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Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose
or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall
adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and dam-
age of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of
adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases.

Pathogenic fungi are an important cause of superficial mucosal
and disseminated infections in humans. In the nosocomial

setting, invasive fungal infections, which are difficult to diagnose,
are increasingly common and cause high morbidity and mortality.
Those most frequently occurring are infections caused by Candida
spp. (candidiasis), but many other species, including Cryptococcus
neoformans, Aspergillus fumigatus, and dimorphic fungi causing
endemic mycoses (e.g., Histoplasma capsulatum, Coccidioides im-
mitis, Blastomyces dermatitidis, and Paracoccidioides brasiliensis),
are medically important (1). Candida albicans is the most frequent
cause of candidiasis, but in recent years non-albicans species have
caused significant disease. Candida glabrata, for example, in some
studies has been encountered in 20 to 24% of the human blood-
stream infections that were caused by Candida (2, 3).

One of the striking characteristics of Candida spp. and other
pathogenic fungi is their ability to adhere tightly to different sur-
faces, including the human skin, and to endothelial and epithelial
mucosal host tissues. Adhesion is considered an important first
step in the establishment of fungal infections. Candida spp. also
stick to inert abiotic surfaces such as intravascular and urinary
catheters, prosthetic cardiac valves, and denture prostheses (4, 5).
In addition, interaction between Candida, a normal inhabitant of
the human microflora, and other host microbes as well as between
different Candida cells (“flocculation”) occurs. Altogether, this
may result in the formation of large surface-attached multi- or
monospecies communities, designated biofilms. This form of
Candida growth is a significant medical problem due to reduced
susceptibility to antifungal substances of cells inside biofilms
(6). Both C. albicans and C. glabrata owe their success as a
pathogen, in part, to a large repertoire of adhesins present on
the cell surface (7–9). Fungal adhesins have been recognized as
major virulence factors that contribute to pathogenesis of these
organisms (10–14). The main focus of this review is on the
biosynthesis, structure, and function of adhesins reported in
pathogenic Candida spp. However, adhesion in additional
pathogenic fungi is starting to be addressed, and, where data
already exist, adhesins from other fungal pathogens are also
discussed. Comparisons are made with studies in the model
yeast Saccharomyces cerevisiae, which contains proteins that are
involved in flocculation and agglutination in contrast to the
adhesins in pathogenic fungi that are involved in binding to
host tissues or abiotic medical devices.

ADHESINS ARE OUTER-SURFACE COMPONENTS OF THE
FUNGAL CELL WALL

The cell wall of a fungal cell is responsible for its shape and pro-
vides a number of essential functions, including protection
against environmental stresses. An extensive literature exists on
cell wall structure and biosynthesis of baker’s yeast, C. albicans,
and some other species (15–20). Approximately 60 to 70% of the
total cell wall mass in Candida spp. is accounted for by the carbo-
hydrates �-1,3- and �-1,6-glucan and chitin. In addition, the cell
walls of many fungi, including Candida spp., contain a diversity of
glycoproteins. In Candida, on average about 80 to 90% of the cell
wall protein mass are mannose residues added by N-glycosylation,
O-glycosylation, and/or glycosylphosphatidylinositol (GPI) an-
choring. The majority of the cell wall proteins are GPI proteins
that are covalently bound to �-1,6-glucan via a remnant of their
GPI anchor. These proteins are mostly present in the outer part of
the cell wall, and among them are several proteins that govern
primary host-pathogen interactions, such as superoxide dismuta-
ses, aspartyl proteases, phospholipases, and adhesins.

Most known fungal adhesins are GPI-modified wall proteins.
The primary structure of GPI protein precursors includes con-
served features, which therefore can be used to identify putative
adhesins by bioinformatic means. At their N terminus, they have a
signal peptide for entry into the endoplasmic reticulum (ER), and
at their C-terminal end they have a peptide for anchoring to a
preformed GPI lipid in the membrane of the ER (Fig. 1). Mature
GPI proteins lack transmembrane domains. Most known mature
adhesins are large proteins (usually �800 amino acids [aa]) with a
modular structure; their N-terminal domain has a high complex-
ity and mediates specific protein-protein, protein-sugar, or other
protein-ligand interactions. These are believed to be largely re-
sponsible for the specific interactions with their substrates, e.g.,
host cell surface proteins or carbohydrates (14, 21, 22). It is fol-
lowed by a variable domain of low complexity that often is rich in
serine/threonine (Ser/Thr) and usually contains tandem repeats
(TRs). The repeat regions are subject to significant intraspecies
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length polymorphisms due to slippage and/or recombination
events during DNA replication (14, 23–25), which leads to re-
moval or addition of repeat units. Longer repeat regions can con-
fer greater adherence, while shorter repeat regions may result in
decreased adhesion, possibly because the N-terminal effector do-
main remains buried in the cell wall (14).

Originally, binding specificities of adhesins were studied
mostly by two complementary approaches. The first approach to
assess gene function is to generate knockout mutant strains and
study their phenotypes. However, fungal adhesin genes are often
members of multigene families. Therefore, this approach is often
hampered by functional redundancy as well as by compensatory
mechanisms leading to upregulation of other adhesion genes
whose products have similar or at least partially overlapping func-
tions. Moreover, many adhesin genes show only low levels of ex-
pression under the experimental conditions that are frequently
used in the laboratory. To overcome these problems, a successful
alternative approach is to heterologously express full or partial
adhesins on the cell surface of S. cerevisiae for gain-of-function
studies. S. cerevisiae strains are available which lack a functional
copy of the gene encoding flocculin-regulating transcription fac-
tor Flo8, rendering them very poorly adherent to most substrates.
This approach thus allows analysis of adherence to potential bind-
ing ligands mediated by the gene of interest (22, 26). For instance,
heterologous expression studies in S. cerevisiae showed that adher-
ence of C. glabrata to epithelial and endothelial cells is mediated, at
least in part, by the proteins encoded by the EPA gene family (7,
22, 27, 28). Recently, fungal adhesin research has moved toward
more structural studies using nanotechnology in which X-ray
crystallography, nuclear magnetic resonance (NMR), and atomic
force microscopy (AFM) are used to obtain detailed information
with respect to the structure and ligand-binding specificities of
adhesins in C. albicans, C. glabrata, and S. cerevisiae (termed floc-
culins in the last-named organism) (29–33). Clearly, these high-
resolution approaches largely improve our understanding of how
fungal adhesins modulate adhesion, aggregation, biofilm forma-
tion, and host-immune responses.

CANDIDA ALBICANS ADHESINS

Until now, research mainly has addressed the three gene families
ALS, HWP, and IFF/HYR as adhesins of C. albicans (listed in Table
1). They all conform to the domain organization described above
and outlined in Fig. 1. Additionally, a recent bioinformatics ap-
proach (“FungalRV”) identified a plethora of proteins which have
not previously been implicated in adhesion (81) but share at least
some sequence and feature similarities with known adhesins. The
value of this approach still needs to be validated experimentally.
For example, one of the FungalRV top hits in C. albicans, Pga13,
could not be confirmed to represent an adhesin in a recent study
(82).

Als family. The Als family consists of eight large cell surface
glycoproteins with a high degree of sequence similarity (Als1 to
Als7 and Als9). The N-terminal parts of mature Als proteins com-
prise tandem immunoglobulin (Ig)-like domains for mammalian
protein interaction, followed by a threonine-rich conserved
�-sheet amyloid-forming “T region” and variable numbers of tan-
dem repeats (TRs) (21). TRs seem to interact with hydrophobic
surfaces and to facilitate aggregation (83, 84). A highly glyco-
sylated serine- and threonine-rich spacer region in the C-terminal
part extends the covalently attached proteins from the fungal sur-
face into the environment and allows the ligand-binding domains
to swivel and interact. Additional data on ALS family composition
and gene organization and the difficulties in the assembly of the
ALS genes in the C. albicans genome project are found in an ex-
cellent review by Hoyer and colleagues (21).

Various disease models revealed host site-dependent expres-
sion of ALS genes indicating protein-specific functions. The con-
tributions of Als1, Als2, and Als5 to pathogenesis were confirmed
by mouse and reconstituted human oral epithelium (RHE) infec-
tion models (34–36). Gene deletions, heterologous expression,
and blocking experiments confirmed adhesive functions for, e.g.,
the family members Als1, Als2, Als3, and Als4 (36–38, 43, 50, 85).
Recently, the structure and ligand-binding properties of the N-
terminal domain of Als1 and the protein encoded by the second
allele of ALS9 (NT-Als9-2) were resolved using NMR and X-ray

FIG 1 Generic structure and posttranslational processing steps leading to cell wall incorporation of fungal adhesins. Abundant protein N- and O-glycosylation,
the latter especially taking place in the low-complexity domain, is not depicted for simplicity reasons. EtN-P, ethanolamine phosphate; Glc, glucose; GlcN,
glucosamine; Man, mannose; PM, plasma membrane; PI, phosphatidylinositol.
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TABLE 1 Adhesins in C. albicans

Protein name(s)a Structural propertiesb Substrate and/or functional propertiesc Reference(s)

Als familyd 21
Als1 1,260 aa; contains amyloid-forming sequences Endothelial and epithelial cells; fibronectin-, laminin-, and fucose-

containing glycans; abiotic surfaces such as glass and plastics;
cell-cell interaction; biofilm induced; contributes to biofilm
formation and pathogenesis

32, 34–36, 37, 38,
39–41, 42

Als2 �2,531 aa (Als2 in CGD is incomplete; length inferred
from comparison to Als2 in strain 1161 (GenBank
accession no. AAC64236)

Endothelial cells; abiotic surfaces such as glass and plastics;
contributes to biofilm formation and pathogenesis

35, 36, 37

Als3 1,155 aa; contains amyloid-forming sequences Endothelial and epithelial cells; fibronectin, laminin, saliva-coated
particles, and type IV collagen; abiotic surfaces such as glass
and plastics; Streptococcus gordonii and Staphylococcus aureus;
cell-cell interaction; transferrin receptor in iron acquisition;
invasin; induction of C. albicans endocytosis; host cell damage;
contributes to biofilm formation and pathogenesis; hypha
specific

26, 35, 43, 37, 41,
44–47, 48, 49

Als4 2,100 aa Endothelial cells; abiotic surfaces such as glass and plastics;
functional overlap with Als2

36, 37

Als5 1,347 aa; contains amyloid-forming sequences Extracellular matrix proteins; abiotic surfaces such as such as glass
and plastics; deletion mutant more adherent to endothelial and
epithelial cells; aggregation; contributes to biofilm formation
and pathogenesis

50, 43, 37, 51,
52–54

Als6 1,366 aa Gelatin; abiotic surfaces such as glass and plastics; deletion mutant
more adherent to endothelial and epithelial cells

43, 37, 54

Als7 1,568 aa; copy numbers of TR units are highly variable Abiotic surfaces such as glass and plastics; deletion mutant more
adherent to endothelial and epithelial cells

43, 37, 54, 55

Als9 1,890 aa; allelic diversity; N-terminal ligand binding
(Als9-2)

Endothelial cells (N-terminal Als9-2); laminin; abiotic surfaces
such as glass and plastics

32, 37, 54

Hwp1 familye 41, 56
Hwp1 634 aa; glutamine-rich N-terminal domain serves as

host transglutaminase substrate; putative site for
proteolytic processing; 2 Hwp1 repeats

Saliva- or fibronectin-coated surfaces; buccal epithelial cells
displaying keratin 13 and SRP3; polystyrene, but less binding to
silicone; low attachment to Streptococcus gordonii; role in
biofilm formation; hypha specific; Tup1 repressed

26, 40, 57–60

Hwp2/Pga8 908 aa; short N-terminal high-complexity region;
putative site for proteolytic processing; 2 Hwp1
repeats

Epithelial cells; polystyrene; role in biofilm formation on silicone;
expressed in hyphae

61, 57, 62, 63

Rbt1 721/714 aa; N-terminal high-complexity region;
putative sites for proteolytic processing; propeptide
found in growth medium; 2 Hwp1 repeats

Serum; hypha induced; Tup1 repressed; required for full virulence 57, 64, 63, 65

Eap1/Pga47 653/1,121 aa; alleles differ in number of 6-aa repeats;
short N-terminal high-complexity region; putative
site for proteolytic processing; 2 Hwp1 repeats

Epithelial cells; Streptococcus gordonii; polystyrene; role in biofilm
formation, filamentation, and mating

26, 66, 67–70

Ywp1/Pga24 533 aa; N-terminal high-complexity region; 2 sites for
proteolytic processing; propeptide found in growth
medium; Sap9 cleaved; 2 Hwp1 repeats

Mutant shows increased adhesion and biofilm formation;
expressed in yeast cells

71, 56

Iff/Hyr familyf

Hyr1 919 aa Mediates resistance to neutrophil killing; anti-Hyr1 AB is
immunoprotective; hypha specific; Bcr1 dependent

40, 72, 73, 74

Rbr3/Iff1 1,562 aa; 10 Iff/Hyr repeats; 2 putative sites for
proteolytic processing

Upregulated at low pH; expression is repressed by Rim101 and
activated by Nrg1

75, 76

Hyr3/Iff2 1,249 aa; 4 Iff/Hyr repeats; putative proteolytic-
processing site

75

Iff3 941 aa; 2 Iff/Hyr repeats; putative site for proteolytic
processing

75

Iff4 1.526 aa Epithelial cells; plastics; implicated in virulence 77–79
Iff5 1,308 aa; 5 Iff/Hyr repeats 75
Iff6 1,086 aa; putative site for proteolytic processing
Hyr4/Iff7 1,225 aa; 3 Iff/Hyr repeats 75
Iff8 714 aa
Iff9 940 aa; 2 Iff/Hyr repeats 75
Flo9/Iff10 1,244 aa
Iff11 511 aa; no GPI anchor peptide; secreted protein Required for normal cell wall structure and virulence 80

a Protein names are from the Candida Genome Database (CGD) (http://www.candidagenome.org/).
b All listed proteins contain signal peptides for ER entry; all except Iff11 contain C-terminal signals for GPI anchoring.
c Only the most relevant phenotypes are listed.
d Als family proteins share similar domain structures with N-terminal effector domains that are 55 to 90% identical across the whole family, central domains with tandem repeats
(TR), and variable Ser/Thr-rich C-terminal domains.
e Hwp1 family proteins have in common the presence of one or more Hwp1 repeats.
f Iff/Hyr family proteins share a protein structure with a conserved putative N-terminal effector domain followed by a low-complexity C-terminal domain. The latter may contain a
variable number of Iff/Hyr repeats.
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crystallography (32). Salgado and coworkers showed that NT-
Als9-2 is capable of binding flexible C termini of peptides in ex-
tended conformations (32). This is consistent with results from
earlier studies showing that Als proteins bind to a number of
structurally unrelated proteins and peptides from randomly gen-
erated sequences (51). In addition, the N-terminal part of Als1
protein specifically binds fucose-containing glycans (39). Adhe-
sion through Als proteins can be activated and increased dramat-
ically by amyloid nanodomain formation (see section below).
Furthermore, Als1, Als2, and Als3 appear to be important for bio-
film formation, and complementary roles in this process promot-
ing monospecies biofilm formation were observed for Als1, Als3,
and Hwp1 (36, 40, 41). Recently, single-molecule AFM uncovered
the finding that, during the yeast-to-hypha transition, an increase
in the distribution and adhesion of Als proteins is observed, ac-
companied by dramatically increased surface hydrophobicity and
the unfolding and extension of mannosylated Als proteins (29).
Earlier work has shown a link between cell surface hydrophobicity
and outer-chain N-mannosylation status (86). It was postulated
that �-1,2-oligomannosides present in the acid-soluble phospho-
mannan part of N-glycans might form a tight, inflexible helix that
has a hydrophobic face. Consistent with this idea, consensus N-
glycosylation sites are abundantly present in fungal adhesins, for
instance, in repeat regions of Als proteins.

A high degree of allelic variability, especially in TR domains, is
present in the ALS family (21), and variations in tandem repeat
copies of ALS3 were shown to modulate protein function and
adhesion (87). Beside a role in adhesion, effects on the fungal cell
size were noticed for Als1 (21) and on host cell damage and cyto-
kine induction for the hypha-specific Als3 (44). Als3 was also
found to mediate C. albicans adherence to Staphylococcus aureus
and supported mixed-species biofilm formation with Streptococ-
cus gordonii (26, 45). Furthermore, the multifunctional Als3 pro-
tein acts as an invasin by inducing endocytosis into host cells (46)
and enables iron acquisition by binding transferrin (47).

Future research will provide mechanistic insight into the dif-
ferent functions and binding specificities of the Als proteins and
into whether this knowledge can be exploited to improve anti-
Candida therapy, e.g., by immunization against the effector do-
mains of Als proteins or by targeted inhibition of amyloid forma-
tion (88).

Amyloid formation. Amyloids are fibrous protein structures
present on the microbial cell surface. Recently, amyloids have
been identified in C. albicans Als adhesins (66, 89). Amyloid for-
mation in C. albicans has been analyzed primarily for the Als5
protein. Amyloid-forming sequences within the Als5 primary
amino acid sequence were identified using the �-aggregation pre-
diction software TANGO (90). This software predicts the poten-
tial of regions within a protein sequence to form �-strand-rich
aggregates based on inter- and intramolecular interaction energies
(90). Sequences predicted to form amyloids are usually found
within the T region of Als adhesins. The ability of peptides corre-
sponding to putative amyloid sequences to form �-aggregates and
amyloid fibrils also has been demonstrated experimentally in vitro
using transmission electron microscopy (TEM) and Congo red
and thioflavin binding (66, 89). Threonine, isoleucine, and valine
residues present within the T regions of C. albicans Als proteins are
reported to have a significant role in amyloid formation (66, 89).
Similar clusters of threonine, isoleucine, and valine residues are
widely present in fungal adhesins and are also present in C.

glabrata adhesins, though additional experimental evidence is
needed to establish the role of these residues in aggregation and
amyloid formation in C. glabrata. In addition to Als adhesins,
functional amyloid formation has been reported for peptide frag-
ments of the C. albicans adhesin Eap1 and the Flo1 and Flo11
flocculins of S. cerevisiae (66).

Recent elegant work using AFM demonstrated that amyloid
interactions provide cohesive strength to C. albicans Als proteins.
Possibly, initial protein binding through the Ig-like domains
and/or weak hydrophobic binding through the TR domains is
followed by amyloid formation, thereby strengthening cell adhe-
sion (84). Using AFM, it was demonstrated that long-lived protein
interactions are enabled by Als amyloids that can function as a
molecular zipper. Formation and propagation of Als5 adhesion
nanodomains on the cell surface were observed in response to
mechanical stimuli, which probably causes the T region to par-
tially unfold and expose the amyloid-forming sequence (91). The
formation of amyloid clusters could thus explain why Als proteins
exhibit weak binding to many ligands but mediate strong adher-
ence. These data provided evidence that Als-mediated adhesion
largely depends on conformational modifications of existing ad-
hesins rather than or in addition to signal transduction and ex-
pression of new adhesin molecules (92).

Hwp family. Although their N-terminal effector domains do
not have sequence similarities, Hwp1, Hwp2 (“hyphal wall pro-
tein”), and Rbt1 (“repressed by Tup1”) are considered to be part
of a single family because they share a highly conserved 42-aa
repeat unit (Fig. 2 and Table 2) (61, 101). Expression of HWP1,
HWP2, and RBT1 is hypha specific and also upregulated during
mating of opaque cells (57). Their corresponding proteins are
required for adhesion to host cell surface proteins, biofilm forma-
tion, cell-cell aggregation, and mating (41, 57). Within this family,
Hwp1 is unique in the way that its N terminus is highly enriched in
glutamine residues. These are substrates for human host transglu-
taminase enzymes, which covalently cross-link Hwp1 to extracel-
lular matrix (ECM) proteins of epithelial host cells (58–60).

Since the adhesin Eap1 also features the conserved 42-aa do-
main, it can be included in this family. In fact, seven other GPI
proteins, namely, Pga6, Pga18, Pga38, Pga59, Pga62, Ywp1/Pga24,
and Cht2, and Iff11, a secreted protein of the Iff family (see below),
contain similar sequences (Fig. 2A and B) (102). The 42-aa-long
repeat domain coincides with several amyloid-forming patches,
which are thought to facilitate multimerization of adhesins (66).
Moreover, the repeat unit features three conserved cysteine resi-
dues. These might be involved in the formation of intermolecular
disulfide bridges between proteins, which potentially promote
protein aggregation or reinforcement of cell wall integrity. Al-
though Pga59 and Pga62 are upregulated during biofilm forma-
tion (103) and play a minor role in morphogenesis (102), their
deletion mutants show no reduction in adhesion or biofilm-form-
ing capacity (102). The repeat unit is also somewhat reminiscent
of domains that have been shown to bind cell wall polymers (104),
which might explain why the chitinase Cht2 has a similar domain.
Thus, alternatively, these 42-aa domains might also be involved in
interacting with cell wall polysaccharides and consequently con-
tribute to cell-to-cell interactions.

EAP1 is expressed in both yeast and hyphal cells and is differ-
entially regulated during yeast phenotypic switching. It is mainly
specific to the white phase and contributes not only to biofilm
formation and general epithelial cell and polystyrene adhesion
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(67–69) but especially to cell-cell binding in response to �-pher-
omone (69). The different domains of Eap1 mediate adhesion to
different epitopes when expressed in S. cerevisiae (70): the N-ter-
minal domain (Fig. 2, orange box) facilitates agar invasiveness,
cell-cell contacts, and adhesion to mammalian cells, and the Ser/
Thr-rich repeat regions (Fig. 2A) contribute to polystyrene adhe-
sion (70). Similar to Als3, Eap1 and Hwp1, but not Rbt1, can
facilitate binding to Streptococcus gordonii, a colonizing bacterium
of the oral cavity. S. gordonii features proteins with similar amy-
loid sequences on its surface, but binding to Als3 and Eap1 is
independent of amyloid formation (26), indicating that this bind-
ing is mediated through the N-terminal effector domain rather
than the repeat units.

Strains deleted for YWP1 are hyperadherent to several surfaces

and show increased biofilm formation. The Ywp1 protein is there-
fore considered to be involved in the release of yeast cells from
surfaces (71, 105), countering the action of adhesins. The protein
is processed by regulatory proteases of the Kex2 and Sap9/Sap10
group to generate 11-to-12-kDa propeptides which stay noncova-
lently but tightly attached to the mature protein part (105). Inter-
estingly, the Sap9 deletion mutant is also hyperadherent (106),
and a peptide immediately downstream of the Ywp1 propeptide
was released from purified yeast sap9� sap10� cell walls with re-
combinant Sap9 (56), underlining the possible biological rele-
vance of proteolytic activation for this protein. Similarly, Hwp1,
Rbt1, and Hwp2 also contain predicted protease recognition sites
within their effector domains (58, 107) (Fig. 2A); thus, it can be
speculated that regulatory proteolytic events also play a role in

FIG 2 The C. albicans Hwp1 and Iff/Hyr families contain family-specific repeat sequences. (A) Diagram showing modular structures of the protein precursors
of the Hwp1 family. Included are all 12 C. albicans SC5314 proteins (genome assembly 21) containing at least one copy of the pattern T[ILV][ST]XCX(4)CX
(16,20)TX[VYF][TV]T[YF]CP[ILV] (PROSITE format), which are indicated as diagonally striped boxes. N-terminal high-complexity domains of the mature
proteins, believed to comprise effector domains, are presented in different colors because of their lack of sequence similarity. The two EAP1 alleles in strain
SC5314 differ in length at a region that predominantly encodes repeats of a “PATEST” pattern (indicated by vertically striped boxes). A region with imperfect
41-to-50-aa serine-rich repeats in Pga18 is shown as the boxes with the thinner diagonal stripes. Signal peptides (SP) for ER entry and GPI anchoring are
indicated. Putative and experimentally validated proteolytic Kex2 cleavage sites are depicted by open and black triangles, respectively. (B and C) Sequence logos
(created at http://weblogo.berkeley.edu/) of the Hwp1 group (B) and of the Iff/Hyr family repeats (75) (C). Amino acid color codes for both panels are as follows:
purple, conserved tryptophan in the Iff group, cysteines, and prolines; green, amyloid forming (TLVIA); red, positively charged (KRH); blue, negatively charged
(DE); orange, all other amino acids. Alignments used for building the logos have been communicated to Pfam (http://pfam.janelia.org/) for creation of Pfam
hidden Markov models (HMM) entries. All Iff/Hyr repeats from reference 75 match the pattern WX(2)TX (7)TX(2)G[IV](2).
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these proteins. A fragment of the potential propeptide of Rbt1,
between the second and third putative recognition sites, was
found in culture supernatants (64).

Iff/Hyr family. The 12 proteins encoded by the IFF/HYR gene
family (“IFF” standing for “IPF family F” and “HYR” for “hy-
phally upregulated protein”) have a high degree of sequence sim-
ilarity in their N-terminal effector domains (Table 1). Six of them,
Iff1/Rbr3, Iff2/Hyr3, Iff3, Iff5, Iff7/Hyr4, and Iff9, also share 41-
to-51-aa-long Iff-specific tandem repeats (75) (Fig. 2C). The fam-
ily includes the hypha-specific proteins Hyr1 and Iff11 (74, 80).
The latter represents a secretory protein that differs from other
family members by lacking a GPI anchor. Deletion of IFF11 leads
to significant alterations in the cell wall, suggesting that the pro-
tein has a role in cell wall organization and/or enzymatic function
(80). How these functions relate to other IFF/HYR genes on the
molecular level is unknown, as studies have looked at these genes
only at the phenotypical level (77, 78). The molecular substrates of
the Iff/Hyr family proteins have not yet been identified, but they
are clearly of clinical relevance. Overexpression of IFF4 in C. albi-
cans increased adherence to plastic and epithelial cells (79). In
animal models, both overexpression and underexpression of IFF4
resulted in a reduction of virulence, indicating that a specific ex-
pression level is required for maximal virulence (108). Hyr1 has
been implicated in resistance to neutrophil killing (72), and an
anti-Hyr1 antibody (AB) induced immunity to disseminated can-
didiasis in mice (73).

ADHESINS IN NON-ALBICANS CTG-CLADE CANDIDA SPECIES

Despite several phenotypic descriptions of adhesion, adhesins
have not yet been investigated deeply at the molecular level in
CTG-clade species other than C. albicans. Genomic data indicate
that the adhesin families described for C. albicans also exist in
other species. The presence of ALS-like genes has been confirmed
in Candida dubliniensis, Candida tropicalis, Candida parapsilosis,
Candida lusitaniae, and Candida guilliermondii (12, 101, 108), and
the IFF/HYR gene family is also widely present in CTG-clade Can-
dida spp. (101, 109). Homologs of Rbt1 are present in C. dublini-

ensis, C. parapsilosis, C. tropicalis, and Candida orthopsilosis.
NCBI-BLAST searches with the small N-terminal effector do-
mains of Eap1 and Hwp2 revealed homologs only in the closely
related species C. dubliniensis. A clear Hwp1 homolog is also pres-
ent in C. dubliniensis, whereas a protein with only a short stretch of
high sequence identity to Hwp1 is found in C. tropicalis. Of note,
adhesins that fit the Als or Rbt1 definition are not present in non-
CTG clade species such as C. glabrata or S. cerevisiae.

Comparative genomic analysis of the ALS and IFF/HYR gene
families of the different CTG-clade species showed high genetic
variability, with apparent gene losses and multiplications that
have occurred during evolution (75, 101, 110). For instance, C.
dubliniensis lacks an ortholog of the hyphally regulated HYR1 gene
in C. albicans that was lost during evolution (110). Also, the IFF/
HYR family shows duplications on three chromosomes in C.
parapsilosis (101) but not in C. orthopsilosis (111). This is intrigu-
ing, as C. parapsilosis strains have the highest adhesion capacities
of all clinically relevant Candida species and are mostly found
growing in catheter-associated biofilms, pointing to the poten-
tially high clinical importance of this gene family.

The ALS family is expanded to at least 13 members in C. tropi-
calis (101). For C. albicans and C. dubliniensis, there is a broad
similarity between their ALS families. However, phylogenetic
analysis showed that recombination between different ALS genes
has altered some sequences since speciation (110). Furthermore,
ALS5 and the multifunctional and hypha-specific ALS3 are not
present in C. dubliniensis, which instead has a duplicated copy of
ALS2. This high genetic variability and the recombination events
occurring in fungal adhesin genes seem related to the frequent
presence of intragenic tandem repeats. It should be noted, how-
ever, that adhesin gene families are often located in subtelomeric
regions, which may significantly contribute to the expansion of
some of these adhesin gene families.

CANDIDA GLABRATA ADHESINS

Analysis of the genome of the C. glabrata strain CBS138/ATCC
2001 revealed an exceptionally large number (66) of sequences

TABLE 2 Adhesins in non-Candida human pathogenic fungi

Fungus Adhesin (accession no.) Structural propertiesa Substrate and/or functional properties Reference(s)

Aspergillus fumigatus RodA (EAL91643.1) 159 aa, GPI? Hydrophobin; adhesion to collagen and
bovine serum albumin

93, 94

CalA (EAL92612.1) 177 aa Binding to laminin and murine lung cells 95
CspA (XP_754717.1) 430 aa, repeats, GPI Conidial adhesion to ECM of human

alveolar epithelial cells; expression
during conidial germination

96

Cryptococcus neoformans Cfl1 (AFR92926.1) 309 aa Cell-cell adhesion (flocculation); biofilm
formation; hypha specific

97

Coccidioides immitis SOWgp (AAL09436.1) 422 aa, repeats, GPI Binding to laminin, fibronectin, and
collagen IV; role in virulence; spherule
outer wall protein

98

Blastomyces dermatitidis BAD1/WI-1 (AAA91036.1) 1,146 aa, repeats, epidermal
growth factor-like
cysteine-rich consensus
sequence at C terminus

Adhesion to yeast chitin and
macrophages; modulation of TNF-�
production by phagocytes

99, 100

a All proteins have signal peptides for secretion. GPI, glycosylphosphatidylinositol-anchoring signal peptide. The GPI-anchor signal prediction in RodA is controversial as it
includes one of the eight cysteines, which are believed to be crucial for correct folding of this amphipathic protein.
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specifying GPI-modified adhesin-like wall proteins (8, 9, 112; see
also Fig. 3). All these proteins have the modular structure that is
typical for adhesins: an effector domain followed by a low-com-
plexity region that is often spiked with internal tandem repeats,
termed “megasatellites,” in C. glabrata (113). Based on phylogenic
analysis of their putative N-terminal ligand-binding regions, this
large family can be divided into seven subfamilies (8). Only two
proteins (CAGL0J05159g and CAGL0L09911g) fall outside these
subfamilies, as their N-terminal domains are unrelated to those of
any of the other putative adhesins (Fig. 3). The largest subfamily is

the EPA family, with 17 members in CBS138. Remarkably, earlier
studies reported an even larger number of EPA genes (23) in strain
BG2 (114, 115). For instance, orthologs of EPA4 and EPA5, pres-
ent in BG2 (116), are lacking in strain CBS138. Furthermore, none
of the orthologous EPA genes in either strain are 100% identical.
Relevant in this respect is the fact that the tandem repeat regions,
which usually are present in fungal adhesin-encoding genes, fre-
quently show strain-dependent size reductions or expansions oc-
curring during DNA replication (23–25, 96). All together, these
intraspecies gene variations underline the extremely large genetic

FIG 3 Genomic organization of putative adhesin-encoding genes in the sequenced C. glabrata strain CBS138, modified from reference 8. Chromosomes and
open reading frames (ORFs) are numbered following Génolevures’s systematic ORF numbering, which is also used in the Candida Genome Database. ORF sizes
are to scale, but distances between ORFs are not. Many of the gene sequences, when translated, give rise to frameshifts, probably mostly due to sequencing and/or
annotation errors or the presence of intronic sequences. Some unannotated ORF fragments (no ORF number), identified by BLASTX, are connected to
incomplete ORFs. Colors indicate seven subfamilies, sharing homology in the N-terminal putative ligand-binding parts. Numbers of genes in each group are
indicated. N-terminal domains of CAGL0L09911g and CAGL0J05170g (white) are unrelated to the other adhesins. For CAGL0E00187g (group IV, pink), only
the GPI anchor peptide containing the C-terminal part was identified; its classification is therefore based on BLASTP analysis of this region. Numbers of
nonadhesin ORFs separating adhesin-like ORFs and telomeres and distances of terminal adhesin-like genes to the end of the obtained telomeric DNA sequences
are indicated. Numbers of the megasatellite signatures [VILF][VI][ST]H[IVS][TI][TGI] (“VVSHITT”) and SFFIT are specified only for ORFs whose protein
sequences are complete in the databases. Arrows indicate directions of transcription.

Minireview

476 ec.asm.org Eukaryotic Cell

http://ec.asm.org


plasticity with respect to fungal adhesin genes, including the EPA
family, in C. glabrata.

Epa family. The best-studied proteins in the Epa family are
Epa1, Epa6, and Epa7. All three proteins mediate adherence to
human epithelial and endothelial cells (7, 22, 27). Epa1 has also
been reported to govern binding to innate immune cells (117).
Remarkably, deletion of just EPA1 reduces adherence to human
epithelial cells in vitro to background levels, probably because
other EPA genes are transcribed only at low levels when grown
under laboratory conditions (116, 118). This repression of EPA
gene transcription is explained, in part, by the fact that most of the
EPA genes are located within subtelomeric regions (Fig. 3) where
they are subject to chromatin-based gene silencing (116, 118,
119). In fact, about two-thirds of the 66 putative adhesin genes in
C. glabrata are located within these subtelomeric regions (8) and
in all subtelomeric areas of strain CBS138 at least one putative
adhesin gene is present (Fig. 3).

The ligand-binding domains of Epa proteins are called PA14
(“anthrax protective antigen”) domains and have lectin proper-
ties. Studies using carbochips (glycan arrays) have shown that
Epa1, Epa6, and Epa7 bind to oligosaccharides that contain ter-
minal galactose residues, such as those occurring in mucin-type
O-glycans (22, 31). This is consistent with the idea that these pro-
teins enable the fungus to bind to glycoproteins on the host cell
surface. S. cerevisiae flocculins (Flo proteins) contain N-terminal
domains that exhibit weak similarity to the PA14 domains in C.
glabrata (23). Structural analysis of the S. cerevisiae Flo family
member Flo5 showed that this protein binds to high-mannose
oligosaccharides (33), giving this glycoprotein self-binding prop-
erties. Veelders et al. (33) described in detail that the crystal struc-
ture of the Flo5 effector domain, complexed to cognate ligands,
revealed a beta-sandwich core that utilizes a unique DcisD calci-
um-binding motif for carbohydrate binding. Given the high
abundance of high-mannose oligosaccharides in yeast cell walls,
this confers to baker’s yeast the self-aggregating properties that
lead to the formation of flocs and are exploited widely in the beer-
and wine-making industries. Recently, the crystal structure of
Epa1 complexed to cognate disaccharide ligands, including
Gal�1–3Glc and the T antigen (Gal�1–3GalNAc), has been
solved, showing a similar lectin fold and DcisD calcium-binding
motif (30, 31). Further studies, using point mutants of Epa6 and
Epa7, or using Epa1 variants with modified binding sites that cor-
respond to Epa2, Epa3, and Epa6, showed that substrate specificity
is governed by two inner loops, CBL1 and CBL2, involved in cal-
cium binding as well as by three outer loops, L1, L2, and L3 (22,
31). The CBL2 loop was previously also shown to determine Flo/
NewFlo specificity (mannose binding versus mannose and glucose
binding) in S. cerevisiae (120).

Pwp family. Of the other putative adhesins in C. glabrata, the
N-terminal effector domains of one subfamily, with seven mem-
bers, also show similarity to the PA14 domains of the Epa and Flo
families. These seven C. glabrata proteins were termed Pwp1 to
Pwp7 (8). It is conceivable that Pwp proteins also are lectins with
a role in aggregation, for instance, during biofilm formation, or
host binding. In line with this, Pwp7 has been shown in vitro to
play a role in adherence to human endothelial cells (112). How-
ever, solid conclusions about the functionality of the Pwp family
await further functional and structural studies to elucidate their
ligand-binding properties.

Other putative adhesins. The N-terminal domains of the re-

maining 42 putative C. glabrata adhesins have no clear homology
with those of Epa or Pwp proteins, and, with the exception of
Aed1, which, like Pwp7, mediates adherence to human endothe-
lial cells (112), their functions and ligands are unknown.

In studies where the covalently bound cell wall proteome was
studied using tandem mass spectrometry, Epa3 and Epa6 were
identified as well as Awp1 to Awp6, six of the non-Epa adhesin-
like wall proteins (8, 121). The above-mentioned Aed1 (Awp5) is
one of these proteins. Awp1 to Awp6 are members of four differ-
ent adhesin subfamilies. Awp2 and Awp4 belong to a subfamily of
putative adhesins with weak similarity to the C. albicans Hyr/Iff
family as well as to the haze-protective mannoproteins Hpf1 and
Hpf1= in S. cerevisiae (122). Awp1 belongs to the same subfamily as
Awp3. Except for Awp1, these (putative) adhesins were found by
mass spectrometric analysis in isolated cell walls from strain
CBS138, which was originally a feces isolate. So far, Awp1 has been
detected only in a different clinical isolate (ATCC 90876, isolated
from blood) grown to the stationary phase. Expression studies
using a quantitative PCR (qPCR) approach showed that the cor-
responding genes of most of the identified wall adhesins are sig-
nificantly upregulated during biofilm development (121). Inter-
estingly, mass spectrometric analysis identified Awp6 only in cell
walls under biofilm-forming conditions. Thus, expression and
wall incorporation of the adhesins seem to be dependent on the
genetic strain background and growth conditions. Furthermore,
the analysis supports the hypothesis that C. glabrata contains a
large repertoire of tightly regulated functionally diverse adhesins
to enable rapid colonization of different host tissues under a vari-
ety of host-defined conditions.

Many of the C. glabrata adhesin-like proteins also contain tan-
dem repeats, such as repeated sequences containing VSHITT or
SFFIT signatures, in the region downstream of the effector do-
main (Fig. 3). The VSHITT repeat of about 46 amino acids is
found in about half of the putative adhesins across the different
subgroups, including Awp2 and Awp4 and the two unrelated ad-
hesin-like proteins (8). Therefore, although the N-terminal effec-
tor domains of proteins in different subfamilies may not show
obvious similarities, these proteins do have structural (and prob-
ably functional) relationships. Interestingly, the presence of (mul-
tiple) VSHITT or SFFIT megasatellites seems specific for adhesins
in C. glabrata as it does not occur in any other protein currently
present in the NCBI protein database (123). Elucidation of the
exact functions of the repeat regions remains largely elusive. It is
generally believed that expansion of glycosylated repeat regions
improves the surface exposure and ligand-binding propensities of
the N-terminal domains of adhesins (25). On the other hand, a
role in cellular aggregation through amyloid-forming properties
has also been suggested (66).

ASPERGILLUS FUMIGATUS ADHESINS

A. fumigatus is the main causative agent of invasive aspergillosis
(IA), usually a fatal infection in patients with AIDS, solid-organ
transplants, or chronic pulmonary diseases, including cystic fibro-
sis and allogeneic bone marrow transplants, and in patients with
various hematological malignancies.

One of the best-characterized proteins required for its role in
adherence to host cells in A. fumigatus is RodA (Table 2). The
RodA protein is expressed primarily on the surface of conidia and
is required to form the surface rodlet layer (93). RodA extracted
from A. fumigatus conidia is immunologically inert, thus prevent-
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ing immune recognition of fungal spores (94). Disruption of this
gene decreased adherence to collagen and bovine serum albumin
but not to pneumocytes, fibrinogen, or laminin (93). Although
RodA is reported to be a GPI protein (94), it is not a classical wall
adhesin. In fact, GPI modification of RodA would seem in conflict
with the amphipathic fold of this hydrophobin, which relies on the
formation of four disulfide bridges between eight conserved cys-
teine residues (124), the last one of which is located in the pre-
sumed GPI-anchoring signal peptide.

The A. fumigatus adhesin CalA was identified by employing a
bioinformatic approach (95) and is predicted to be a secreted pro-
tein (Table 2). Recombinant CalA was shown to bind to laminin
and mouse lung cells. Binding of anti-CalA antibodies to A. fu-
migatus conidia suggested the presence of CalA on the conidial
surface.

More recently, the GPI-modified wall protein CspA (“cell sur-
face protein A”) was identified as a putative adhesin with internal
repeats (Table 2), of which the number per gene is strain depen-
dent (96). The cspA-encoded cell wall protein is unmasked during
conidial germination and is surface expressed during hyphal
growth. Deletion of CspA, when combined with other cell wall
proteins such as Ecm33 and Gel2, resulted in reduced conidial
adherence to extracellular matrix (ECM) from human alveolar
cells. Strains lacking CspA displayed cell wall weakening, whereas
overexpression of CspA resulted in increased resistance to cell
wall-degradative enzymes, suggesting that its main function is in
cell wall integrity.

CRYPTOCOCCUS NEOFORMANS ADHESINS

C. neoformans is an environmental fungus that is found usually in
soil. Much of the insight gained about its pathogenesis has come
from studies focusing on capsule and melanin production—two
of the most prominent virulence factors of this fungus. Surpris-
ingly, very little is known about adhesins from C. neoformans.
Recently, a secretory protein, named Cfl1 (cell flocculin 1), was
reported to be an adhesin (Table 2) (97). The C. neoformans Cfl1-
encoding gene was found to be specifically expressed during the
hyphal growth phase, and the protein was documented to regulate
morphogenesis, cell-cell adhesion, biofilm formation, and viru-
lence (97). Paradoxically, morphotype transition in C. neoformans
is typically observed during mating, but pheromone signaling
components play no or minimal direct roles in virulence. Inter-
estingly, Wang et al. have demonstrated that filamentation in C.
neoformans can occur independently of pheromone signaling and
mating (97). Nevertheless, elucidation of the precise function of
Cfl1 requires further investigation.

ADHESINS IN FUNGI CAUSING ENDEMIC MYCOSES AND
RARE FUNGAL DISEASES

The causative agents of endemic mycoses are mostly dimorphic
fungi that usually grow in a filamentous (mold) form at 25°C,
while at 37°C they convert to yeast growth. From this group, only
a few cell wall proteins mediating adherence in C. immitis and B.
dermatitidis have been characterized (Table 2). Recombinant C.
immitis adhesin SOWgp (“spherule outer wall glycoprotein”) was
shown to bind to mammalian ECM proteins (laminin, fibronec-
tin, and collagen IV) (98). Deletion of SOWgp resulted in partial
loss of binding of C. immitis spherules (multinucleate round cells
in the parasitic cycle of this fungus) to ECM and attenuation of
virulence in a murine model of coccidioidomycosis.

In the case of B. dermatitidis, BAD1/WI-1 (“Blastomyces adhe-
sin”) has been identified as a yeast-phase-specific protein involved
in adhesion. Studies performed with gene disruptants showed that
BAD1 is critical for binding of B. dermatitidis yeast cells to host
cells and for pathogenesis in a murine model of pulmonary infec-
tion (99). One of the major mechanisms by which the secretory
protein BAD1 influences B. dermatitidis is downregulation of ex-
pression of proinflammatory cytokines such as tumor necrosis
factor alpha (TNF-�) (100).

In Fusarium oxysporum, an opportunistic filamentous fungus
that has the unique ability to infect both plant and mammalian
hosts, four putative GPI-modified adhesins were identified in
silico. However, none of these were identified during mass spec-
trometric analysis of hyphal walls under adhesion-inducing con-
ditions (125).

SUMMARY

The fungal cell wall and its constituents are of interest primarily
due to its importance as a potential target for antifungal therapy
and its role in pathogenesis. In recent years, tremendous progress
has been made in identification and characterization of adhesins,
largely by virtue of genome sequencing of many pathogenic fungi
and development of novel genetic and molecular tools. Adhesins
are shown to be important for disease establishment and progres-
sion by helping in colonization. This correlation has been demon-
strated by a number of studies, the most important of which are
the construction of deletion mutants and the demonstration of
their reduced adherence and virulence. The existence of large fam-
ilies of adhesin proteins, e.g., the Als family in C. albicans and the
Epa family in C. glabrata, with both overlapping and specific func-
tions, conformational activation, differential gene expression pat-
terns, and allelic variability, provides a versatile toolbox to these
fungi. This may foster external reactions, for example, to enable
coordinated adhesion to various tissues in specific host niches.
However, there are still significant gaps in our knowledge about
how fungal pathogens colonize and persist in the host. We antic-
ipate that future studies focused on functional characterization of
novel putative adhesins will not only provide new insights into
their role in pathogenesis but will also help define their role related
to the host niche where the organisms are found and thrive. More-
over, mechanistic insights into the mode of action of adhesins
obtained using nanotechnology-based approaches may provide
valuable clues to their potential to serve as future diagnostic mark-
ers or to improve antifungal therapies.
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