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INTRODUCTION 

Hepatitis C virus (HCV) is a hepatotropic RNA virus of the genus 

Hepacivirus in the Flaviviridae family, originally cloned in 1989 as 

the causative agent of non-A, non-B hepatitis.1,2 It causes acute 

and chronic hepatitis in humans and chimpanzees with a high 

propensity for chronicity. If untreated, chronic hepatitis C can 

progress to cirrhosis and hepatocellular carcinoma in a subset of 

patients.3 Until recently, the standard of care for patients with 

chronic hepatitis C involved dual therapy with pegylated interferon 

(IFN) alpha and ribavirin (PEG IFN/riba) in most countries. Dual 

PEG IFN/riba therapy achieved sustained virological response (SVR) 

in only 50% of patients infected with the more common HCV gen-

otype (genotype 1) compared to 80% SVR rate in patients infect-

ed with HCV genotype 2 or 3.4 Moreover, combined PEG IFN/riba 

therapy is costly and prolonged (e.g. 24-48 weeks) with numerous 

adverse effects that are difficult to tolerate. In 2011, two inhibi-

tors of the virally encoded NS3/4A protease became available as a 

part of standard therapy in some countries, especially against HCV 

genotype 1. Triple therapy combining one of these first-generation 

protease inhibitors with PEG IFN/riba therapy has improved SVR 

rate from around 50% to 70% in some clinical trial cohorts,5-8 

However, this new regimen has limited efficacy in certain special 

populations (e.g. cirrhotic patients, transplant recipients, primary 

non-responders and hemodialysis patients) due to underlying IFN 

resistance, emergence of protease inhibitor resistance mutations 

and/or increased drug toxicity. Thus, there are ongoing efforts to-

wards better therapeutic options with shorter treatment duration 
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with less toxicity and drug resistance—preferably as IFN-free, all 

oral combination regimens.

The recent HCV therapeutic development has been greatly 

enhanced by basic understanding of HCV virology and life cycle, 

through studies using HCV cell culture systems and replication 

assays. In this article, we review various steps in HCV life cycle 

that also serve as relevant targets for potential novel therapeutics, 

including viral attachment, entry, fusion, viral RNA translation, 

posttranslational processing, HCV replication, viral assembly and 

release (Fig. 1).9

HCV genome and its products

HCV is a positive-sense, single-stranded enveloped RNA virus 

approximately 9600 nucleotides in length. Approximately 1012 

viral particles are generated daily in chronically HCV-infected pa-

tient.10 Due to the highly error prone RNA polymerase, HCV also 

displays remarkable genetic diversity and propensity for selection 

of immune evasion or drug resistance mutations.11 There are 6 

major HCV genotypes (numbered 1-6) that vary by over 30% in 

nucleotide sequence from one another.12 The HCV genome has 

one continuous open reading frame flanked by nontranslated 

regions (NTRs) at 5’ and 3’ ends. The HCV 5’NTR contains 341 

nucleotides located upstream of the coding region and is com-

posed of 4 domains (numbered I to IV) with highly structured RNA 

elements including numerous stem loops and a pseudoknot.13,14 

The 5’ NTR also contains the internal ribosome entry site (IRES), 

that initiates the cap-independent translation of HCV genome into 

a single polyprotein15 by recruiting both viral proteins and cellular 

proteins such as eukaryotic initiation factors (eIF) 2 and 3.16-18

The HCV open reading frame contains 9024 to 9111 nucleotides 

depending on the genotype. It encodes a single polyprotein that is 

cleaved by host and viral proteases into 10 individual viral proteins 

with various characteristics.19

Structural proteins
HCV core is the viral nucleocapsid protein with numerous 

functionalities involving RNA binding, immune modulation, cell 

signaling, oncogenic potential and autophagy. HCV core protein 

also associates with the lipid droplets where HCV assembly also 

takes place. HCV E1/E2 are glycosylated envelope glycoproteins 

that surround the viral particles. HCV envelope is targeted by 

virus neutralizing antibody selection pressure with high degree of 

sequence variation that may render antibody responses ineffective 

and contributes to HCV persistence.20-22 The small ion channel pro-

tein p7 is downstream of the envelope region and is required for 

viral assembly and release.

Nonstructural proteins
NS2 is the viral autoprotease that plays a key role in viral as-

sembly, mediating the cleavage between NS2 and NS3. NS3 

encodes the N-terminal HCV serine protease and C-terminal 

RNA helicase-NTPase. NS3 protease play a critical role in HCV 

processing by cleaving downstream of NS3 at 4 sites (between 

NS3/4A, NS4A/4B, NS4B/NS5A, NS5A/NS5B). It also cleaves the 

TLR3 adaptor protein TRIF and mitochondrial antiviral signaling 

protein MAVS, thereby blocking the cellular type I IFN induction 

pathway.23 NS3 is one of the key targets for HCV antiviral drug 

development. NS4A forms a stable complex with NS3 and is a co-

factor for NS3 protease. The role of NS4B is not well understood, 

although it is known to induce the membranous web formation. 

NS5A is a dimeric zinc-binding metalloprotein which binds the 

viral RNA and various host factors in close proximity to HCV core 

and lipid droplets. Inhibitors of HCV NS5A showed antiviral effect 

in patients and are in rapid clinical development. Finally, NS5B is 

the RNA-dependent RNA polymerase (RdRp) which is also being 

actively targeted for antiviral drug development.

Collectively, these proteins also contribute to various aspects of 

HCV life cycle, including viral attachment, entry and fusion, HCV 

RNA translation, posttranslational processing, HCV replication, 

virus assembly and release. 

Figure 1. Schematic representation of the HCV life cycle. Every step of 
the life cycle offers a variety of potential targets for novel therapeutics 
(Adapted from Ploss A, et al. Gut 2012;61(Suppl 1):i25-i35).9
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HCV virion and lipoviroparticle

The HCV viral particle includes HCV RNA genome, core and the 

envelope glycoproteins, E1 and E2.2 HCV RNA genome interacts 

with the core protein to form the viral nucleocapsid, in association 

with cytosolic lipid droplets (cLD). The viral nucleocapsid is envel-

oped in lipid-rich viral envelope with the E1 and E2 glycoproteins 

that play key roles in virus entry through receptor binding and fu-

sion.24,25 E1/E2 glycoproteins are type I transmembrane glycopro-

teins that can form non-covalent heterodimers within the infected 

cells or large covalently linked complexes on the viral particle. 

They include a large N-terminal ectodomain and a short C-terminal 

transmembrane domain. The transmembrane domains are involved 

in membrane anchoring, endoplasmic reticulum (ER) localization, 

and heterodimerization of the envelope glycoproteins.26-28 E1 and 

E2 are highly glycosylated, containing up to 6 and 11 glycosylation 

sites, respectively.29

Hypervariable regions have been identified in the E2 envelope 

glycoprotein.30 In particular, hypervariable region 1 (HVR1) is a 27 

amino acids long segment of basic residues with a high degree 

of sequence variability as well as highly conserved conformation, 

suggesting a role as HCV neutralizing epitope and involvement 

with host entry factor.31-33 HCV virion also associates with various 

lipoproteins such as apoE, apoB, apoC1, apoC2 and apoC3 to 

form a complex lipoviroparticle (LVP) and various lipoprotein com-

ponents can influence HCV entry.34

Viral attachment, entry and fusion

Viral entry into the host cell involves a complex series of inter-

actions including attachment, entry and fusion. The initial viral 

attachment to its receptor/co-receptors may involve HVR1 in HCV 

E235,36 with facilitation by heparan sulfate proteoglycans expressed 

on hepatocyte surface.37-40 While LDL receptors (LDLR) can bind 

HCV and promote its cellular entry,41 HCV-LDLR interaction may 

be non-productive and can potentially lead to viral particle deg-

radation.40 Following attachment to the entry factors, HCV is 

internalized into the target cells via a pH-dependent and clathrin-

mediated endocytosis.42-45

Multiple cellular receptors and entry factors for HCV have 

been identified, including the scavenger receptor class B type I 

(SRB1),46 and CD8147 as well as tight junction proteins, claudin-1 

(CLDN1)48 and occludin (OCLN).49,50 Additional recently identified 

entry factors include the receptor tyrosine kinases (RTK) epidermal 

growth factor receptor (EGFR), ephrin receptor A2 (EphA2)51 and 

Niemann-Pick C1-like 1 cholesterol absorption receptor (NPC1L1).52 

The various entry factors are briefly described below:

Scavenger receptor class B type I
The first two HCV entry factors (SRB1 and CD81) were identi-

fied as binding partners of HCV E2.46,47 SRB1 is a 509-amino 

acid multi-ligand glycoprotein receptor which is known to be a 

major receptor for high-density lipoproteins (HDLs).53 It is highly 

expressed in the liver and promotes selective uptake of HDL cho-

lesterol esters into hepatocytes.54 A role of SRB1 in HCV entry was 

first suggested by its binding of HCV E2 through HVR1.46 The lipid 

transfer activity of SRB1 may be required for HCV cell entry since 

lipoprotein ligands can modulate HCV/SRB1 interactions with HCV 

entry enhancement by HDL and inhibition by oxidized LDL.54-57 Of 

interest, level of SRB1 on hepatocytes can regulate the level of 

HCV entry and infectivity,58 whereas steroids such as prednisolone 

can promote HCV entry by up-regulating SRB1 expression.59 Hu-

man monoclonal antibody against SRB1 was shown to prevent 

HCV infection in vitro in hepatocytes and in vivo using chimeric 

mice engrafted with human hepatocytes.57 In a phase I clinical trial 

of HCV-infected patients, SRB1 antagonist was shown to inhibit 

HCV replication with added synergy for other antiviral therapeu-

tics.60

CD81
Human CD81 is a tetraspanin molecule that is broadly ex-

pressed and involved in many cellular functions including adhe-

sion, morphology, proliferation and differentiation. It includes 4 

transmembrane domains, 2 short intracellular domains and two 

extracellular loop domains (small and large).54 CD81 is likely in-

volved after the very early phase of HCV entry (i.e. after SRB1), 

promoting a conformational change in the HCV E1/E2 envelope 

glycoprotein to facilitate low pH-dependent fusion and viral endo-

cytosis.61 Involvement at a later phase after virus internalization 

was also suggested recently.62 CD81 large extracellular loop binds 

HCV through its envelope glycoprotein E2.47,63 The sequence of 

CD81 large extracellular loop is conserved between humans and 

chimpanzees, the only 2 species permissive to HCV infection in 

vivo.64,65 However, CD81 from other species (e.g. African green 

monkey, tamarin, rats, mice, hamster) can support entry of HCV 

clones in vitro, suggesting that CD81 polymorphism is not suf-

ficient to define HCV susceptibility.66 Although the ubiquitous 

expression of CD81 in multiple cell types may limit focused thera-

peutic application, anti-CD81 was shown to inhibit HCV entry in 

vivo in chimeric mouse model of HCV replication.67
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The tight junction proteins Claudin 1 and Occludin
Two tight junction proteins (CLDN1 and OCLN) identified by 

screening cDNA library for cellular factors that enable infection by 

HCV pseudoparticles were shown to be essential entry factors for 

HCV.48,50 Interestingly, neither CLDN1 nor OCLN seems to interact 

directly with HCV particles. However, CLDN1 may interact with 

CD81 as a part of the HCV receptor complex,68,69 it is believed that 

CLDN1 and OCLN are involved in a later phase of HCV entry, after 

SRB1 and CD81, although their precise roles are not fully defined. 

It was also shown that HCV envelope glycoproteins promote co-

endocytosis of CD81 and CLDN1 in a clathrin- and dynamin-

dependent process.62 Finally, anti-CLDN1 monoclonal antibodies 

were shown to inhibit HCV infection in hepatocytes in vitro by 

neutralizing the interactions between HCV E2 and CLDN1.70,71

Receptor tyrosine kinases and Niemann-Pick C1-like 1 
cholesterol absorption receptor

Two RTKs including the EGFR and EphA2 were recently identi-

fied as HCV entry factors by a functional RNAi kinase screen.51 

These RTKs appear to participate in HCV entry after the initial 

attachment/binding step, by regulating CD81 and CLDN1 co-

receptor interactions and membrane fusion. RTKs also contributed 

to cell-cell transmission of HCV. Relevant for clinical application, 

infection by all major HCV genotypes and escape variants could 

be inhibited by RTK-specific ligands and antibodies including erlo-

tinib (an EGFR-specific antibody that is FDA-approved for cancer 

therapy). Finally, a group in Chicago identified NPC1L1 (a choles-

terol sensing receptor expressed on apical surface of hepatocytes 

as well as enterocytes) as a new HCV entry factor, which can be 

inhibited by an available NPC1L1 antagonist ezetimibe which is 

FDA-approved to treat hypercholesterolemia.52

Collectively, these receptors and entry factors provide poten-

tial avenues to prevent HCV infection and spread, provided that 

modulation of their physiological role does not lead to significant 

toxicity. 

HCV RNA translation, polyprotein processing 
and replication

Following target cell entry through receptor-mediated endocy-

tosis, HCV particle undergoes pH-dependent membrane fusion 

within an acidic endosomal compartment to release its RNA ge-

nome into the cytoplasm.19,44,45 HCV polyprotein is translated in 

rough ER with the positive strand HCV RNA as the template, with 

the translation initiated in a cap-independent manner via the IRES 

in the 5’NTR. HCV translation yields a single polyprotein precur-

sor of approximately 3000 amino acid in length, that is further 

processed by cellular (e.g. signal peptidases) and viral proteases 

(NS2, NS3/4A) to generate 10 individual viral proteins, including 

core and envelope glycoproteins, E1 and E2, p7, NS2, NS3, NS4A, 

NS4B, NS5A, and NS5B as mentioned above. 

In the course of polyprotein processing, the HCV proteins are 

seen to be associated with a “membranous web” which includes 

double-membrane vesicles containing HCV nonstructural proteins, 

HCV RNA, ER membranes and lipid droplets.19,72,73 The membra-

nous web in HCV-expressing cells appears to be induced by HCV 

NS4B possibly in combination with NS5A.74,75 Viral RNA replication 

is believed to occur in these webs with the positive strand RNA 

genome as a template for the NS5B RdRp to generate the negative 

strand replicative intermediate, to produce further positive sense 

genomes. Nascent positive strand RNA genomes can be further 

translated to produce new viral proteins, or serve as templates for 

further RNA replication, or be assembled to infectious virions. 

Various cellular factors are involved in HCV replication, includ-

ing cyclophilin A and phosphatidylinositol 4 kinase IIIα (PI4KIIIα). 

Cyclophilin A can modulate RNA-binding capacity of NS5B 

polymerase and interact with NS5A. As such, cyclophilin inhibi-

tors have antiviral effect against HCV with clinical development 

ongoing.76-80 As for PI4KIIIα, it is a lipid kinase that is recruited to 

the membranous web by NS5A, required for HCV replication and 

provide integrity to the membranous viral replication complex.81-84

Viral assembly and release

The HCV assembly and release process is not fully understood. 

However, it appears to be closely linked to lipid metabolism.85 The 

link between HCV and lipid metabolism was first noted in clinical 

practice based on fatty changes in liver tissue that was further 

shown to be associated with HCV core.86 HCV infection induces a 

profound change in the intracellular distribution of lipid droplets 

(LDs)87 from generalized cytoplasmic pattern in uninfected cells to 

accumulation around the perinuclear region in HCV-infected cells 

associated with viral proteins and genome.88,89 HCV core associa-

tion with LDs appears to be critical in viral assembly and interven-

tions which block this interaction disrupt virus production.90-92 It 

is likely that all other viral proteins play a key role in the assembly 

process, centering around the lipid droplets where assembly is 

triggered in the membranous and lipid-rich environment by the 

structural HCV proteins (core/E1/E2/p7/NS2) and the replication 

complex. The very low density lipoprotein (VLDL) secretion path-
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way is closely related to that of assembled virions.93,94 The virion 

is a lipoviroparticle with a lipid composition that resembles VLDL 

and LDL with associated apoE and/or apoB, which are essential 

for the infectious virus assembly.93-96 Of clinical relevance, histo-

logical fatty changes in the liver has been associated with clinical 

and therapeutic outcomes97 and HCV genotype 3 was shown to 

mediate greater steatosis,98 although its pathogenetic mechanisms 

related to HCV life cycle is not clear. It is also notable that HCV 

replication can be controlled through cholesterol biosynthetic 

pathway and lipid-lowering drugs can suppress HCV replication in 

vitro.99,100

CONCLUSION

Since its initial cloning of HCV, we have gained considerable 

knowledge about HCV life cycle including entry, translation, rep-

lication and host cellular interactions (Table 1).101 These advances 

have also been critical in antiviral drug development for patients 

with chronic hepatitis C. After many years, we are now close 

to being able to cure our patients with potent, pan-genotypic, 

cost-effective and less toxic therapeutic regimen to prevent their 

progression to cirrhosis and liver cancer. Remaining challenges 

include the development of prophylactic vaccine for world-wide 

application (including countries without sufficient economic de-

velopment or access to newly developed antivirals) and better 

Table 1. Putative viral and host cellular factors interacting in HCV life cycle (Adapted from Pawlotsky JM, et al. Gastroenterology 2007;132:1979-
1998)101

HCV life cycle step Viral factors Host cellular factors

Viral attachment, entry, and fusion Envelope glycoprotein E1 Heparan sulfate proteoglycans

Envelope glycoprotein E2 Scavenger receptor B type I

CD81

Claudin-1

Occludin

Epidermal growth factor receptor

Ephrin receptor A2

LDL receptor

Niemann-Pick C1-like 1 cholesterol uptake receptor

HCV RNA translation Internal ribosome entry site Ribosomal subunits

5’ nontranslated region Eukaryotic initiation factors 2 and 3

HCV open reading frame tRNA

3’ nontranslated region

NS4A and NS5B

Posttranslational processing NS2 zinc-dependent metalloprotease Signal peptidase

NS3/4A serine protease Signal peptide peptidase

HCV replication NS5B RNA-dependent RNA polymerase ER membranes

NS5A Cyclophilin A

NS4B Phosphatidylinositol 4 kinase IIIα

NS3 helicase-NTPase MicroRNA122

Virus assembly and release Core protein Lipid droplets

envelope glycoproteins ER membranes

HCV RNA genome Golgi apparatus

NS5A VLDL secretion pathway

NS2 Apolipoproteins (apoB, apoE)

P7
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understanding of the mechanisms of persistence and pathogenesis 

of this fascinating virus.
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