decrease in gluconeogenic
rates.

(4) In all murine models of metabolic disease and
diabetes tested to date, resveratrol or similar com-
pounds consistently protect against hyperglycemia,
triglyceride accumulation and excessive cholesterol
production [62, 116, 157, 158], very much in line
with the results obtained in mice overexpressing
SIRT1 [154, 156]. AMPK is robustly activated in the
livers of mice fed with resveratrol [116], and the
phenotypic outputs are perfectly in line with those
expected for AMPK activation. Since these mice
displayed higher SIRT1 and PGC-1a activity [116],
physiological activation of SIRT1 or PGC-1« in liver
is not per se linked to gluconeogenesis. Similar
observations were made with the SIRT1 agonist
described by Sirtris, SRT1720 [159, 160], even
though the direct and specific effects of this com-
pound on SIRT1 activation are controversial [161].

(5) The observations that resveratrol deacetylates
FOXO1 [109] and protects against hyperglycemia
[62, 116] indicate that FOXO activation of the
gluconeogenic program might be avoided or be very
moderate in situations of AMPK activation, while the
induction of other FOXO target genes is prioritized.
This might be explained by the fact that FOXO
actions sometimes require interplay with other tran-
scription factors, such as HNF4o [162, 163], to
modulate glucose metabolism genes. Therefore,
AMPK might also channel FOXO activity to specific
gene sets through post-translational modifications,
such as phosphorylation [106] and deacetylation
[107], and by preventing its interplay with certain
transcription factors.

(6) Recent evidence indicates that SIRT1 enhances
AMPK action in the liver by deacetylating LKBI,
altering its cellular localization and its association
with STRAD, ultimately stimulating its activation of
AMPK [16]. This suggests that SIRT1 and AMPK
might reciprocally activate each other in liver and
HepG2 cells [16, 164, 165], creating a positive
feedback loop. Such observations imply that AMPK
and SIRTI activities would also go hand in hand
in liver, which contradicts the notion of SIRT1 as pro-
gluconeogenic factor.

Given these observations, it is clear that we are only
at the beginning of our understanding about how the
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transcriptional effectors of AMPK are regulated, but it
seems clear that different mechanisms of action might be
coexisting (Fig. 2). The lack of a linear extrapolation of the
way in which SIRT1, PGC-1 and FOXOs act downstream
of AMPK complicates the picture. Furthermore, we are still
far from grasping how AMPK quickly downregulates some
key players in liver lipid metabolism, such as SREBPlc
[120, 130]. Given the proven efficacy of AMPK-activating
drugs, such as metformin, in type 2 diabetes, the clarifi-
cation of these enigmas should be a priority for the field.

Additional transcriptional regulators controlled
by AMPK

Most of the attention on AMPK has been focused on
transcriptional regulation in metabolic tissues, as those
described above, or in the immediate phosphorylation of
metabolic enzymes and signaling pathways. Still, AMPK
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Fig. 2 AMPK anti-gluconeogenic effects are achieved through a
combination of different transcriptional mechanisms. A constellation
of transcriptional regulators modulates gluconeogenesis, such as
CRTC2, FOXO, ChREBP, HNF40 and PGC-1a. AMPK impacts on
them all through different strategies. For example, AMPK phosphor-
ylates CRTC2 and promotes its nuclear exclusion, disassembling the
coactivator from CREB on gluconeogenic genes (GG). AMPK can

may regulate additional transcriptional events, which are
worthy of attention.

Cell cycle and differentiation regulators

A riveting field for future study is the regulation of p53 by
AMPK, which potentially will shed light on the link among
metabolism and cell cycle and division. Evidence is accu-
mulating that AMPK could control the cell cycle by
promoting G1 arrest and reduce the number of S phase cells
[166, 167]. Studies showing that AMPK can directly phos-
phorylate p53 on Ser'® (Ser'® in mice) were key to
understanding the effects of AMPK on proliferation [166].
In normal circumstances, p53 is rapidly ubiquitinated and
degraded. A number of post-translational modifications,
such as phosphorylation and acetylation, can stabilize the
protein and promote cell cycle arrest and anti-tumorigenic
effects [168]. In line with this, phosphorylation of pS3 by
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also directly phosphorylate transcription factors (TFs), as happens
with HNF4a and ChREBP, promoting their nuclear exclusion and/or
degradation. In the case of PGC-1a, phosphorylation by AMPK might
direct its coactivating actions towards non-gluconeogenic gene
(NGG) regulation. Similarly, phosphorylation of FOXOs by AMPK
may drive its action from gluconeogenic genes towards other gene
sets, such as oxidative protection
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AMPK stabilizes p53 and induces the expression of its target
gene p2l [166, 167], an inhibitor of cyclin-dependent
kinases, which promotes a cell cycle arrest at the level of G1
and G2 [169]. Therefore, situations of low nutrient avail-
ability and/or energy stress could translate into a natural
inhibition of cell division in order to ensure cellular sus-
tainability. These findings have serious implications for the
possibility of using AMPK-activating compounds as anti-
cancer drugs. Additionally, pS3 has also been linked to the
transcriptional regulation of mitochondrial metabolism
[170], providing a new mechanism by which AMPK could
impact on mitochondrial gene expression. An intriguing
paradox in the link between AMPK and SIRT1 is the fact
that SIRT1 is known to deacetylate and inactivate p53
[171, 172], while the role of AMPK seems to be the oppo-
site. Elucidation of this apparent contradiction deserves
investigation. To date, most of the studies on the AMPK/
SIRT1 link have been done in adult normal tissue, making it
possible that this signaling pathway is altered in tumors.
Similarly, a recent report indicates that SIRT1 activity can
somehow be oriented towards certain targets, as phosphor-
ylation of SIRT1 by JNK leads to specific deacetylation of
P53, but not of other substrates [173]. This concept is in line
with our observations showing that PGC-1o needs to be
primed by prior AMPK-mediated phosphorylation in order
to be deacetylated [72] and makes it possible that in a similar
fashion AMPK phosphorylation of p53 could be preventing
or not affecting SIRT1 interaction with this substrate.

Another transcriptional regulator controlled by AMPK
is the retinoblastoma protein (Rb). Rb regulates the pro-
gression, fate and differentiation of a number of cell types
by binding and modulating the activity of members of the
E2F family of transcription factors [174]. In neuronal
precursor and stem cells, AMPK can directly phosphory-
late Rb on Ser804, which then leads to its dissociation from
E2F [175]. This is in line with the fact that low glucose
promotes Rb/E2F dissociation [175]. The regulation of the
Rb/E2F axis by AMPK has long-reaching consequences.
For example, Rb phosphorylaton status determines a
number of fate choices [176] and interactions with other
transcriptional regulators, such as PPARy [177]. However,
as several kinases can impact on the phosphorylation of the
same residue in Rb, it is difficult to extrapolate from these
data the relevance of AMPK signaling on the Rb/E2F axis.
In fact, a number of scenarios are potentially opposed to
the hypothesis that AMPK inhibits Rb and favors E2F
transcription, such as those implying that Rb is a tumor
suppressor [174] or that E2F can negatively regulate
mitochondrial biogenesis [178]. It is also interesting to note
that, again, AMPK and SIRT1 find a convergent substrate
in Rb [179], even though any possible interplay between
AMPK-mediated phosphorylation and SIRTI-dependent
deacetylation of Rb is yet to be explored.

Direct regulation of the epigenetic and transcriptional
machinery

Other possible substrates of interest that need confirmation
are those intimately related to epigenetic phenomena. The
finding that AMPK trimer containing the y; subunit could
be detected in the nucleoli [46] led to the hypothesis that it
could participate in the regulation of rRNA synthesis,
which is necessary for the whole ribosomal structure and
mRNA translation. As AMPK is known to decrease protein
translation by inhibiting the mTOR pathway [180], it
would make sense that it could also shut down this process
directly through an alternative mechanism. In line with
this, AMPK activation decreased RNApol I activity
[46, 181]. This raised the hypothesis of a possible direct
regulation through phosphorylation events in the nucleoli,
as recently shown by the fact that AMPK phosphorylates
the RNA polymerase I (Pol I)-associated transcription
factor TIF-IA at Ser®” [181]. Phosphorylation by AMPK
impairs the interaction of TIF-IA with SL1, precluding the
assembly of functional transcription initiation complexes
[181]. Further supporting this hypothesis, mutation of
Ser®> prevents down-regulation of Pol I transcription in
response to low energy supply [181]. All these results
provide evidence that activation of AMPK adapts rRNA
synthesis to nutrient availability [181]. Another intriguing
link is that between AMPK and histone phosphorylation,
which derives from pioneer findings in yeast indicating that
the yeast AMPK homolog, snfl, could phosphorylate his-
tone 3 on Ser'®, enabling the subsequent recruitment of the
GCN5 acetyltransferase to acetylate Lys'®, unfold DNA
strands and initiate transcription [51]. While the possibility
of AMPK directly phosphorylating histones on target genes
would open doors for innumerable hypothesis, this finding
has not yet been confirmed in mammalian cells. Addi-
tionally, it would also imply the requirement of a currently
unknown additional specificity mechanism in order to
select target genes.

Conclusions and future perspectives

The fact that AMPK activation tightly controls the tran-
scriptional regulation of a number of gene sets has been
known for years. A number of transcriptional regulators
have arisen as immediate AMPK phosphorylation targets,
but the implications of such findings at the gene promoter
level are far from understood. We are now beginning to
elucidate the way phosphorylation by AMPK influences the
activity and interaction of transcriptional regulators
in different tissues, which will provide clues on how
AMPK determines gene set specification. Furthermore,
AMPK regulates transcription not only through direct
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events (i.e., phosphorylation of transcriptional regulators),
but also indirectly (for example, by increasing NAD+ and
inducing SIRT1 activity). Further possibilities yet to be
explored would involve the direct binding of AMPK to
target promoters. Another challenging point for future
research will be the complete understanding of how AMPK
actually shuttles in and out of the nucleus and of how the
nuclear functions of AMPK depend on the trimer compo-
sition. All these questions will need answers in order to
fully understand AMPK action.
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