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Abstract
Rationale and Objectives—Parenchymal texture patterns have been previously associated
with breast cancer risk. Yet, their underlying biological determinants remain poorly understood.
Here, we investigate the potential of mammographic parenchymal texture as a phenotypic imaging
marker of endogenous hormonal exposure.

Materials and Methods—A retrospective cohort study was performed. Digital mammography
(DM) images in the cranio-caudal (CC) view from 297 women, 154 without breast cancer and 143
with unilateral breast cancer, were analyzed. Menopause status was used as a surrogate of
cumulative endogenous hormonal exposure. Parenchymal texture features were extracted and
mammographic percent density (MD%) was computed using validated computerized methods.
Univariate and multivariable logistic regression analysis was performed to assess the association
between texture features and menopause status, after adjusting for MD% and hormonally-related
confounders. The receiver operating characteristic (ROC) area under the curve (AUC) of each
model was estimated to evaluate the degree of association between the extracted mammographic
features and menopause status.

Results—Coarseness, gray-level correlation, and fractal dimension texture features, have a
significant independent association with menopause status in the cancer-affected population;
skewness and fractal dimension exhibit a similar association in the cancer-free population
(p<0.05). The ROC AUC of the logistic regression model including all texture features was 0.70
(p<0.05) for cancer-affected and 0.63 (p<0.05) for cancer-free women. Texture features retained
significant association with menopause status (p<0.05) after adjusting for MD%, age at menarche,
ethnicity, contraception use, HRT, parity and age at first birth.

Conclusion—Mammographic texture patterns may reflect the effect of endogenous hormonal
exposure on the breast tissue and may capture such effects beyond mammographic density.
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Differences in texture features between pre- and post-menopausal women are more pronounced in
the cancer-affected population, which may be attributed to an increased association to breast
cancer risk. Texture features could ultimately be incorporated in breast cancer risk assessment
models as markers of hormonal exposure.
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1. INTRODUCTION
As new strategies for breast cancer prevention and early detection become available (1, 2), it
is essential to provide accurate, clinically relevant methods, to identify women at high risk
of breast cancer. While a lot of progress has been made, current approaches still face
limitations. Most research to date has focused on identifying women at increased familial
risk (i.e., BRCA1/2 carriers), which only account for the 5–10% of incident breast cancers
(3). On the other hand, NCI’s breast cancer risk assessment tool for the general population,
the Gail model, has only modest discriminatory accuracy at the individual level (4). Studies
suggest that risk prediction could be improved by incorporating mammographic
parenchymal pattern descriptors (5, 6). Parenchymal texture features characterize the spatial
distribution and structure of the breast tissue pattern (7–10) and could potentially
complement the widely used measure of breast density, which is typically captured using
coarse measures of the overall percent of mammographically dense tissue in the breast (11).
Studies suggest that texture features, particularly in the low spatial frequencies, are strong
predictors of cancer risk (12), even when breast density is considered (13).

Mammographic breast density, which is currently the most commonly used parenchymal
pattern descriptor, has been identified as a strong independent risk factor for breast cancer
(14) and is also shown to correlate with certain modifiable risk factors, such as endogenous
cumulative and circulating hormone levels, exogenous hormonal exposure, diet and body
mass index (15–17). Studies suggest that the biological basis of these associations can be
mediated through a number of mechanisms that include increased hormonal exposure,
prolactin secretion or the production of growth factors and non-growth factor peptides (18);
which may lead to tissue progression from normal growth to hyperplasia to neoplasia (18,
19). Over the last decade, novel parenchymal descriptors characterizing the texture of the
breast tissue have also emerged as potentially additional breast cancer risk indicators (7, 8,
10). Yet, while the biological basis of breast density as a risk factor is starting to be
elucidated, the biological determinants of parenchymal texture and its association to breast
cancer risk are still not well understood.

We previously reported preliminary evidence that mammographic texture features may be
associated with hormonal exposure by correlating them to menopause status in a small
screening population (20). In this work, we attempt to further characterize our previously
reported observations. Specifically, we explore the association between parenchymal texture
descriptors and menopause status, which is used here as a surrogate of cumulative
endogenous hormonal exposure, in two populations of women: a cancer-free and a cancer-
affected population. The rationale is that by contrasting the results from these two sub-
populations, we may gain further insight on whether such an association could also be
affected, or potentially mediated, by an inherent predisposition to a higher risk for breast
cancer. In addition, we assess whether parenchymal texture retains an independent
association to menopause status when further adjusting for mammographic density as an
additional confounder.

Daye et al. Page 2

Acad Radiol. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As a first step towards understanding the biological basis of mammographic texture, we
hypothesize that mammographic texture patterns are associated with endogenous hormonal
exposure. Epidemiologic studies provide evidence for the role of endogenous hormones in
the development of breast cancer (21, 22), and specifically for their effect on tissue ageing,
as a key breast cancer risk factor (23). For our study, menopause status was used as a
surrogate of endogenous hormonal activity, as with menopause, there is a drastic reduction
in the amount of sex hormones produced by the body (24). Identifying differences in
parenchymal texture between pre- and post- menopausal women could serve as a proof-of-
concept, indicating that mammographic texture features reflect the effects of cumulative
endogenous hormonal exposure on the breast tissue. Our long-term hypothesis is that
mammographic parenchymal features could be incorporated into breast cancer risk
estimation models to improve individualized breast cancer risk estimation.

2. MATERIALS AND METHODS
2.1 Study Population

Between June 2002 and December 2005, 650 women (age 27–81) had digital mammography
imaging as part of a multimodality breast imaging clinical trial completed in our institution.
The study compared the diagnostic performance of different digital breast imaging
modalities, for women with estimated high risk of breast cancer (> 25% lifetime Gail/Claus
risk), women with recently detected abnormalities (BIRADS ≥ 4 or positive biopsy), and
follow-up of previous cancer patients. Women in this trial were volunteers and have signed
informed consent. As part of their participation, the women provided demographic, health
and reproductive history information. The number of first degree relatives with breast
cancer, number of benign biopsies, age at menarche and age at first live birth, and the
woman’s race were used to calculate lifetime and 5-year Gail breast cancer risk (4).
Exclusion criteria consisted of being pregnant, having a contraindication for MRI, prior
history of cancer in the ipsilateral breast within the last 5 years, being treated with
preoperative adjuvant therapy, having a blood sugar level above 200 mg/dL and having
moderate to severe renal disease.

For our study reported here, a total of 297 women were included. To be selected for our
study, women had to have digital mammography images available with sufficient image
quality, be pre- or post-menopausal and have no or unilateral breast cancer. Of the 650
women originally enrolled in the multimodality imaging trial, 466 had digital
mammography images with no artifacts (including biopsy clips etc.) that could potentially
confound image analysis. Of those, 169 women were further excluded for one or more of the
following: (1) being peri-menopausal, (2) having bilateral breast cancer, (3) failing to report:
age, estrogen therapy use, contraceptive therapy use or age at menarche; or (4) having a
lesion specifically within the retroareolar region. Of the remaining 297 women included in
our study, 143 had unilateral breast cancer (i.e., referred here as our cancer-affected
population) and 154 had no diagnosis of breast cancer (i.e., our cancer-free population).
Menopause status was ascertained from completed study questionnaires where participating
clinicians indicated whether the woman was pre-menopausal, post-menopausal, peri-
menopausal or had an unknown menopause status. Of the cancer-affected women, 73
women were pre-menopausal and 70 were post-menopausal. Of the cancer-free population,
88 women were pre-menopausal and 66 were post-menopausal. A number of factors known
to affect hormonal levels were also examined, including current estrogen therapy use, and
current oral contraceptive use, age at menarche, parity, and age at first birth. A summary of
the demographic characteristics of the study population is shown in table 1.
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2.2 Image Dataset
Bilateral cranio-caudal (CC) digital mammography (DM) images were retrospectively
analyzed under HIPAA and IRB approval. DM acquisition was performed with a GE
Senographe 2000D full-field DM system (GE Healthcare, Chalfont St. Giles, UK). The raw
x-ray projections were acquired with a spatial resolution of 0.1mm/pixel and a 16-bit per
pixel gray-level depth. Image post-processing was performed with the GE PremiumView™

algorithm (25). For cancer-affected women, the unaffected breast was analyzed as a
surrogate of inherent healthy breast tissue properties. For the cancer-free women, side-
matching was performed to select a similar proportion of left and right breasts as the cancer-
affected women. Based on this, the final dataset included 73% right breasts and 27% left
breasts.

2.3 Parenchymal Texture Analysis
In this study, we implemented Gray Level Co-occurrence Matrix (GLCM)-based texture
features as well as a number of parenchymal texture descriptors that explore local gray-level
patterns in the mammographic images. To extract these descriptors, retroareolar 2.5cm2

regions of interest (ROI) were first segmented from the PremiumView™ post-processed
images using validated automated software (25, 26). Briefly, the software implements an
edge detection algorithm based on the Hough transform to detect the chest wall in the image
(27). Then, the nipple location is detected as the edge point that is furthest perpendicularly
from the chest wall, and a 2.5cm2 retroareolar ROI is automatically segmented behind the
detected nipple. The resulting ROI is in the central breast region and was specifically
selected because it typically includes the most dense and texturally complex region of the
breast as previously described by Huo et al. (8) and provides the most discriminative texture
features for differentiating women at high versus low-risk for breast cancer (25, 28).
Representative retroareolar ROIs from pre- and post-menopausal women are shown in
Figure 1.

Texture features of skewness, coarseness, contrast, gray-level correlation, fractal dimension,
homogeneity, and energy were computed from each ROI. These features have been
previously proposed for general image analysis applications (29, 30) and have also been
specifically shown to correlate with breast cancer risk when computed from mammographic
images (7, 8, 10, 12, 25, 28, 31). Their previous correlation with breast cancer risk suggests
their potential to capture, even partially, underlying biological processes in breast tissue.
While the exact underlying biologic phenotypes of these reported patterns are not yet fully
understood, these features essentially quantitatively explore local patterns in the images
based on statistical descriptors. The detailed mathematical derivations are included in
Appendix I. Briefly, skewness reflects the asymmetry in the gray-level pixel value
distribution, and has been shown to reflect local parenchymal density properties (32, 33).
Coarseness is a measure of smoothness of image texture and within our context reflects local
granularity in parenchymal pattern; its computation is based on the neighborhood gray tone
difference matrix (32, 33). Contrast, energy and homogeneity, as originally proposed by
Haralick (34), reflect local differences in the distribution of image intensity and require the
computation of the gray-level spatial co-occurrence matrix. Contrast quantifies variation in
image intensity between neighboring pixels; energy is a measure of texture uniformity of the
gray-level spatial distribution; and homogeneity reflects the heterogeneity of texture
patterns. Finally, fractal dimension, computed here using the power spectrum of the Fourier
transform (7), indicates the degree of intrinsic self-similarity of the parenchymal pattern at
different image resolutions.
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2.4 Mammographic Density Estimation
Mammographic percent density was estimated using previously published validated
computer software (35, 36). In summary, the computer algorithm first identifies the air-
breast boundary via automated thresholding based on edge detection and the pectoral muscle
region, when present, is excluded using a straight line Hough transform (35). Adaptive k-
class fuzzy-c-means (FCM) clustering is then performed within the segmented breast region,
to partition the breast area into multiple clusters of similar grey-level image intensity. A
linear classifier is subsequently applied to label the detected sub-regions into dense tissue
versus fat and segment the total dense tissue area within the breast. Mammographic percent
density (MD%) is then estimated per standard practice (11) as the percentage of the total
breast area occupied by the segmented dense tissue.

2.5. Data analysis
Statistical analysis was performed separately for the cancer-affected and the cancer-free
women, to account for potential inherent differences in parenchymal tissue properties. For
each feature and MD% we report the mean, standard deviation (SD), coefficient of variation
(CV) and intra-class correlation (ICC). The ICC was computed using the left and right breast
features of the same woman within each class. Student’s t-test was performed to assess
differences in the means between the pre- and post-menopausal women. To assess inter-
feature correlation, the Spearman correlation coefficient r was computed between each
feature pair. To determine the association between texture features, MD% and menopause
status, univariate and multivariate logistic regression analysis was performed (Stata/IC 12,
Stata Corp.).

We first investigated the association between each of the texture features independently, as
well as mammographic density, with menopause status using univariate logistic regression
with menopause status as the outcome variable. These univariate models were further
adjusted for mammographic density and the potential hormonal confounders to assess the
independent contribution of each of the texture feature in association to menopause status.

To assess the collective association between combinations of the texture features and
menopause status, multivariate logistic regression was performed using all the computed
texture features as explanatory variables. Similarly to univariate analysis, we assessed
whether texture features were independently predictive of menopause status after adjusting
for mammographic density and the potential hormone-related confounding factors, age at
menarche, ethnicity, contraception pill use, hormonal replacement therapy (HRT), parity and
age at first birth. Age at menarche was included as a continuous variable and ethnicity as a
categorical variable with 5 categories as summarized in table 1. Contraceptive use and HRT
use were treated as binary variables. Parity and age at first birth were coded as a single,
nominal variable where 0 referred to nulliparity, 1 to having a first birth prior to 30 and 2
referred to having a first birth after 30.

To alleviate the effect of feature multicolinearity, backward stepwise feature selection was
performed in the multivariable models, with a feature entry p-value of 0.05 and feature
removal p-value of 0.1. In all models, estimated logistic regression coefficients were
computed, and the Wald test was performed to assess significance of the association
between each predictor and menopause as the response variable at 0.05 significance level.
To determine the degree of the observed associations, the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve was computed for each model to evaluate
discriminatory capacity between pre- and post-menopausal status (Matlab V.2012a,
Mathworks, Inc., Precision Recall Curve Toolbox (37)). The different ROC AUCs were
compared using the bootstrapping test for significance (38). In all analyses, two levels of
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significance were considered, p<0.05, as a standard level, and p<0.001 as a more stringent
criterion to account for the multiple tests performed.

3. RESULTS
Fractal dimension and skewness were statistically significantly different between pre- and
post-menopausal women in the cancer-free population (Table 2). Coarseness, gray-level
correlation and fractal dimension were different between the two groups in the cancer-
affected population. Representative ROIs illustrating some of these differences are shown in
Figure 1. Mammographic density was statistically significantly lower in post-menopausal
women in both the cancer-free and cancer-affected populations. Inter-feature correlations
ranged from low to high (|rmin|=0.01, |rmax|=0.99) for the different texture features (Table 3).
Mammographic density had little to moderate correlation with the extracted texture features
(|rmin|=0.01, |rmax|=0.45).

Univariate logistic regression showed that a number of texture features, as well as
mammographic density, are significantly different between pre- and post-menopausal
women (AUC>0.50; p<0.05) for both cancer-affected and cancer-free women (Table 4).
Skewness and fractal dimension are significantly associated with menopause status in
cancer-free women (AUC>0.50, p<0.05). Coarseness, gray-level correlation and fractal
dimension are significant in cancer-affected women (AUC>0.50, p<0.05). Following
adjustment for MD% and hormonal confounders, fractal dimension maintains significant
association with menopause status in the cancer-free population. Coarseness, gray-level
correlation and fractal dimension maintain significance in the cancer-affected population.
Mammographic density has the highest univariate AUC of all texture features in both the
cancer-free and cancer-affected women (AUC>0.70). ROC curves with AUC>0.5 and
p<0.05 were considered as statistically significant.

In multivariate analysis, for the cancer-free women, the multivariable logistic regression
model that included all the texture features yielded one significant texture feature
coefficient, that of fractal dimension (p<0.05) (Table 5). ROC analysis after backward
feature selection on the model that included only the texture features yielded an AUC of
0.63 (Figure 2A). The corresponding logistic regression model for the cancer-affected
women yielded three significant texture features coefficients, that of contrast, homogeneity
and skewness (p<0.05) (Table 5). Following feature selection, ROC analysis on the model
that included only the texture feature yielded an AUC of 0.70 (Figure 2B). After adjustment
for MD%, fractal dimension maintained significant association with menopause status in the
cancer-free women and contrast and homogeneity retained significance in cancer-affected
women (p<0.05); MD% was statistically significant in all models across populations
(p<0.05) (Table 5). After feature selection, ROC curve analysis yielded an AUC of 0.72 for
the cancer-free population (Figure 2C) and an AUC of 0.76 (Figure 2D) for the cancer-
affected population.

Further adjustment for age at menarche, ethnicity, contraception use, estrogen therapy use
parity and age at first birth, did not show statistical significant association between any of
these potential hormonal confounders and menopause status, for either cancer-free or
cancer-affected women, while the previously selected texture features and MD% retained
significant independent association with menopause status (p<0.05) (Table 5). All reported
models were statistically significant (model p-value<0.05) (Table 5). While the addition of
MD% to the multivariable texture feature models led to a stronger association with
menopause status, as indicated by an increase in the ROC AUC of all corresponding models
for both cancer-free and cancer-affected women, assessment of those differences with

Daye et al. Page 6

Acad Radiol. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



bootstrapping (38), as compared to the density-only and texture-only models, did not reveal
statistical significance (Figure 2).

4. DISCUSSION
Mammographic parenchymal patterns, traditionally described by breast density, have been
strongly associated with the risk of breast cancer (6, 34). Recent data suggests an increasing
role of additional parenchymal descriptors, such as mammographic texture features, in
breast cancer risk assessment (7, 8, 10, 12, 25, 28, 31). Li et al. have assessed various
computer-extracted mammographic texture features of BRCA1/BRCA2 carriers and women
at lower risk of breast cancer (8, 10, 32, 33), showing that parenchymal texture features can
identify women at high risk of breast cancer due to genetic predisposition. When applied to
the general population, studies also support that mammographic texture analysis could be
used in breast cancer risk assessment (12, 13, 31). While this evidence suggests an
association between mammographic texture and breast cancer risk, the underlying biological
basis for this association is still not well understood.

Endogenous hormonal activity, reflected by both cumulative and circulating hormone levels,
is strongly associated with increased breast cancer risk and is known to affect the breast
tissue (18, 23). Mammographic density is heavily affected by hormonal exposure (16, 17,
19, 39) and it is shown to increase with hormonal therapy (HRT)(40), and decrease with
menopause (41) and Tamoxifen use (42). While studies have investigated the effect of
hormonal exposure on mammographic density, there is limited data on the effect of
hormone-related processes on parenchymal tissue texture. Studies have shown that
mammographic texture features are only moderately correlated with density (43), and may
be different within the dense versus fatty areas of the breast tissue (44). A study by
Raundahl et al. (45) showed that computer-extracted mammographic pattern descriptors,
including the heterogeneity of the local breast tissue structure, can capture the effect of
hormone related interventions, such as HRT.

The underlying biological determinants of parenchymal texture have not been previously
explored. Our data suggests that certain mammographic textures features are different
between pre- and post-menopausal women. These results indicate that hormonal exposure
might have a detectable effect on the texture of the breast tissue, here quantitatively
characterized using computerized features. Some of these features, such as fractal
dimension, contrast, and homogeneity, maintain a significant association to menopause
status even after adjusting for breast density and hormonally-related factors, including age at
menarche, estrogen treatment, ethnicity, contraceptive use, parity and age at first birth. In
our study, mammographic density has the strongest univariate association to menopause
status. When considered in conjunction to texture features in multivariable analysis, the
collective association to menopause status is stronger, although not statistically significantly
different. While it is reasonable to assume that mammographic texture and density may have
some common biological determinants, the independent significant association of certain
texture features to menopause status after adjusting for density suggests that these features
may reflect additional information related to the effect of endogenous hormonal activity on
the breast tissue. This is also supported by the low correlation observed between
mammographic density and the texture features used in our study. Combined, these results
suggest that parenchymal texture might provide complementary information, in addition to
mammographic density in reflecting the effects of endogenous hormonal exposure of the
breast tissue, a known risk factor of breast cancer.

Our results indicate that, in both univariate and multivariate analysis, the association
between texture features and menopause status may be higher in cancer-affected compared
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to cancer-free women, suggesting that the potential effect of cumulative endogenous
hormonal exposure on the breast tissue may be more pronounced for women that ultimately
develop breast cancer. This hypothesis is supported by the initial hypothesis posed by Pike
(23), that endogenous hormonal exposure has an effect on the breast tissue ageing processes,
and that increased cumulative hormonal exposure is related to a higher risk for developing
breast cancer. These results may be of significance as texture features could ultimately be
used as imaging markers of endogenous hormonal exposure, and therefore as imaging
markers of cancer risk. In our study, this reported effect could however be confounded by
the higher mean age of the postmenopausal women in our cancer-affected population,
compared to the same group in the cancer-free population, which in turn could correspond to
a longer time-period of endogenous hormonal exposure. Also of note, different texture
features are associated to menopause status in the cancer-affected versus cancer-free
women, suggesting that the breast tissue properties might be inherently different between
these two populations. However, due to our relatively small sample set, these observations
will need to be confirmed with larger clinical studies.

Our study has certain limitations. Designed as a preliminary evaluation, we chose to use
menopause status as a surrogate for hormonal exposure. While it is reasonable to assume
that post-menopausal women have lower circulating estrogen levels when compared to pre-
menopausal women, there is variability in the hormonal levels between women. A more
rigorous measure of hormonal exposure could be used to more accurately assess hormonal
levels in the blood (such as serum estradiol levels, etc.) and correlate those directly with
mammographic texture descriptors. In addition, our study population mainly consisted of a
high-risk population, and therefore our findings will ultimately need to be validated in larger
screening populations. Furthermore, texture analysis was confined within the retroareolar
region of the breast. While this area is thought to contain the most dense tissue and
texturally complex portion of the breast (28), future work will seek to validate these findings
using whole-breast texture analysis. Finally, we acknowledge that there are several potential
additional texture features that we could have explored in this setting that may potentially
capture additional tissue characteristics. Considering our sample size, and issues of
overfitting our models, we chose to use the most widely used and best validated texture
features previously reported in the literature on breast cancer risk assessment. Our current
study serves as a proof-of-concept; the inclusion and validation of additional texture features
will constitute the subject of further investigations.

The research question currently actively investigated is to which extent parenchymal texture
features can complement breast density in breast cancer risk estimation. To date, reports in
the literature have shown mixed results. A study by Manduca et al. (43) showed that
parenchymal texture features in the low spatial frequencies are the strongest predictors of
risk and retain significance when breast density is considered; however they do not
significantly improve the ability to predict risk compared to breast density alone. In contrast,
a recent study by Haberle et al (13) in a larger population showed that mammographic
texture features can predict cancer risk with significant increase in model performance
compared to density. Most studies to date have mainly used retrospective data sets from
different patient populations and have utilized digitized film-screen mammograms (7, 8, 10,
12, 25, 28, 31), in which the effect of the film digitizer may have impacted the predictive
value of the computed image texture features. Studies with digital mammography offer the
opportunity to fully-explore the potential advantages of parenchymal texture analysis in
breast cancer risk estimation by extracting quantitative features directly from the raw digital
images. Larger prospective clinical studies are warranted to fully investigate the potential
value of parenchymal texture analysis in breast cancer risk estimation.
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5. CONCLUSION
Parenchymal texture has been previously associated with breast cancer risk. Yet, the
biological basis of this association remains largely unknown. Here, we performed a study to
assess parenchymal texture features as imaging markers of tissue hormonal exposure.
Menopause status was used as a surrogate of endogenous hormonal activity. Our results
suggest that certain mammographic texture features are significantly associated with
menopause status. The observed association is stronger in cancer-affected women than
cancer-free women, and remains significant even when other hormonally related variables
are considered, such as age at menarche, ethnicity, contraception use, estrogen therapy,
parity, and age at first birth. Texture features may also contribute complementary
information to that of mammographic density in reflecting tissue hormonal exposure.
Parenchymal texture features could ultimately aid in breast cancer risk assessment as
imaging markers of tissue hormonal exposure.
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Appendix
In this study, seven texture features were extracted from each ROI. Skewness reflects the
asymmetry of the gray-level histogram and has been used to assess parenchymal density (32,
46). When the image texture is predominantly composed of fat (i.e. the grey-level histogram
is skewed to higher values) the skewness tends to be positive, whereas when the texture is
primarily formed by dense tissue (i.e. the gray-level histogram is skewed to lower values)
the skewness values tend to be negative. Skewness is the third statistical moment, computed
as:

and ni represents the number of times that gray level value i takes place in the image region,
gmax is the maximum gray-level value and N is the total number of image pixels.

Coarseness is a texture feature that reflects the local variation in image intensity; small
coarseness value for an ROI indicates fine texture, where the gray levels of neighboring
pixels are different; high coarseness value indicates coarse texture, where neighboring pixels
have similar gray level values. Coarseness computation is based on the Neighborhood Gray
Tone Difference Matrix (NGTDM)(30) of the gray-level values within the image region.

In the above formulas, gmax is the maximum gray-level value, pi is the probability that gray
level i occurs, ni is the number of pixels having gray level value equal to i, and  is given
by

where j(x,y) is the pixel located at (x,y) with gray level value i, (k,l)≠(0,0) and S= (2d +1)2

with d specifying the neighborhood size around the pixel located at (x,y).
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Contrast, Energy, Correlation and Homogeneity, as proposed originally by Haralick(29,
47), require the computation of a gray-level co-occurrence matrix, which is based on the
frequency of the spatial co-occurrence of gray-level intensities in the image. Contrast
quantifies overall variation in image intensity, while energy is a measure of image
homogeneity.

where g is the total number of gray levels, μ and σ are the mean and standard deviation of
the partial probability density function p and C is the normalized co-occurrence matrix (29,
47).

Fractal dimension (FD) was estimated based on the power spectrum of the Fourier
transform of the image(7, 48, 49). The 2D Discrete Fourier Transform (DFT) was performed
using the Fast Fourier Transform (FFT) algorithm as:

where I is the 2D image region of size (M, N), and u and v are the spatial frequencies in the
x and y directions. The power spectral density P was estimated from F(u,v) as:

To compute the FD, P was averaged over radial slices spanning the FFT frequency domain.
The frequency space was uniformly divided in 24 directions, with each direction uniformly
sampled at 30 points along the radial component. To calculate the FD the least-squares-fit of

the log(Pf) versus log(f) was estimated, where  denotes the radial frequency.

The FD is related to the slope β o f this log-log plot by:

where DT is the topological dimension, and is equal to 2 for a 2D image.
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Figure 1.
Representative retroareolar regions of interest (ROI) from cranio-caudal (CC)
mammographic images of unaffected breasts of cancer-affected and cancer-free women. A,
C and E are pre-menopausal cases. B, D and F are post-menopausal cases. A, B, C, D, E and
F represent ROI’s with low skewness (skewness = −1.5677), high skewness (skewness =
1.5942), high coarseness (coarseness = 9.1793E-4), low coarseness (coarseness =
1.2043E-4), high gray-level correlation (gray-level correlation= 0.9949) and low gray-level
correlation (gray-level correlation = 0.8637) texture features respectively. In general, pre-
menopausal women tend to have denser breast parenchyma with smoother texture; post-
menopausal women have less dense parenchyma with sharper textures. These characteristics
were quantitatively characterized using the implemented texture features. Shown are texture
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features that exhibited statistically significant differences between pre- and post-menopausal
women.
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Figure 2.
Receiver operating characteristic (ROC) curves for logistic regression analysis for texture
features only for the cancer-free (A) and cancer-affected women (B); and texture features
plus mammographic percent density (MD%) for cancer-free (C) and cancer-affected women
(D). (AUC: area under the curve. Data is shown for the models after backward feature
selection)
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Table 1

Characteristics of our study population

Cancer-free Women Cancer-affected Women

Pre-Menopausal Post-Menopausal Pre-Menopausal Post-Menopausal

Total Number 88 66 73 70

Mean Age (years) 44.41±7.78 52.39±18.32 45.43±6.02 62.77±7.59

Gail 5-year Risk (%) 1.51±1.28 2.85±1.99 1.03±0.70 1.81±0.96

Gail Lifetime Risk (%) 17.63±8.38 17.62±10.89 12.11±5.18 10.22±4.97

Ethnicity

 Caucasian 76 (87%) 51 (77%) 59 (81%) 54 (77%)

 African American 7 (8%) 8 (12%) 8 (11%) 13 (20%)

 Asian 2 (2%) 2 (3%) 2 (3%) 1 (1%)

 Mixed 1 (1%) 1 (2%) 1 (1%) 1 (1%)

 Other, N/A 2 (2%) 4 (6%) 3 (4%) 1 (1%)

Estrogen Therapy

 Yes 1 (1%) 3 (5%) 1 (1%) 2 (3%)

 No 87 (99%) 63 (95%) 72 (99%) 68 (97%)

Contraceptive Use

 Yes 2 (2%) 0 (0%) 6 (8%) 0 (0%)

 No 86 (98%) 66 (100%) 67 (92%) 70 (100%)

Mean Age at Menarche (years) 12.57±1.71 12.45±2.74 12.59±1.16 12.33±1.49

Mean Age at First Birth (years) 27.32±5.68 25.59±6.47 28.40±5.09 24.27±5.33

Parity

 Yes 55 (63%) 56 (85%) 55 (75%) 59 (84%)

 No 33 (37%) 10 (15%) 18 (25%) 11 (16%)
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