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Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the D and L iso-
forms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of D and L iso-
forms producing the greatest inhibitory effect. Addition of D-/L-tryptophan to existing biofilms inhibited further biofilm growth
and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in
part for diminished biofilm formation by P. aeruginosa.

Biofilms are composed of bacterial cells enmeshed within an
extracellular matrix of polysaccharides, DNA, and proteins

(1–3). Biofilms form in a variety of clinical situations, includ-
ing chronic skin wounds (4–6). Bacterial cells within biofilms
are �1,000 times more resistant to antibiotic treatment than
their planktonic counterparts (7, 8). Pseudomonas aeruginosa is
an opportunistic pathogen that can cause infections involving
biofilms (9) that protect bacterial cells from host defenses (10)
and impair healing (11, 12). There is a need for topical treat-
ments to prevent biofilm formation and induce disassembly of
bacterial biofilms in chronic wounds. Hochbaum et al. and
Kolodkin-Gal et al. reported that D amino acids inhibited bio-
film formation and caused disassembly of existing biofilms
formed by Bacillus subtilis and Staphylococcus aureus (13, 14).
Supplementary data in one report suggested a similar effect on
biofilm formation by P. aeruginosa (14). In this study we doc-
ument the in vitro effects of tryptophan on P. aeruginosa bio-
film formation and motility. These findings support our long-
term objective to develop novel wound treatments to prevent
biofilm formation in chronic wounds.

Pseudomonas aeruginosa ATCC 27853 was cultured in tryptic
soy broth for 24 h at 37°C; in some experiments additional
strains of P. aeruginosa were tested. P. aeruginosa biofilm quan-
tification was adapted from a study by O’Toole and Kolter (15).
Briefly, the bacterial suspension was diluted 1:2,500 (vol/vol)
in M63 medium [2.0 g (NH4)SO4, 13.6 g KH2PO4, 0.5 mg
FeSO4 · 7H2O, 10 ml 20% glycerol, and 1 ml 1 M MgSO4 in 1.0
liter of distilled H2O (diH2O)] to which one or more amino
acids (tryptophan, tyrosine, methionine, or leucine) were
added (0.5 to 10.0 mM). The bacterial suspensions were added
to individual wells (0.2 ml) in tissue culture microtiter plates
and incubated up to 72 h at 30°C. After incubation the biofilms
were stained with 0.35% filtered crystal violet. Acetic acid (30%
[vol/vol]) was added to each well, and absorbance was mea-
sured at 595 nm using a Beckman Coulter DTX880 multimode
detector. In some experiments samples were also serially di-
luted in phosphate-buffered saline (PBS) and plated on Tryp-
ticase soy agar with 5% sheep blood to determine CFU. Statis-
tical analysis was performed using one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test in Prism 5 (Graph-

Pad Software, La Jolla, CA), with significance set at a P of
�0.05. Data are presented as the means � standard errors of
the means. Photographs of representative wells were taken us-
ing an inverted microscope with attached camera.

Our initial experiments showed that tryptophan and ty-
rosine inhibited P. aeruginosa biofilm formation, while methi-
onine and leucine did not (see Fig. S1 in the supplemental
material). Because tryptophan was most effective, it was se-
lected for further investigation. At 10.0 mM, D-tryptophan in-
hibited P. aeruginosa biofilms by 71% at 24 h and 78% at 48 h
(Fig. 1A and B). Similarly, at 10.0 mM, L-tryptophan inhibited
P. aeruginosa biofilm formation by 86% at 24 h and 81% at 48
h (Fig. 1C and D). When both D- and L-tryptophan isoforms
were mixed at an equimolar ratio (total tryptophan concentra-
tion � 10.0 mM), P. aeruginosa biofilm formation was inhib-
ited by 93% at 24 h and 90% at 48 h (Fig. 1E and F). Because the
equimolar combination of D- and L-tryptophan had the great-
est effect, it was used in all subsequent experiments. Trypto-
phan (10.0 mM) reduced bacterial growth beyond 32 h, as
assessed by measuring absorbance (Fig. 2A) and beyond 48 h,
as assessed by measuring CFU (Fig. 2B). At 72 h a lesser con-
centration of tryptophan (5 mM) had no significant effect on
CFU but significantly inhibited biofilm formation (Fig. 2C).
These data suggest that inhibition of bacterial growth is not the
sole reason for biofilm inhibition by tryptophan. Figure 3
shows microscopic images of biofilm inhibition by tryptophan.
These effects were not restricted to strain ATCC 27853, as 10.0
mM tryptophan inhibited biofilm formation by two clinical
isolates of P. aeruginosa (strains 2547 and 3170) (see Fig. S2 in
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FIG 1 Both D- and L-tryptophan inhibit P. aeruginosa biofilm formation. P. aeruginosa strain ATCC 27853 was incubated at 30°C in M63 medium with the indicated
concentrations of D- or L-tryptophan. Biofilm formation was quantified by crystal violet staining at the indicated time points, as described in materials and methods in
the supplemental material. Results are normalized to biofilm formation in the absence of tryptophan (control). The percent inhibition for each tryptophan concentration
is indicated within each bar. Inhibition of P. aeruginosa biofilm formation by D-tryptophan at 24 h ranged from 26 to 71% (A) and at 48 h ranged from 52 to 78% (B) over
the concentrations tested. L-Tryptophan inhibition of P. aeruginosa biofilm formation at 24 h ranged from 10 to 86% (C) and at 48 h ranged from 44 to 81% (D). Equal
molar combinations of D- and L-tryptophan inhibited biofilm formation at 24 h from 57 to 93% (E) and at 48 h from 48 to 90% (E). �, P � 0.05 versus control.

FIG 2 Effect of D-/L-tryptophan on growth of P. aeruginosa and biofilms. (A) Bacterial growth in M63 media with the indicated concentrations of tryptophan was
assessed by measuring absorbance at 595 nm. Significant reductions (P � 0.05) were observed at 40 to 60 h for the 5.0 mM treatment group and at 32 to 72 h for the 10.0
mM treatment group. (B) Reduction in CFU/ml was also observed with 5.0 mM tryptophan at 48 to 60 h and with 10.0 mM tryptophan at 48 to 72 h (P � 0.05). (C)
Dose-dependent inhibition of biofilm formation (crystal violet stain). Each data point is plotted as the mean � standard error of 3 independent experiments.
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the supplemental material). However, biofilm formation by a
third strain (strain 1829), which was resistant to both carbap-
enems and aminoglycosides, was not inhibited by tryptophan
(see Fig. S2 in the supplemental material).

We next examined whether tryptophan caused disassembly
of existing P. aeruginosa biofilms. After determining the initial
level of biofilm at 48 h or 72 h of incubation, the medium was
removed and replaced with fresh M63 medium with various
amounts of tryptophan (0.0 to 10.0 mM). The plate was then
incubated for an additional 24 h at 30°C (see Fig. S3 and S4 in
the supplemental material). Treatment with 10.0 mM trypto-
phan resulted in modest disassembly of 48-h biofilms (Fig. 4A)

and significant disassembly (P � 0.05) of 72-h biofilms
(Fig. 4B). Biofilm treatment with less tryptophan (1.0 mM)
prevented further biofilm growth but did not cause biofilm
disassembly. These findings are consistent with a recent report
that similar concentrations of D amino acids caused disassem-
bly of established S. aureus biofilms (13).

Because there is an inverse relationship between bacterial mo-
tility and biofilm formation (16–19), we investigated tryptophan’s
effect on P. aeruginosa motility. Swimming and twitching motili-
ties were assessed by adding 0.3% or 1.0% agar (Difco) (15, 20–
22), respectively, to M63 medium with tryptophan (0.0 to 10.0
mM). Tryptophan dose dependently increased swimming motil-

FIG 3 Inhibition of biofilm growth by tryptophan. Representative images (magnification, �20) of P. aeruginosa biofilms grown on microtiter plates in M63
medium with the indicated concentrations of D-/L-tryptophan at 30°C for 2 to 72 h.
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ity by approximately 40% at 10.0 mM (Fig. 5A). In contrast tryp-
tophan induced a biphasic response in P. aeruginosa twitching
motility (Fig. 5B).

In contrast to the report by Kolodkin-Gal et al. (14), we find
D and L isoforms of tryptophan to be equally effective at inhib-
iting P. aeruginosa biofilm formation and the combination of D

and L isoforms to be more effective than either isoform alone.
L-Tryptophan recently was reported to inhibit biofilm forma-
tion by Escherichia coli by increasing catalysis of L-tryptophan
into indole (23). However, this is not likely the mechanism for
P. aeruginosa, because it does not convert tryptophan into in-
dole (data not shown). Instead, we propose that tryptophan
inhibits biofilm formation by P. aeruginosa in part by modu-
lating bacterial cell motility. Flagellar arrest is required for bio-
film formation by P. aeruginosa (17–20). Based on our obser-
vation of enhanced swimming motility, we infer that
tryptophan increases P. aeruginosa flagellar activity. Biofilms
contain vast numbers of nonmotile bacterial cells (24, 25). If
tryptophan increases bacterial cell motility, it may favor de-
tachment of cells from the biofilm, as reported for the natural
life cycle of a biofilm (26). Together these events will reduce
biofilm formation and favor biofilm disassembly. Ongoing in-
vestigations indicate that tryptophan inhibits P. aeruginosa
biofilm formation on biological wound dressings (Biobrane)
(data not shown). We also find that tryptophan at the concen-
trations used to inhibit biofilm formation (1 to 10 mM) is not
cytotoxic for human cells (HaCaT cell line) (data not shown).
Future studies will explore the potential use of tryptophan to

inhibit biofilm formation on wound dressings and in experi-
mental wounds.
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