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Abstract
Sympathetic nervous system regulation by the α1-adrenergic receptor (AR) subtypes (α1A, α1B,
α1D) is complex, whereby chronic activity can be either detrimental or protective for both heart
and brain function. This review will summarize the evidence that this dual regulation can be
mediated through the different α1-AR subtypes in the context of cardiac hypertrophy, heart
failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration,
cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
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Nomenclature, initial tissue characterization, and cloning
α1-Adrenergic receptor (AR) subtypes (α1A, α1B, and α1D) are G-protein-coupled receptors
(GPCRs) that mediate the sympathetic nervous system by binding the endogenous
catecholamines, epinephrine, and norepinephrine (NE) (1). Raymond Ahlquist (2)
introduced the initial concept of different subtypes of ARs (α and β), and all nine of the
adrenergic subtypes (α1A, α1B, α1D, α2A, α2B, α2C, β1, β2, and β3,) are activated by the
same catecholamines.

After further characterization in tissue, α1-ARs were subdivided into the α1A- and α1B-AR
subtypes in the late 1980s based upon experimental data of two-site competition binding
curves in rat brain to the antagonists WB4101 and phentolamine. The α1A-AR subtype was
characterized as having a 10–100-fold higher affinity for these ligands than the α1B-AR
subtype (3). During this same time period, the α1B-AR was cloned utilizing oligonucleotide
probes made by peptide fragments of purified receptor (4). This receptor was correctly
classified as the α1B-AR because of the cloned receptor’s lower affinity for WB4101 and
phentolamine. The next α1-AR cloned was designated the α1C-AR, considered a newly
discovered α1-AR subtype, because it did not neatly fit into previous pharmacological
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criteria for the α1A-AR subtype (5). This expressed receptor did have high affinity for
typical α1A-AR ligands. However, because it was isolated from a bovine cDNA library,
which had high sequence variation to the rat gene, its expression could not be detected in rat
tissues. In addition, the receptor was insensitive to chloroethyl clonidine (an α1A-AR
criteria). Thus, not having α1A-AR-like tissue distribution and having sensitivity to
chloroethyl clonidine, an alkylating agent mistakenly thought at the time to be selective for
the α1B-AR, led to this receptor being misclassified. A few years later, two groups recloned
the same receptor from a rat cDNA library, whose tissues were previously characterized for
α1A-AR pharmacology and thus allowing for a more accurate comparison. Both groups
demonstrated that the misclassified α1C-AR really represented the tissue-defined α1A-AR
(6,7). Before the publication of this corrective work for the α1C-AR misclassification,
another receptor was cloned and was designated the α1A-AR because this receptor had high
affinity for WB4101 (8). In reality, this clone was the real novel receptor subtype, not being
previously pharmacologically described in tissues, and was independently cloned and more
extensively characterized to reveal its novel pharmacology and was named the α1D-AR (9).
This classification was accepted by the IUPHAR Adrenergic Receptor Subcommittee (10).
Therefore, the α1C-AR subtype designation does not exist anymore and three α1-AR
subtypes have now been fully characterized in both expressed systems and native tissues: the
α1A, α1B, and α1D-ARs (10). With the sequencing of mammalian genomes, there does not
appear to be additional AR subtypes.

Cardiac physiology
Myocardial α1-ARs

Of the ARs, myocardium contains β- and α1-ARs. Of the α1-ARs, the myocyte contains
both the α1A- and α1B-AR subtypes. There are no α2-ARs present in the myocyte as well as
little if any expression of the α1D-AR, despite the present of its mRNA in PCR studies
(11,12). There is evidence to suggest that α1-ARs are also present in the cardiac fibroblast
(13,14) and may regulate protein synthesis and secretion that are also needed for cardiac
function. The ARs regulate both the contractility as well as the growth of the myocardium.
While the β-ARs predominate in the regulation of heart function under normal physiological
conditions, the α1-ARs are thought to become more important during pathological
conditions and disease, such as hypertrophy, heart failure, and ischemic disease. For
example, α1-ARs are generally thought to be more important in preserving or increasing
myocardial contractility in the setting of heart failure and β-AR downregulation (15–17).
Since α1-ARs are GPCRs, the major signaling pathways utilize Gq, coupling to
phospholipase Cβ and resulting in the membrane release of inositol 1,4,5- trisphosphate
(IP3) and diacylglycerol. These second messengers activate the release of intracellular
calcium and activation of PKC, respectively. However, there is evidence that α1A- and α1B-
AR subtypes are differentially coupled to different G-proteins and signaling pathways in
myocytes that may mediate the potential differences in cardiac physiology (18,19) as
reviewed here.

α1-AR-mediated cardiac hypertrophy
Early studies (20,21) indicated that incubation of myocytes with catecholamines causes
cellular hypertrophy by activation of α1-ARs. Subsequent reports established that the α1-
AR-stimulated hypertrophy in myocytes progresses through a series of genetic events with
induction of immediate–early genes followed by expression of embryonic genes, and
increased contractile proteins (22). The end result of these changes in gene expression is an
increased size of the myocyte. Cardiac hypertrophy initially has beneficial effects in terms
of muscular economy by normalizing wall stress (i.e. adaptive hypertrophy). However,
several studies have demonstrated that chronic hypertrophy is associated with a significant
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increase in the risk of heart failure, ischemic heart disease, and apoptosis (i.e. maladaptive
hypertrophy; reviewed in ref. 23). We believed that the differential outcomes of hypertrophy
can depend upon the α1-AR subtype, with the α1A-AR mediating adaptive and
compensatory hypertrophy, whereas the α1B-AR mediates hypertrophy that is maladaptive
and cardiac damaging.

Most cellular studies indicated that the α1A-AR subtype is the mediator of hypertrophy in
neonatal myocytes (24,25). Knowlton et al. (25) showed that stimulation of the α1A-AR
subtype in neonatal myocytes caused phosphoinositide hydrolysis and was responsible for
cardiac hypertrophy, whereas stimulation of the α1B-AR subtype did not mediate
hypertrophy. Similar results were obtained by Autelitano and Woodcock (24) using subtype-
selective agonists. In vivo, an α1A-AR transgenic mouse model with constitutively active
mutations (CAM) in the receptor and under the control of the native promoter to achieve
systemic expression demonstrated cardiac hypertrophy independent of changes in blood
pressure (manuscript in preparation), corroborating earlier cellular studies. This hypertrophy
appears to be adaptive as these mice are protected against ischemia (26). In contrast,
myocyte-targeted wild type (WT) α1A-AR do not display hypertrophy (27), even with vast
amounts of receptor over expression. This same mouse model limits postinfarct ventricular
remodeling and dysfunction and improves survival due to heart failure after myocardial
infarction and thus appears to be cardiac adaptive (28). However, long-term effects of this
heightened contractility eventually become pathological (29). Discrepancies between the
mouse models could be due to the CAM receptor coupling promiscuously to signaling
pathways not associated with a WT receptor. On the other hand, the CAM α1A-AR mouse
also expresses the CAM receptor in cells other than the myocyte, and displays high secreted
serum levels of interleukin (IL)-6 (manuscript in preparation), which may promote adaptive
cardiac hypertrophy through the gp130 and STAT3 pathways (30–33).

In contrast, myocyte-targeted CAM α1B-AR mice were shown to have hypertrophy ex vivo,
although mild (34), and displayed a hastened time to heart failure with pressure overload
(35). However, cardiac overexpression of the WT α1B-AR, while displaying ventricular
dysfunction, did not display hypertrophy (36). However, this same mouse displayed elevated
activation of signaling pathways associated with cardiac hypertrophy, such as calcineurin
activity (37). A similar but different myocytetargeted WT α1B-AR mouse model (38) did
not have basal hypertrophy, but developed a severe maladaptive hypertrophy with cardiac
abnormalities when subjected to a 14-day treatment of phenylephrine (39). Both CAM and
WT α1B-AR mice under the control of the endogenous promoter demonstrated both cardiac
hypertrophy and cardiac dysfunction (40). Therefore, both overexpressed α1B-AR mouse
models suggest a maladaptive response to cardiac hypertrophy. Consistent with the
observation that the α1B-AR mediates cardiac hypertrophy is that the α1B-AR knockout
(KO) mouse do not display NE-mediated hypertrophy (41).

α1-ARs in heart failure
Chronic heart failure is associated with prolonged stimulation of the adrenergic and
sympathetic nervous system and increased plasma levels of catecholamines, resulting in β1-
AR down-regulation and myocardial apoptosis (42–44). This increased sympathetic activity
is first initiated as an adaptive process and the heart hypertrophies to compensate for the
decreased cardiac contractility. However, sustained cardiac contractility cannot be
maintained indefinitely and this compensatory process becomes maladaptive, contributing
significantly to disease progression by wall thinning, dilation, and finally heart failure.

Previous studies during the 1980–1990s on the roles of α1-ARs in human heart failure is
controversial. Some studies indicated they were protective, whereas other studies indicated
that α1-AR activation was detrimental that progressed heart failure (45). However many of
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these studies were performed before we knew the existence of the α1-AR subtypes and had
the tools to define them, so these disparate reports or findings could be due to subtype-
specific signaling. α1-AR antagonists were initially thought to be useful in treating heart
failure due to decreasing sympathetic overload. However, in the Antihypertensive and Lipid-
Lowering Treatment to Prevent Heart Attack Trial, the use of a nonselective α1-AR
antagonist increased the risk of heart failure and mortality (46). In contrast, carvedilol, an
antagonist of α1- and β-ARs but with higher affinity for the α1B-AR subtype (47) (and thus
promoting α1A-AR signaling and inotropism), provided an effective treatment for chronic
heart failure, suggesting that α1-AR subtypes may contribute to these differential effects on
heart failure.

α1-ARs can direct either positive or negative inotropism depending upon the species or
tissue preparation studied (48,49). One study indicated that in mouse trabecular tissue, the
inotropism changes from positive to negative when analyzing right versus left trabeculae
(50). However, this effect may also be dependent upon the α1-AR subtype. In rats, the right
ventricular (RV) inotropic response to α1-ARs was switched from negative to positive in
heart failure, through a pathway involving increased myofilament calcium sensitivity. This
study suggested that increased α1-AR inotropic responses in the RV myocardium may be
adaptive in heart failure by helping the failing RV respond to increased pulmonary pressures
(51). In corroboration with this study, α1A-AR density increased compared with non-failing
hearts when specifically analyzed in the failing human RV although overall α1-AR density
did not change (52). In addition, mechanical unloading of the failing human heart with a left
ventricular-assisted device significantly increased α1-AR density than before explantation
(53). α1AB double KO mice had increased morbidity due to heart failure and a maladaptive
cardiac phenotype from pressure overload (54), opposite from α1A-AR-mediated cardiac
protection. The hypercontractile myocyte-targeted WT α1A-AR transgenic mouse also
protected against pressure overload (55). Therefore, all of these studies suggest that α1A-AR
supplementation or stimulation may be cardioprotective.

In Langendorff ex vivo heart studies, CAM α1B-AR mice under the control of the
endogenous promoter were found to have an impaired cardiac inotropy when stimulated
with phenylephrine (56). Similar results were obtained when adult myocytes were isolated
from this mouse model. This mouse also displayed impaired cardiac relaxation times and
decreased cardiac output (40). Myocyte-targeted CAM α1B-AR mice displayed hastened
time to heart failure with pressure overload (35). In addition, myocyte-targeted WT α1B-AR
mice also showed development of dilated cardiomyopathy (57). These mice had systolic
dysfunction and progressed to heart failure and died prematurely. Recent evidence also
suggests that these mice regulate pathological cardiac arrhythmias due to the down-
regulation of potassium channels (58) and may also contribute to their premature death. The
α1B-AR KO mice did not display any difference from controls when subjected to pressure
overload (59). These results suggest that the α1B-AR may hasten cardiac pathological and
maladaptive conditions such as cardiac arrhythmias and heart failure due to pressure
overload.

Cardiac apoptosis
Long-term exposure to catecholamines is toxic to cardiac myocytes (60), a process mediated
primarily through β-AR stimulation (61). In contrast, while stimulation of α1-ARs does not
appear to mediate cardiac myocyte apoptosis, it may promote protection against cell death.
In neonatal rat myocytes, α1-AR stimulation inhibited apoptosis caused by cAMP (44), and
was abolished by a MEK inhibitor suggesting a role for ERK1/2. Inhibition of protein
phosphatase 1 by okadaic acid, which induces apoptosis in rat neonatal myocytes, was
blocked by α1-AR stimulation (62). Ischemic preconditioning, which we demonstrated to be
regulated through the α1A-AR subtype (26), limited apoptotic cell death through an
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increased bclx/bax ratio in the rabbit heart when stimulated by phenylephrine (63). In more
recent studies, the α1A-AR subtype was shown to protect myocytes from apoptosis also
through an ERK-mediated mechanism (64). These results suggest that α1A-ARs may
mediate survival antiapoptotic signaling in cardiac myocytes.

As it appears that the α1A-AR promotes anti-apoptotic signaling, the α1B-AR may promote
apoptosis. However, myocyte-targeted WT α1B-AR mice do not show increased apoptosis,
whereas overexpression of Gq results in hypertrophy and/or apoptosis depending on the
level of expression (65). Since α1-ARs in adult mouse myocytes may not activate the Gq-
phospholipase C pathway (66), this may explain why α1B-AR mice do not promote
apoptosis. There is also evidence that the α1B-AR may be coupled to Gi in the heart (67,68).

α1-AR ischemic preconditioning
Ischemic preconditioning is an endogenous protective mechanism in which brief episodes of
cardiac ischemia protect the heart from damage caused by a subsequent episode of
prolonged ischemia. Ischemia and hypoxia have been shown to increase the number of
myocardial α1-ARs in both acute and chronic conditions (69). Ischemic preconditioning is
mimicked by the α1-AR agonist phenylephrine and blocked by α1-AR antagonists (70,71).
However, studies to determine which α1-AR subtype mediates this effect have produced
conflicting results which were likely due to the use of nonselective ligands. Several studies
looking at the early phase of preconditioning using 5-methylurapidil and chloroethyl
clonidine have concluded that ischemic preconditioning is mediated by the α1B-AR, but not
the α1A-AR (72–74). However, subsequently, it was shown that chloroethyl clonidine was
not differentially selective for α1-AR subtypes (75).

In mouse models, the CAM α1A-AR mice under the control of the endogenous promoter
demonstrated inherent preconditioning (26). However, CAM α1B-AR mice, which utilize
the endogenous promoter, did not display not only protection but also any worsening of the
ischemic damage (26). In agreement, the myocyte-targeted WT α1A-AR limited postinfarct
ventricular remodeling and dysfunction (28) and suppressed ischemia-induced IP3
generation (76). These studies are consistent with the study of Gao et al. (77), who found
that heart-targeted CAM α1B-AR mice were not protected from ischemic injury. Therefore,
data using transgenic mice provide clear evidence that ischemic preconditioning is mediated
by α1A-ARs but not α1B-ARs.

α1-AR cardiac protective signaling pathways
The low-molecular-weight GTPase RhoA has been shown to be involved in the α1-AR
growth pathways in myocytes (78,79). In addition, the AKAP-Lbc, an A-kinase-anchoring
protein with an intrinsic Rho-specific guanine nucleotide exchange factor activity, was
shown to be critical for activating RhoA and transducing hypertrophic signals downstream
of α1-ARs (80). However, these pathways have not been shown to be either adaptive or
maladaptive. Other pathways associated with α1-AR-mediated hypertrophy are Ras (81) and
Gαq (78). While α1-ARs couple to Gαq, which can mediate hypertrophic signaling, Gq-
mediated hypertrophy ultimately leads to its decompensation and apoptosis as evidenced by
the Gq transgenic mouse model (65,82). Gq overexpressing hearts also had a lack of ERK
activation (83). In contrast, Ras-mediated events convey characteristic features of
hypertrophy but with normal contractile functions (84,85). α1A-AR-mediated ERK anti-
apoptotic effects will be downstream of Ras and ERK can also be pro-hypertrophic (86,87).
Thus, Ras/ERK signaling appears to be adaptive. Therefore, we suggest that α1A-AR-
mediated adaptive hypertrophy may be mediated through Ras/ERK downstream signals,
whereas the α1B-AR-mediated maladaptive hypertrophy is mediated through Gαq.
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In addition to ERK signaling in α1-AR mediation of cardiac apoptosis and protection (64),
the transcriptional coactivator p300 or histone deacetylase activity was also shown to
mediate hypertrophy and protection from cell death by α1-ARs due to ischemia and
reperfusion (88–90). Inhibition of apoptosis by α1-ARs could also be part of the protective
mechanism in delayed preconditioning (63). However, α1-ARs were also found to activate
the forkhead box family of proapoptotic transcription factors (FOXO1) in cardiomyocytes
(91) via nuclear translocation. Therefore, this pathway is associated with potential role of
α1-ARs in mediating apoptosis in the heart and its maladaptive processes that we speculate
are associated with α1B-AR-mediated signaling.

In addition, the cardioprotective pathways of α1-AR-mediated preconditioning have been
linked to PKCε involvement (26,92,93). Preferential activation of PKCε, but not PKCα, has
also been observed in phenylephrine-treated isolated neonatal and adult rat myocytes (94).
PKC isoforms are also predicted to act as molecular switches that regulate the balance of
signaling via proapoptotic JNK and anti-apoptotic PDK-1/AKT α1-AR-mediated pathways
in myocytes (95). α1-AR-mediated late phase of ischemic protection has also been linked to
heat shock protein (HSP) 70 (96) and α1-AR signaling mediates induction of the heat shock
70 promoter (97). In addition, another HSP27 and PKCε were both associated with ischemic
protection via α1-AR signaling in myocytes (98). Interestingly, one study suggests that the
PKC mediation of ischemic preconditioning is through factors secreted from the heart (99).
Therefore, at least part of the cardioprotection mediated by the α1A-AR may be through
PKCε signaling pathways.

Cardiac summary
Heart failure and other pathological cardiac effects are increased by sympathetic overdrive
and provided the rationale for the successful use of β-blockers to treat heart failure (100).
However, the adverse effects observed for α1-AR antagonists in heart failure (46) might be
explained through cardioprotective pathways mediated by stimulation of the α1A-AR
subtype summarized here. Therapeutic strategies to only activate the α1A-AR subtype
during infarction or in the setting of heart failure may be a viable treatment option.

Neurophysiology
The noradrenergic (NA) system in the mammalian central nervous system (CNS) originates
primarily in the locus coeruleus. From this nucleus in the brain stem, a highly divergent and
diffuse projection of NE-containing axons radiate throughout the CNS innervating the spinal
cord, cerebellum, thalamus, amygdala, hippocampus, and cortex (reviewed in ref. 101). The
wide distribution of afferents is congruent with a global regulatory role in CNS function.
Indeed, the central NE system has been shown to regulate a number of behavioral states
including sleep and arousal, cognitive functions such as learning and memory, affective
states such as anxiety and depression, changes in neuroplasticity, embryonic brain
development, and adult neurogenesis (reviewed in ref. 102). The central NE system has also
been implicated in a number of neurological disorders including Alzheimer’s disease,
attention-deficit/hyperactivity (ADHD), depression, epilepsy, mania, Parkinson’s disease,
posttraumatic stress disorder (PTSD), and schizophrenia (reviewed in ref. 103). Specificity
in the central NE system arises from its diversity of nine AR subtypes with discrete
expression patterns. Although all AR subtypes occur in the brain, the α1-ARs may be the
most abundant. α1-ARs have a role in the numerous physiological states and neurological
disorders that are associated with the central NE system.
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Expression of α1-ARs in brain
The specific localization of the α1-AR subtypes in the brain has been hindered by the lack of
subtype-selective antibodies and ligands. Early receptor binding or autoradiography studies
indicated that α1-ARs are located throughout the brain (104). Later, in situ hybridization
studies suggested that the α1-AR subtypes may be differentially expressed in the brain
(105); however, these studies, while more accurate, are not quantitative due to mRNA
transportation. Unfortunately, the lack of high affinity antibodies to the α1-AR subtypes has
prevented reliable immunohistochemistry findings (106).

The pharmacology of the α1-ARs is very similar between human and rodents; however, the
distribution is different (107). While there are comparable densities of α1-ARs in the
thalamus and cortex of rodents and humans, the density of α1-ARs is much higher in the
hippocampus of humans compared with rodents, especially in the CA3 region and dentate
gyrus (107). Moreover, α1A- and α1B-ARs are differentially distributed in the human
hippocampus, with the α1A-AR concentrated in the CA3 and the α1B-AR concentrated in
the dentate gyrus (108).

To circumvent the lack of selective antibodies and ligands to determine the cellular
localization of the α1-ARs, transgenic mice were developed, which overexpress either the
α1A- or α1B-ARs, fused with an enhanced green fluorescent protein (EGFP). Using this
transgenic tagged-GPCR approach, it was determined that α1A- and α1B-ARs exhibit a
similar expression pattern in the CNS (109,110). Both receptors are expressed in the
amygdala, cerebellum, cerebral cortex, hippocampus, hypothalamus, midbrain, pontine
olivary nuclei, trigeminal nuclei, and spinal cord. Both receptors were also found in the
same cell types including neurons, GABAergic interneurons, and NG2 oligodendrocyte
progenitors. Interestingly, neither α1A- nor α1B-ARs were found in astrocytes or cerebral
vascular smooth muscle, cells previously thought to express α1-ARs. Using transgenic KO
mice for the individual α1-AR subtypes, the distribution of α1-ARs in the brain has been
determined to be ~55% α1A (111), 35% α1B (112), and 10% α1D (113).

Neural actions of α1-ARs
Identification of the effects mediated by α1-AR subtype has also been hindered by the lack
of subtype-selective ligands. The α1-ARs are generally stimulatory and found on
postsynaptic cell bodies. α1-ARs can increase the excitation mediated by glutamate or
acetylcholine (114) and prime excitatory synapses (115). Furthermore, they have been found
to directly enhance neurotransmitter release from presynaptic terminals (116), as well as to
modulate GABAergic (117) and glutamatergic inputs (118). Their stimulatory actions have
often been attributed to a decrease in cellular resting conductance (119,120), but may also
involve an increase in calcium. α1-ARs may also affect many CNS functions via non-
neuronal mechanisms as they are also expressed in glia. α1-AR activation has been found to
increase calcium release in Bergmann glial cells (121).

α1-ARs in neurogenesis
Recent evidence suggests that α1-ARs are involved in the neurogenic effects of NE.
Increasing brain NE levels has been found to enhance the proliferation of neural progenitor
cells (NPCs) (122), while depleting NE decreases NPC proliferation in vivo (123).
Stimulating α1-ARs has also been shown to induce the proliferation and migration of
embryonic NPCs in vitro (124,125). Using transgenic EGFP-tagged and CAM mouse
models, we found that α1A-AR are expressed in neural stem cells (NSCs) and/or transient
amplifying progenitors (TAPs) in vivo and that the chronic stimulation of these receptors
increases neurogenesis (126). Moreover, we have found that treating adult normal
(nontransgenic) mice with the mildly selective α1A-AR agonist, cirazoline, also increases
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neurogenesis. Interestingly, although we found that α1B - ARs also appear to be expressed
on NSCs, chronic activation of these receptors did not increase neurogenesis. Indeed, CAM
α1B-AR mice display an age-dependent neurodegeneration (127). Our finding that
stimulating α1A-AR increases neurogenesis may have significant implications for many
normal and pathological neurological processes.

α1-ARs in locomotion
Although the dopaminergic-striatal pathways are considered the primary mechanism for
controlling locomotion and motor activity in the CNS, α1-ARs activated by NE may also be
involved (128,129). Postsynaptic excitatory α1-ARs have been shown to modulate midbrain
dopamine cell activity (130). α1-ARs have also been found to increase the tonic firing of
principal neurons in the substantia nigra pars reticulate (131). The output of the basal
ganglia and motorrelated behaviors may be significantly impacted by this increase in
excitability. In vivo pharmacological evidence suggests that α1B-ARs are involved in the
motor activity and spontaneous movement (132). Consistent with this finding, α1B-AR KO
mice do not display fear-motivated exploratory behavior (133). Mice lacking α1B-AR also
exhibit decreased psychostimulant-induced locomotor hyperactivity (134) that correlated
with reduced psychostimulant-induced dopamine release in the nucleus accumbens (135). In
contrast, the α1A-AR may mediate the facilitation of α-motor neuron activity in the rat
spinal cord (136). In summary, the α1B-AR may be involved in controlling locomotion and
motor activity, which is relevant to locomotor disorders.

α1-ARs in neurodegeneration
In contrast to long-term α1A-AR activation, chronic α1B - ARs stimulation appears to cause
an age-progressive apoptotic neurodegeneration (127). Transgenic mice that systemically
overexpress the α1B-AR display an age-dependent neurological disorder similar to multiple
system atrophy (127) characterized by autonomic dysfunction, Parkinsonism, and ataxia.
Histological examination reveals that α1B-AR overexpression causes a synucleinopathy
marked by the aggregation/formation of α-synuclein inclusion bodies and interneuron loss
in the cerebellum and hippocampus, as well as degeneration of spinal cord cell columns
(137). Consistent with the finding that α1B-AR activation induces a Parkinson-like
syndrome, mice lacking α1B-ARs (KO) do not show this neurodegenerative phenotype. In
fact, α1B-AR KO mice appear to live a normal, albeit longer life than the α1A-AR KO mice
(138).

α1-ARs in cognitive function and neuroplasticity
The function of α1-ARs in learning and memory has not been clearly defined and is
controversial. Most in vivo studies suggest that activating α1-ARs improves memory while
blocking α1-ARs impairs cognition (139–141). Other studies have reported that α1-ARs
inhibit memory (142–144). These differences may be due to species-specific differences or
to differential regulation by α1-AR subtypes. Recently, we found that chronic α1A-AR
stimulation improves cognitive function (145; manuscript submitted), whereas long-term
α1B-AR activation impaired learning and memory (unpublished findings). Furthermore, we
found that treating normal mice with a selective agonist increased both spatial and
declarative memory processes, while α1A-AR KO mice have diminished cognitive function.
The mechanism for these actions is not known for certain. However, neurogenesis has been
shown to enhance certain forms of learning and memory, while neurodegeneration generally
impairs cognitive function.

α1-AR dysfunction is implicated in the pathogenesis of Alzheimer’s disease (AD). For
example, polymorphisms in the α1A-AR are associated with AD susceptibility (146). Brain
tissue from aged transgenic AD mice displays increased α1-ARs in cerebral cortices (147).
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Increasing α1-AR activation in the medial prefrontal cortex improves cognitive function of
rats (148). In AD patients, α1-AR binding is significantly reduced in the prefrontal cortex
(149,150). Furthermore, α1A-AR mRNA expression is decreased in the prefrontal cortex in
patients with dementia (151). These results suggest that increasing α1A-AR activity may
delay or alleviate AD symptoms.

Given that α1-ARs affect cognitive function, it is not surprising then that numerous studies
have shown that α1-ARs also affect plasticity in the hippocampus, a cortical structure
critical for learning and memory. NE through α1-AR activation has been shown to promote
hippocampal long-term potentiation (LTP), an important synaptic mechanism underlying
learning (140,152,153). α1-ARs may also play a role in long-term depression (LTD) in the
hippocampus (154). The role of the various α1-AR subtypes in neuroplasticity is unknown.

α1-ARs in depression and anxiety
The involvement of NE in depression is well-established. Although several studies have
suggested that α1-ARs are involved in the antidepressant effects of NE (155), the role of
individual α1-AR subtypes in mood is not well-defined. Recently, using transgenic mice, we
showed that chronic α1A-AR was associated with a significant decrease in depression-like
behavior, whereas chronic α1B-AR stimulation was prodepressant (156,157). Subsequently,
we have shown that chronic α1A-AR activation reduces anxiety and obsessive–compulsive-
like behavior (158; manuscript submitted). The mechanism for these actions is not known.
However, since considerable evidence links depression to neurogenesis, enhanced α1A-AR-
stimulated neurogenesis deserves serious attention as the mechanism. Increased α1A-AR
stimulated GABA release in the amygdala and other cortical structures could be involved in
the anti-anxiety actions (159).

α1A-ARs in epilepsy
NE has long been known to be potently anti- epileptogenic (see reviews in refs. 160,161).
Numerous studies using different models of epilepsy have shown that the anticonvulsant
effects are mediated in part by α1-ARs (162–168). The underlying mechanism has not been
clearly established. However, the activation of α1-ARs has been shown to enhance tonic
GABA-mediated inhibition in several regions of the brain including the piriform cortex
(169), amygdala (170), medial septum (171), hippocampus (120), and frontal cortex (172).
The increase in GABA release resulted from a direct α1-AR-mediated decrease in a
potassium conductance resulting in a depolarization of inhibitory GABAergic interneurons
(120,172). This increase in GABA-mediated inhibitory tone, in turn, reduces epileptiform
bursting in the hippocampus (173). This physiological response appears to be mediated by
α1A-ARs in the hippocampus (174,175) and amygdala (159), and may be impaired by stress
(170), which reduces α1-AR numbers.

The α1-AR subtypes have both positive and negative roles in regulating seizure activity.
Both CAM α1A-AR and WT α1A-AR mice under the control of the endogenous promoter
demonstrate an antiepileptic phenotype with increased seizure thresholds to flurothyl, a
chemoconvulsant (176; manuscript in preparation). In contrast, the CAM α1B-AR mice
exhibit decreased seizure thresholds to flurothyl. Moreover, CAM α1B-AR mice develop a
grand mal seizure disorder that appears to be a multifocal epilepsy (177). The mechanism
underlying the seizures in the CAM α1B-AR mice is not known, but may be due to NMDA/
GABAA receptor dysregulation and apoptosis (178). Consistent with these findings, we have
found that α1A-AR KO mice often display spontaneous seizures, whereas α1B-AR KO mice
do not show this phenotype. Indeed, the lack of α1B-ARs appears to confer some resistance
to the neurotoxicity produced by seizures (179). Furthermore, α1B-AR KO mice do not
appear to develop the neurodegeneration associated with prolonged and severe seizures
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(179). We also have evidence that chronic activation of the α1A-AR, but not the α1B-AR,
protects the brain from apoptosis (178). Using transgenic mice, we found that the
hippocampus expresses the highest amount of the α1A-AR compared with other areas in the
brain (110). We also discovered that both the overexpressed WT α1A-AR and the CAM
α1A-AR mice have an increased density of hippocampal interneurons (180) and demonstrate
protection from anoxia/trauma and hyperexcitability (145). Taken together, these results
suggest that α1A-AR activation is not only anti-epileptogenic, but neuroprotective.

α1-AR subtypes in mental illness
Heightened or excessive NE activity has been associated with schizophrenia, mania, and
PTSD (reviewed in 142). The α1-AR subtypes may have both positive and negative roles in
these mental illnesses. α1-AR antagonism has been recognized as a potential mechanism of
antipsychotic action since the discovery that many antipsychotics block α1-ARs (181). For
example, the atypical antipsychotic clozapine has a high affinity toward these receptors
(182). Many sources cite the antagonism of the α1A-AR subtype as mediating this
antipsychotic action though the data may not support this claim sufficiently, as the
conclusions were based on studies performed in the peripheral nervous system while
studying side effects (183) or not actually focused on the α1-AR subtypes (184). The
binding affinities of clozapine for α1A- and α1B -ARs are not significantly different
(185,186); however, the observed α1-AR up-regulation that occurs with clozapine treatment
is mainly in areas of high α1B-AR expression (187). In addition, the atypical antipsychotic
risperidone has 120-fold antagonist selectivity for the α1B-AR in the hippocampus (185).
Furthermore, risperidone increases survival of hippocampal NSCs in a ketamine-induced
model of schizophrenia (188). These results suggest that α1B-ARs are involved in
schizophrenia and antagonism of the α1B-AR, but not the α1A-AR, may be mediating part of
atypical antipsychotic action. Interestingly, single nucleotide polymorphisms in the α1A-AR
promoter region have been found in an isolated population with schizophrenia (189).

Antagonism of the α1-ARs is also used to treat the nightmares and sleep disturbances
associated with PTSD. Recent evidence suggests that excessive PKC activation in the
prefrontal cortex may be involved in PTSD as well as bipolar disorder (190). Antagonists
and/or antipsychotics that block α1-AR-mediated PKC activity have shown some benefit in
treating these disorders. The level of RGS4, a small protein that inhibits PKC activity, is
reduced in schizophrenia (191). RGS4 has also been linked genetically to schizophrenia and
bipolar disorder (192–195). Interestingly, RGS4 is suggested to interact with α1B-ARs,
whereas RGS2 proteins will directly interact with α1A-ARs, but not with α1B-ARs or α1D-
ARs (196). Taken together, these findings suggest that α1A-ARs and α1B-ARs may play
different roles in these mental illnesses. Studies are currently being conducted to determine
the effects of chronic α1A-AR and α1B-AR activation on these mental illnesses.

Neuro summary
Although the role of α1-ARs in the CNS has been the least understood historically, recent
evidence suggests that many of their actions are mediated differentially by α1A - ARs and
α1B-ARs. Chronic α1A-AR stimulation increases neurogenesis, enhances learning and
memory, and improves mood. It may also protect the brain from anoxia and traumatic
injury, seizures, and age-dependent neurodegeneration. Therapeutic strategies to selectively
activate the α1A-AR subtype and/or only block α1B-ARs may be neuroprotective, and
therefore may be useful for treating a number of neurological disorders.

Epilogue
Our latest research indicates that chronic activation of the α1A-AR, but not the α1B-AR,
increases life span (138; manuscript submitted). Using our transgenic α1-AR and KO mice,
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we found that both the CAM α1A-AR and overexpressed α1A-AR EGFP mice live
significantly longer (>10%) than their normal littermates. Unlike many other mouse models
of longevity, these mice are of normal body size and mobility. In contrast, the CAM α1B-
AR and overexpressed α1B-AR EGFP mice have a shorter life span than their normal
littermates. Furthermore, we found that α1A-AR KO mice do not live as long as α1B-AR
KO mice. Taken together, these results suggest that the cardiac and neuroprotection afforded
by the α1A-AR translates into increased longevity.
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