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A carbapenem-resistant clinical isolate of Escherichia coli, which lacked OmpF and OmpC porins, carried a marR mutation and
expressed a functional yedS, a normally nontranslated gene. MarR and YedS are described here as having effects on the ability of
this strain to resist carbapenems. Additionally, expression of YedS was regulated by the small RNA MicF in a MarA-dependent
way. These findings illustrate how broadly bacteria can mutate within a selective clinical setting, in this case, resistance to car-
bapenems, by altering three porin genes and one regulatory gene.

Carbapenems are broad-spectrum �-lactam antibiotics used
for the treatment of multidrug-resistant Gram-negative

pathogens (1–3). Carbapenem resistance most commonly arises
through the acquisition of genes encoding carbapenemases, which
hydrolyze carbapenems (3–5). The other chief mechanism of car-
bapenem resistance in Escherichia coli and other Enterobacteria-
ceae is decreased bacterial cell permeability due to loss or altera-
tion of the outer membrane porins F and/or C (1, 6–8).

The marRAB operon of E. coli encodes the MarR repressor, the
transcriptional regulator MarA, and a putative small protein,
MarB (9). MarR represses transcription of marRAB by binding to
marO and negatively controlling MarA-dependent expression of
other genes in the regulon (10, 11). Upon induction by a variety of
compounds (12) or by mutation of marR or marO, the repressor is
rendered inactive (10). The resulting overexpression of MarA pro-
duces antibiotic resistance by increasing the expression of the ma-
jor multidrug efflux pump AcrAB-TolC (13, 14) and downregu-
lating the outer membrane protein OmpF via the small RNA
(sRNA) MicF (15, 16). In this study, a carbapenem-resistant, non-
carbapenemase-producing clinical isolate of E. coli from China
(CH4) was investigated to determine the genetic basis for the car-
bapenem resistance phenotype.

PCR amplification and sequencing using the primers marR-
for (5=-ATTAGCGGCCGCATCGGTCAATTCAT) and marR-
rev (5=-ATAGGATCCTTACGGCTGCGGATGTA) revealed nu-
merous mutations in the marR open reading frame (ORF) of

strain CH4 and other clinical isolates from China (Table 1). We
cloned ORFs containing the various marR mutations, using the
primers marR-clone-For and marR-clone-Rev (17), into expres-
sion vector pET-13a (18), for which expression was controlled by
the T7 promoter. Expression of T7 polymerase was induced from
plasmid pACT7-Spc (19) via isopropyl-�-D-thiogalactopyrano-
side (IPTG) in the reporter strain SPC-106, a marO-lacZ fusion
that contains a �marR mutation (12). Analysis of LacZ activity
(11, 20) showed that the Gly42Arg mutation in the CH4 marR
gene did not complement the �marR mutation in this reporter
strain (Fig. 1), indicating that this mutation affected the activity of
MarR.

We then complemented the marR mutation in CH4 by trans-
forming the strain with pET-marRwildtype and pACT7-Spc or
pAC-MarRwt (17). MICs were determined. The data showed that
the two expression vectors produced similar decreases in resis-
tance in strain CH4 that were not seen with an empty vector con-
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TABLE 1 Effects of complementation of wild-type MarR and YedSCH4 on carbapenem susceptibility in clinical and laboratory strains of E. coli

Strain Mutation(s) in marR

MIC (�g/ml)a

Imipenem Meropenem Ertapenem

CH4 Gln42Arg, Gly103Ser, Tyr137His �32 32 �32
CH4/pACT7/pET13a �32 32 �32
CH4/pACT7/pmarRwildtype 0.25 0.38 0.25
CH4/pACT7/pyedSCH4 1.5 1.5 4.0
CH4/pAC-MarRwt 0.25 0.38 0.25
BL21(DE3)/pET13a Wild-type marR 0.047 0.023b 0.047
BL21(DE3)/pyedSCH4 0.004 0.023b 0.004
a MICs were determined using Etest (bioMérieux). CH4 cells were cultured on LB agar containing kanamycin (800 �g/ml) and spectinomycin (200 �g/ml) when carrying pET13a
plasmids and pACT7 plasmids, respectively. BL21(DE3) cells were cultured on agar containing kanamycin (50 �g/ml) when carrying the pET13a plasmid. All cultures were induced
with IPTG (0.5 mM).
b Meropenem MICs were not affected by overexpression of YedS in BL21(DE3), most likely due to other factors in this strain which affect susceptibility to this carbapenem.
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trol (Table 1). We hypothesized that this effect was due to expres-
sion of ompF; however, sequencing showed this gene to be
inactivated by a partial deletion mutation. Upon extraction of
outer membrane proteins from CH4 derivative strains (listed in
Fig. 2), we found an �30-kDa protein newly expressed upon ad-
dition of wild-type MarR (Fig. 2). This protein was purified and
processed for N-terminal sequencing, which revealed the protein
to be YedS. The encoding gene, yedS, is a previously described
pseudogene which is untranslatable due to a large gap in the ORF
in most sequenced strains. Sequence analysis of the yedS gene in
strain CH4 showed a complete and translatable gene.

Subsequent cloning of yedSCH4 into pET13a via amplification
with primers yed-nde-for (5=-GCGCCATATGAAAAGAAAAGT
TCTGG) and yed-bam-rev (5=-ATAAGGATCCGAACTGGTAG
ACGATA) revealed it to be transcribed and translated into a sim-
ilarly sized outer membrane protein in strain CH4 (Fig. 2). When
these plasmid-bearing strains were tested in MIC studies, de-
creased carbapenem resistance was observed in strains CH4 and
BL21(DE3) (Invitrogen) (Table 1), indicating that YedSCH4 is in-
volved in carbapenem resistance.

To investigate the link of yedSCH4 transcription to MarA, we
engineered a yedSCH4-lacZ promoter fusion plasmid using prim-
ers yedS-lac pro for (5=-GCACCAATTGCCCGGAAAATTCA
GAC) and yedS-lac pro rev (5=-AGTCGGATCCTGTATTCCCTT
GTGA) and reporter plasmid pRS415 (21). This construct was

transformed into lacZ-lacking strains from the Keio collection
(22, 23) containing mutations in either marR or marRA (Table 2).
When these strains were grown to late log phase at temperatures of
37°C, we found that expression of the yedSCH4 promoter was
�30% in the marR strain compared to that of its wild-type parent.
However, when the marR strain also contained a marA deletion,
transcription of yedSCH4-lacZ was equal to that of the parental
strain. Suspecting that this relationship was due to the MarA-
regulated micF, we transduced (24) a micF::Cm mutation into
these strains and observed a restored transcription of yedSCH4-
lacZ in all strains (Table 2). Thus, the mar operon controls expres-
sion of yedSCH4 via the sRNA micF.

Our findings implicate the outer membrane protein YedSCH4

in carbapenem sensitivity/resistance. We hypothesize that the
maintenance of a functional YedS in strain CH4 is an evolutionary
response to the lack of functional OmpF and OmpC. Additionally,
the presence of this carbapenem portal presents a selective pres-
sure for this strain to maintain its novel marR mutation, down-
regulating yedSCH4 expression via MicF and producing resistance
to carbapenems. In the absence of carbapenemase, selection may
occur for mar mutants which will be resistant to a greater spec-
trum of antibiotics and potentially have greater virulence (25, 26)
than parental strains containing functional marR genes. Our find-
ings suggest how this uniquely selective environment may affect
genetic fluidity of the bacterial cell that seeks to survive in response
to different insults. The isolate described here has mutated two of
its porins, enabled a pseudogene to be expressed, and derepressed
the marRAB operon, sufficient to produce a drug-resistant strain.
The order in which these mutations occurred is not known; how-
ever, the accumulation of so many mutations in a single isolate is
a clear display of bacterial adaptation.

Nucleotide sequence accession number. The sequence of the
yedS gene in strain CH4 was deposited in GenBank under acces-
sion number JX392406.
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