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Abstract
We used two methods to address two aspects of multi-finger synergies and their changes after
fatigue of the index finger. Analytical inverse optimization (ANIO) was used to identify cost
functions and corresponding spaces of optimal solutions over a broad range of task parameters.
Analysis within the uncontrolled manifold (UCM) hypothesis was used to quantify co-variation of
finger forces across repetitive trials that helped reduce variability of (stabilized) performance
variables produced by all the fingers together. Subjects produced steady-state levels of total force
and moment of force simultaneously as accurately as possible by pressing with the four fingers of
the right hand. Both before- and during-fatigue, the subjects performed single trials for many
force-moment combinations covering a broad range; the data were used for the ANIO analysis.
Multiple trials were performed at two force-moment combinations; these data were used for
analysis within the UCM hypothesis. Fatigue was induced by 1-min maximal voluntary
contraction (MVC) exercise by the index finger. Principal component (PC) analysis showed that
the first two PCs explained over 90% of the total variance both before and during fatigue. Hence,
it was concluded that experimental observations formed a plane in the four-dimensional finger
force space both before and during fatigue conditions. Based on this conclusion, quadratic cost
functions with linear terms were assumed. The dihedral angle between the plane of optimal
solutions and the plane of experimental observations was very small (a few degrees); it increased
during fatigue. There was an increase with fatigue of the coefficient at the quadratic term for the
index finger force balanced by a drop in the coefficients for the ring and middle fingers. Within
each finger pair (index-middle and ring-little), the contribution of the “central” fingers to moment
production increased during fatigue. An index of antagonist moment production dropped with
fatigue. Fatigue led to higher co-variation indices during pronation tasks (index finger is an
agonist) but opposite effects during supination tasks. The results suggest that adaptive changes in
co-variation indices that help stabilize performance may depend on the role of the fatigued
element, agonist or antagonist.
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Introduction
Muscle fatigue leads to changes at various levels of the neuromotor system (reviewed in
Enoka and Duchateau 2008; Enoka et al. 2011). Several recent studies have documented
fatigue-induced changes in coordination of multi-element redundant systems that take part in
virtually all natural movements (Forestier and Nougier 1998; Côté et al. 2002, 2008;
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Huffenus et al. 2006; Gates and Dingwell 2008; Fuller et al. 2009; Singh et al. 2010b; Singh
and Latash 2011). A few of those studies used the framework of the uncontrolled manifold
(UCM) hypothesis to quantify changes in multi-finger (Singh et al. 2010a, b) and multi-
muscle synergies (Singh and Latash 2011) following fatigue of one of the elements (a finger
or a muscle group) participating in the tasks. The UCM hypothesis (Scholz and Schöner
1999; Latash et al. 2002, 2007) assumes that the neural control of a redundant system may
be adequately described as associated with the formation of a sub-space (UCM) within the
space of elemental variables (for example, individual digit forces) corresponding to a desired
magnitude of an important performance variable (for example, resultant force and/or
moment of force produced by all the digits together). Further, variance across repetitive
attempts may be represented as the sum of two components, within the UCM (“good”
variance or VUCM) and orthogonal to the UCM (“bad” variance or VORT). If most of the
variance is “good” (statistically, VUCM > VORT), a conclusion can be drawn that the
performance variable is stabilized (in a sense of decreased variability) by co-varied
adjustments of elemental variables.

The mentioned studies by Singh and colleagues of the effects of fatigue documented an
increase in the variance of all elements, fatigued and non-fatigued, with most of the increase
channeled into VUCM. In other words, synergy indices related to stabilization of such
performance variables as total force (in finger studies) and coordinate of the center of
pressure of a standing person (in multi-muscle tasks) increased during fatigue thus
mitigating effects of fatigue on accuracy of performance.

Recently, a new method has been introduced to address another aspect of performance of a
redundant system. The method, analytical inverse optimization (ANIO), assumes that
patterns of involvement of individual elements into multi-element tasks are defined by an
optimization principle. ANIO allows computing a cost function that is minimized by the
system over a broad range of task parameters, under certain conditions and assumptions
(Terekhov et al. 2010; Terekhov and Zatsiorsky 2011). Within the general framework of the
idea of synergies (Latash 2010), ANIO addresses the problem of sharing performance
variables among elements, while the UCM hypothesis addresses variable solutions during
repetitive attempts at the same task.

The two approaches to analysis of synergies, UCM-based and ANIO-based, have been used
together to analyze finger coordination in pressing tasks in young and older persons (Park et
al. 2010, 2011a). Those studies have shown, in particular, that older persons demonstrate
larger discrepancies between the observed finger force combinations and those computed
from the reconstructed cost functions (quantified with the dihedral angle between the two
planes corresponding to the actual and predicted from optimization finger force values,
respectively). In addition, multi-finger synergies stabilizing total force and total moment
were weaker in the older group. These results have suggested that there may be a link
between changes in the two characteristics of synergies with age.

The main goal of the current study was to explore effects of fatigue on patterns of sharing of
the total force (FTOT) and moment (MTOT) across a redundant set of fingers in pressing
tasks. To perform the ANIO analysis, we used a set of single trials performed over a broad
range of {FTOT; MTOT} values. We introduced a few changes into the ANIO methodology.
Unlike earlier studies, the range of MTOT was scaled to FTOT to avoid combinations of large
MTOT and small FTOT that proved to be hard to perform. We also changed the method of
normalization of the coefficients reconstructed with ANIO (see Methods for details). Two
{FTOT; MTOT} combinations were selected to perform analysis of synergies across
repetitive trials using the UCM-based analysis
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Based on the earlier studies (Singh et al. 2010a, b), we hypothesized that fatigue would lead
to stronger synergies reflected in larger co-variation among elemental variables across
repetitive attempts at the same task. On the other hand, we expected performance across
different tasks to be less consistent in following a single optimization principle (cf. Enoka
and Duchateau 2008) resulting in larger values of the dihedral angle between the planes of
optimal solutions and experimental observations. Potentially, these two hypotheses can
compete with each other, given the reported link between the synergy indices and the
dihedral angle (Park et al. 2010, 2011a).

Methods
Subjects

Eight young male subjects were recruited in the study. Their average age, height, and weight
were 28.38 ± 5.73 years (mean ± standard deviation), 175 ± 4.66 cm, 70.89 ± 6.90 kg. All
subjects were right-handed with no known previous history of neuropathies or traumas to
their upper extremities. Also, none of the subjects had a history of excessive use of hands
and fingers such as typing as a job and playing musical instruments. Before testing, the
experimental procedures of the study were explained and the subjects signed a consent form
approved by the Office for Research Protection in the Pennsylvania State University.

Apparatus
Four force sensors (Nano-17, ATI Industrial Automation, Garner, NC) were used to measure
vertical forces (i.e., normal forces) by individual fingers. The sensors were attached to a
customized flat panel (140 × 90 × 5 mm) (Fig. 1c). The sensors were covered with
sandpaper in order to increase the friction between subject’s fingertips and the surfaces of
sensors. The position of each sensor in the sagittal plane (i.e., Y-axis) was adjusted
according to the hand anatomy of individual subject, and then the sensors were mounted on
the adjusted position throughout the whole experiments. The distance between adjacent
sensors was 3.0cm in medio-lateral direction within the panel. The panel was mechanically
fixed to a stationary table. The four normal force signals were digitized at 200 Hz with a 16-
bit resolution (PCI-6225, National Instrument, Austin, TX) with a customized LabVIEW
program (LabVIEW 8.5, National Instrument, Austin, TX).

Procedures
Subjects had a 20-min orientation session to be instructed in the experimental procedure and
to become familiar with the experimental setup. The subjects had multiple practice trials to
ensure that they were able to perform the tasks prior to the main experiments. The subjects
sat in a chair facing the 19-inch computer screen, which was positioned 0.5m in front of the
subject, and positioned their right upper arm on a wrist-forearm brace that was fixed to the
table. The forearm was held stationary with Velcro straps. The subjects placed the fingertips
on the centers of sensors and kept the fingertips on the sensors during finger force
measurement (Fig. 1b). A wooden piece was placed underneath the subject’s right palm
(Fig. 1b) in order to avoid changes in the configuration of the hand and fingers (Li et al.
1998; Kang et al. 2004; Olafsdottir et al. 2007). The experiment consisted of two main
conditions including before fatigue and during fatigue conditions. Within each condition,
there were two main tasks, 1) maximal voluntary contraction (MVC) tasks and 2) accurate
total force-moment {FTOT; MTOT} production tasks.

Before-fatigue condition—First, the four fingers maximal voluntary contraction force
(MVCIMRL) and index finger MVC force (MVCI) were measured in order to scale the task
space in the {FTOT; MTOT} production tasks. During the MVC tests, the subjects were
instructed to reach maximal pressing force within 3 s by the index finger alone (MVCI) and
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by all four fingers (MVCIMRL), and the maximal force was measured. During the MVCI
task, the subjects were asked to keep all the fingers on the sensors and ignore possible force
production by other fingers. During the accurate force-moment production tasks, the
subjects were required to produce various {FTOT; MTOT} combinations as accurately as
possible. MTOT was computed with respect to the mid-point between the middle (M) and
ring (R) fingers assuming lever arms dI = −4.5 cm, dM = −1.5 cm, dR = 1.5 cm, dL = 4.5 cm
(I – index, M-middle, R – ring, L - little). The subjects were explicitly told how MTOT was
computed and had sufficient practice trials during the orientation session.

In each trial, the subjects were required to reach the {FTOT; MTOT} target values in a
moderate speed and maintain these values at least for 1.5 s as accurately as possible within 6
s. The subjects relaxed and waited for the next target as soon as a given trial was done
successfully. The computer screen showed the task and the cursor corresponding to the
current FTOT along the vertical axis and MTOT along the horizontal axis (see Fig. 1a).

There were nine levels of FTOT, from 5% to 45% of MVCIMRL at 5% intervals, and 16
levels of MTOT, from 4.0SU to 4.0PR at 0.5PR intervals; PR – pronation, SU – supination.
As in earlier studies (Park et al. 2010, 2011a, b), 1PR was defined as the product of 7% of
MVCI by the lever arm of the index finger (dI = −4.5 cm). The number of MTOT levels was
different for each level of FTOT as shown in Table 1. As a result, the {FTOT; MTOT} task
space formed a triangle, which differed from the rectangular task spaces employed in
previous studies (Park et al. 2010, 2011a, b). This was done to avoid relatively large
performance errors in tasks involving low FTOT and high MTOT.

The subjects performed one trial for each {FTOT; MTOT} combination in a random order for
a total of 81 trials. Finger forces from these 81 trials were used to compute a cost function
with the ANIO approach. Two sets of {FTOT; MTOT} combinations, {30% of MVCIMRL,
2PR} and {30% of MVCIMRL, 2SU}, were performed 20 times each by each subject. These
sets of trials were used to perform analysis of synergies within the UCM hypothesis
framework. After each block of 5 trials, a 20-s break was given. When the subjects
requested, additional rest was provided, and no subjects reported fatigue in the before-
fatigue condition.

During-fatigue condition—The subjects had a 5-min break upon the completion of the
before-fatigue condition. As in earlier studies (Danion et al. 2000, 2001; Singh et al. 2010a,
b), we used 1-min MVC force production by the index finger to induce initial fatigue. After
the initial fatiguing exercise, MVCIMRL and MVCI were measured to re-scale the task space.
Within the newly scaled task space, the subjects performed the same numbers of trials for
force-moment production tasks, 81 trials at different {FTOT, MTOT} combinations for the
ANIO analysis and 20 trials at each of the two {FTOT, MTOT} combinations for the UCM
analysis. To avoid index finger force recovery, after every five trials of {FTOT; MTOT}
production tasks, the subjects were asked to perform MVCI for 20 s as an additional
exercise. This was done to keep the fatigue-induced drop in MVCI at about 30% (as in Singh
et al. 2010a,b). Thus, each subject performed 24 of 20-s subsequent fatigue exercises. Note
that only the index finger was actively involved in the fatigue exercise, and the subjects
were instructed to avoid the force production by other fingers. The entire experiment
including both before- and during-fatigue conditions lasted for approximately 1.5 hours.

Data Analysis
Initial data processing—Matlab (Matlab 7.4.0, Mathworks, Inc) programs were written
for data processing and analysis. The 4th-order, 5-Hz Butterworth low-pass digital filter was
applied to the original force data. The filtered finger force data from each trial were
averaged over 1.5 s in the middle of the time period where steady-state values of individual
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finger forces were observed. The steady-state time period was identified by visual data
inspection.

Task constraints—There were two constraints for each trial:

(1)

where α indicates a given percentage of MVC (α = 5 to 45% at 5% interval).

(2)

where d stands for the lever arm; β = −4 to 4 at 0.5 intervals.

The ANIO approach (for details see Appendix 1)—First, principal component
analysis (PCA) was performed on the 81-trial sets of the finger force data for each subject
collected in the before- and during-fatigue conditions separately. The significant PCs were
extracted with the Kaiser Criterion (Kaiser 1960; PCs with eigevvalues over 1.0). The
percent of the total variance explained by the first two PCs was computed to examine
whether the experimental data were confined to a two-dimensional space in the four-
dimensional force space. Assuming planar data distributions (as in earlier studies, Park et al.
2010, 2011), the objective function was expected to be:

(3)

where i = {index (I), middle (M), ring (R), and little (L)}, and k and w are coefficients. All
the coefficients were normalized by the square root of the sum of the second-order

coefficient squared (i.e., by ) for across-subjects comparisons. We expected
all ki > 0 to comply with the basic assumptions of the objective function minimization
(Terekhov et al. 2010). The angle between the plane of optimal solutions computed for the
same set of {FTOT, MTOT} combinations based on the computed cost function and the plane
determined by the experimental observations (the dihedral angle, DANGLE) was computed
for each condition.

Co-contraction index—The IM and RL finger pairs produced moments of force in
opposite directions, PR or SU, respectively. Agonist moment (MAGO) and antagonist
moment (MANT) were defined as the moment produced by the finger pair acting in the
direction of task MTOT and opposite to the required direction, respectively. I and M fingers
produced MAGO during PR and MANT during SU. R and L fingers produced MANT during
PR and MAGO during SU. A co-contraction index (CCI) was computed using absolute
magnitudes of MAGO and MANT:

(4)

Theoretically, CCI could range from 0 (MANT = 0), to 1 (MAGO = −MANT).

The task space was divided into six areas, and average CCI was computed within each area.
The six areas corresponded to three levels of FTOT (Low – 10–20%, Mid – 25–35%, and
High – 40–45%) and two levels of MTOT (PR and SU).
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Moment of force sharing analysis—Given that the nominal pivot was in-between the
M and R fingers, the lateral fingers (I and L) had larger moment arms as compared to the
central fingers. The percent of MAGO and MANT produced by the lateral fingers,
%MAGO_Lateral and %MANT_Lateral was quantified:

(5)

(6)

Total performance error—Over the two sets of 20 trials for the two {FTOT; MTOT}
combinations, the total performance error (TPE) was quantified as the average absolute
magnitude of the difference between the produced and task variables. It was quantified in
percent to the task variables:

(7)

(8)

where  and  represent the produced total force and moment of force at i-th trial,
respectively. FTarget and MTarget indicate the prescribed total force and moment of force,
respectively.

Synergy analysis (for details see Appendix 2)—The finger force data were analyzed
within the framework of the UCM hypothesis (Scholz and Schöner 1999) using the sets of
20 trials at the same {FTOT; MTOT} combinations. Briefly, two variance components were
computed across the 20 trials. One of the components (VUCM) did not change the averaged
across trials magnitude of the selected performance variable, while the other component
(VORT) reflected force variance that did. VUCM and VORT were computed with respect to
FTOT, MTOT, and {FTOT, MTOT} simultaneously as the performance variables. Further, an
index reflecting the relative amounts of VUCM and VORT was computed as:

(10)

where VTOT stands for the total finger force variance, and each variance index is computed
per degree-of-freedom in the corresponding spaces. The index was computed with respect to
FTOT (ΔVF), MTOT (ΔVM), and {FTOT, MTOT} (ΔVFM). Prior to statistical analysis (see
later), this index was transformed using a Fisher z-transformation (ΔVz) adapted to the
boundaries of ΔV.

Statistics—The data are presented as means and standard errors. For the sets of 81
combinations of {FTOT; MTOT}, we explored effects of fatigue on the coefficients (ki and
wi) in the J function, the co-contraction index (CCI), and the torque shares by the lateral
moment agonist (%MAGO_Lateral) and antagonist (%MANT_Lateral). Repeated-measures
ANOVAs were used with factors Fatigue (two levels: before- and during-fatigue), Force
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(three levels: Low, Mid, and High), and Moment (two levels: PR and SU). The assumptions
of sphericity were checked using Mauchly’s sphericity test, and the Greenhouse-Geisser
correction was used if the assumption of sphericity was violated. For the coefficients in the J
cost function and DANGLE, Wilcoxon’s signed-ranks test was used for comparisons between
before- and during-fatigue conditions.

For the sets of 20 repetitive trials for two {FTOT; MTOT} combinations, ANOVAs with
repeated measures were used with the following factors: Fatigue, Moment, Analysis (two
levels: FTOT, MTOT or three levels: FTOT, MTOT, {FTOT; MTOT}), and Finger (four levels: I,
M, R and L). The factors were chosen based on particular comparisons. For comparison of
force-sharing patterns between the before- and after-fatigue conditions, MANOVA was
used, and Rao’s R was computed. Since the sum of force shares of individual fingers is
always 100%, only three shares, those by the M, R, and L fingers were used for comparison.
Tukey’s honestly significant difference tests and pairwise contrasts were used to explore
significant effects.

UANGLE, the dihedral angle between the UCM and the plane of optimal solutions, was

compared between the before-fatigue ( ) and during-fatigue ( ) conditions and
also to 90° (t-tests).

Prior to ANOVAs, variables with computational boundaries were transformed using Fisher’s
z-transformation according to the boundaries of each variable. The statistical power for all
comparisons was computed, and for all planned comparisons the power was over 0.7 for the
pool of 8 subjects. The level of significance was set at p < 0.05.

Results
Effect of fatigue on maximal force production

The average MVC of the index finger (MVCI) and all four fingers (MVCIMRL) across
subjects was 34.63 N (± 7.91 N) and 70.13 N (± 5.87 N), respectively. After the one-minute
MVC exercise by the index finger (the initial fatigue exercise), MVC forces dropped
significantly for both the index finger (to 20.88 ± 4.76 N, p < 0.001) and four fingers (to
55.13 ± 7.00 N, p < 0.01). On average, the peak force dropped by 36.2% [range 21.95% to
47.2%] and 17.6% [range 7.8% to 30.0%], for the I-finger and four-finger tasks respectively.

Principal component analysis
The PCA was performed on the sets of 81 finger force combinations performed both before-
and during-fatigue conditions. The 81 observations covered a broad range of {FTOT; MTOT}
combinations (see Methods for details). Overall, the first two PCs accounted for more than
90% of the total variance in the finger force space for both before- and during-fatigue
conditions (Table 2). Both the average across subjects amount of variance explained by the
first PCs (94.96% vs. 94.45%) were similar for the two conditions. The ranges were also
similar. The PCA results show that the experimental observations were mainly confined to a
two-dimensional hyper-plane in the four-dimensional force space, and the planarity was not
affected by fatigue.

The ANIO approach
Based on the PCA results, we concluded that the cost-function was quadratic with linear

terms:  (see ‘Method’ and Terekhov et al. 2010). The coefficients
at the quadratic (ki) and the linear terms (wi) were defined to provide the best fit for the data.
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These coefficients for individual subjects in the two conditions (before- and during-fatigue)
are presented in Table 3. Note that all the k coefficients are positive, which confirms the
applicability of the ANIO method (see Terekhov et al. 2010; Terekhov and Zatsiorsky
2011).

After the fatiguing exercise, the second-order coefficients (kI) at the I finger force increased
for all subjects, while k for the M and R finger forces decreased for most subjects (kM: for 5
out of 8 subjects, kR: for 6 out of 8 subjects) (Fig. 2a). There was no consistency in the
changes in kL for the L finger force. Wilcoxon’s signed-ranks test confirmed significant
differences in kI and kR (p < 0.05). The coefficients at the linear terms (w) for the lateral (I
and L) finger forces were negative, while those for the central (M and R) finger forces were
positive both before and during fatigue (Fig. 2b). There were no significant changes in the
magnitude of w after the fatiguing exercise.

The average DANGLE (the angle between the plane of optimal solution and the plane of
experimental observations) across subjects increased with the fatiguing exercise, on average,
from 2.37 ± 1.91° to 3.72 ± 1.46° (p < 0.05, t-test).

Co-contraction index
In all tasks that required non-zero MTOT production, fingers that acted in the MTOT direction
(agonists, MAGO) and those that acted in the opposite direction (antagonists, MANT)
produced force. The co-contraction index (CCI) quantified the relative magnitude of MANT
with respect to MAGO. Because the task space was scaled with MVCIMRL (along the FTOT
axis) and MVCI (along the MTOT axis), the fatiguing exercise led to a reduction of the task
space along both axes. The CCI comparison between the two conditions was performed
using the data before fatigue for task sub-spaces that overlapped with the task space during
fatigue (in absolute units, N and Nm). For each subject, this task space was divided into six
areas corresponding to three levels of force (Low, Mid, and High) and two levels of moment
(PR and SU) – see Methods for more details.

Figure 3 illustrates the CCI indices averaged across subjects. CCI increased with FTOT
(Low, Mid < High), and it was higher for PR tasks as compared to SU tasks. Fatigue led to a
significant drop in CCI; these effects were stronger for PR tasks. A three-way repeated-
measures ANOVA on z-transformed CCI, Fatigue × Force × Moment confirmed significant
effects of all three factors [Fatigue: F[1,7] = 67.67, p < 0.001; Force: F[2,14] = 57.50, p <
0.001; Moment: F[1,7] = 91.00, p < 0.001] with significant Fatigue × Force [F[2,14] = 16.99,
p < 0.01] and Fatigue × Moment [F[1,7] = 25.50, p < 0.01] interactions. The Fatigue × Force
interaction reflected the fact that CCI before fatigue was larger than CCI during fatigue at
Low and Mid force conditions (p < 0.05).

Moment of force sharing
Further, we analyzed the relative contributions of the lateral (I and L) fingers to both MAGO
and MANT (%MAGO_LATERAL and %MANT_LATERAL). As shown in Fig. 4, both indices
were significantly larger before fatigue than during fatigue. In addition, %MAGO_LATERAL
decreased with the magnitude of prescribed force (Low > Mid > High), particularly for PR
tasks; %MAGO_LATERAL in PR was larger than that in SU when the prescribed force was
Low (Fig. 4a). No such differences were observed for %MANT_LATERAL. These results were
confirmed by ANOVAs on z-transformed %MAGO_LATERAL and %MANT_LATERAL that
showed main effect of Fatigue on both indices [F[1,7] = 6.56, p < 0.05 for
%MAGO_LATERAL; F[1,7] = 10.15, p < 0.05 for %MANT_LATERAL] and significant
interactions Force × Fatigue [F[2,14] = 4.15, p < 0.05] and Force × Moment [F[2,14] = 8.97, p
< 0.01] for %MAGO_LATERAL. The significant Force × Fatigue interaction reflected a
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significant drop in %MAGO_LATERAL with fatigue only at the High forces (p < 0.05). The
significant Force × Moment interaction for %MAGO_LATERAL reflected larger
%MAGO_LATERAL in PR than in SU only at Low forces (p < 0.05).

Effect of fatigue on total performance errors
The total performance errors (TPE) with respect to task FTOT and MTOT measured in
individual trials were averaged across trials (20 trials) for each subject and condition, and
then averaged across subjects. Overall, TPE of MTOT (TPEM) was significantly larger than
TPE of FTOT (TPEF). Fatigue led to increase in both TPEF and TPEM, particularly for the
PR task (Fig. 5). These results were confirmed by ANOVAs on z-transformed TPE that
showed main effects of Analysis (two levels: FTOT and MTOT) [F[1,7] = 11.18, p < 0.05] and
Fatigue [F[1,7] = 18.67, p < 0.01] with a significant Fatigue × Moment interaction [F[1,7] =
5.17, p < 0.05]. The interaction reflected a significant increase in TPE with fatigue only for
the PR task (p < 0.05).

Effect of fatigue on the sharing patterns and coefficient of variation
The average shares of FTOT by individual fingers across 20 repetitive trials for two {FTOT;
MTOT} combinations were computed. The shares of the lateral finger (I and L) forces
decreased during fatigue, while the central finger (M and R) shares increased with fatigue
for both PR and SU tasks (Fig. 6a). MANOVA with factors Fatigue (two levels), and
Moment (two levels) showed significant main effects of Fatigue [R[3,5] = 6.65, p < 0.05 and
of Moment [R[3,5] = 99.91, p < 0.0001] with a significant interaction Moment × Fatigue
[R[3,5] = 11.50, p < 0.05]. Further, univariate analysis of individual finger force shares
showed an effect of Fatigue for the I finger [F[1,7] = 24.56, p < 0.01, before fatigue > during
fatigue], M finger [F[1,7] = 11.47, p < 0.05, before fatigue < during fatigue], and L finger
[F[1,7] = 15.29, p < 0.01, before fatigue > during fatigue]. The main effect of Moment was
significant for all three fingers (p < 0.001). A significant Fatigue × Moment interaction for
the force share of L finger [F[1,7] = 10.18, p < 0.05] reflected the fact that this share before
fatigue was larger than that during fatigue, particularly for SU tasks (p <0.05).

Coefficient of variation (CV) was computed for each individual finger force over the 20
repetitive trials. Overall, CV during SU was significantly larger than during PR (except for
L finger). Fatigue led to higher CV during the PR tasks but lower CV during the SU tasks
(Fig. 6b). A three-way ANOVA on CV, Fatigue × Finger × Moment showed main effects of
Moment [F[1,7] = 15.77, p < 0.01] and Finger [F[3,21] = 3.11, p < 0.05] with significant
interactions Fatigue × Moment [F[1,7] = 4.83, p < 0.05] and Moment × Finger [F[3,21] =
12.43, p < 0.001]. The Fatigue × Moment interaction reflected opposite changes in CV for
the PR and SU tasks with fatigue (p < 0.05). The Moment × Finger interaction reflected
significant CV differences between the PR and SU tasks for the I and M finger forces (p <
0.05), but not for the R and L finger forces.

Analysis of multi-finger synergies
Two components of finger force variances, VUCM and VORT, were quantified per degree-of-
freedom with respect to FTOT, MTOT, and their combination, {FTOT, MTOT}. Variances in
the individual finger forces were normalized by MVCIMRL squared of corresponding subject
and fatigue conditions.

Generally, VUCM was always greater than VORT meaning that finger force variability across
trials was mostly confined to a sub-space where the selected performance variables
remained unchanged. Both VUCM and VORT increased with fatigue during the PR task,
while VUCM decreased with fatigue during the SU task. VUCM for {FTOT; MTOT}
stabilization was larger than VUCM for FTOT and MTOT stabilizations, particularly during the
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SU task (FTOT, MTOT < FMTOT) (Fig. 7a). VORT for MTOT stabilization was smaller than
for the other two analyses (MTOT < FTOT < FMTOT) (Fig. 7b). These findings were
supported by ANOVAs performed separately on VUCM and VORT with factors Fatigue,
Moment, and Analysis (three levels: FTOT-related, MTOT-related, and FMTOT-related). Main
effect of Analysis on both indices was significant [F[1.08,7.58] = 47.35, p < 0.001 for VUCM;
F[1,7] = 7.70, p < 0.01 for VORT]. There were significant interactions Fatigue × Moment
[F[2,14] = 5.80, p < 0.05], Analysis × Moment [F[1.38,9.67] = 17.03, p < 0.001], and Fatigue ×
Analysis × Moment [F[1.04,7.31] = 6.01, p < 0.05] for VUCM. The Analysis × Moment
interaction reflected the fact that the effect of Analysis on VUCM (FTOT, MTOT < FMTOT)
was stronger during SU task than during PR task (p < 0.05), and this two-way interaction
was observed only before fatigue (confirmed by the three-way interaction Fatigue ×
Analysis × Moment). The other significant two-way interaction Fatigue × Moment reflected
the fact that VUCM for the PR task was larger than for the SU task before fatigue, while
VUCM (PR) < VUCM (SU) during fatigue (p < 0.05). The difference in VORT for the PR task
between the two fatigue conditions (before fatigue < during fatigue) was just under the
significance level (p = 0.09).

The ΔV indices for FTOT (ΔVF), MTOT (ΔVM), and {FTOT, MTOT} (ΔVFM) were computed
as the normalized difference between VUCM and VORT (see Methods). Across the
conditions, ΔVM > ΔVF > ΔVFM. Fatigue resulted in higher ΔVF and ΔVFM during PR
task, while ΔVF, ΔVM, and ΔVFM during SU task became smaller (Fig. 7c). A three-way
repeated measures ANOVA with the factors Fatigue, Moment, and Analysis was performed
on z-transformed ΔV values. The main effects of Analysis was significant [F[1.02,7.16] =
112.33, p < 0.001) , and the pairwise comparisons confirmed that ΔVM > ΔVF > ΔVFM (p <
0.001). There was a significant two-way interaction Fatigue × Moment [F[2,14] = 12.76, p <
0.001], reflecting the fact that ΔV increased during fatigue for the PR task and dropped
during the SU task (p < 0.05).

The angle between the UCM and space of optimal solutions
UANGLE, the dihedral angle between the UCM computed with respect to {FTOT; MTOT}
stabilization and the space of optimal solutions defined with the ANIO approach, was

computed. This angle before fatigue, was larger than during fatigue,  > , on
average, 87.49° ± 2.38° vs. 84.58° ± 3.29° respectively. This difference was, however,
slightly below the level of significance (p = 0.07). The one-sample t-tests against 90°

confirmed that both  and  were significantly different from 90° (p < 0.05).

Discussion
Only some of the main hypotheses formulated in the Introduction have been confirmed. In
particular, fatigue led to less consistency in following an optimization principle and larger
values in the dihedral angle between the planes of optimal solutions and of experimental
observations (i.e., DANGLE). These observations are similar to the earlier described
differences between young and healthy elderly persons (Park et al. 2011a). Fatigue produced
changes in the two components of finger force variance (VUCM and VORT) that confirmed
earlier observations only partly. There was an increase in both VUCM and VORT during the
pronation (PR) tasks, with VUCM showing larger changes (similar to Singh et al. 2010a, b).
However, this was not the case for the supination (SU) tasks, which showed, on average, a
drop in VUCM with fatigue, while VORT increased. These results suggest an increase in the
synergy index during fatigue for PR tasks only. Further we discuss implications of the study
for the effects of fatigue on synergic action of fingers and for moments of force performed
into PR and SU.
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Two aspects of multi-finger synergies
As in earlier studies (reviewed in Latash et al. 2007; Latash 2010), our understanding of
synergies is based on two main characteristics of action of redundant multi-element systems.
The first is related to patterns of sharing of potentially important performance variables
across the elemental variables. These patterns show consistency across ranges of
performance variables. For example, Li et al. (1998) showed that shares of the total force
produced during pressing tasks by individual fingers are consistent over the whole range of
total force values. The second characteristic has been described using different terms such as
stability and flexibility. It refers to an ability of the system to use variable solutions to
achieve highly consistent performance over repeated attempts at the same task. For example,
when a person presses with two fingers and tries to produce the same total force level in a
series of trials, the individual finger forces (or commands to fingers, “finger modes” –
Zatsiorsky et al. 1998, 2002b; Li et al. 2002; Danion et al. 2003) show negative co-variation
across trials (Latash et al. 2001; Scholz et al. 2002). If one considers the two characteristics
together, the former describes preferred areas in the space of elemental variables while the
other describes their co-variation potentially leading to different shapes of data point clouds
over repeated trials.

The uncontrolled manifold (UCM) hypothesis (Scholz and Schöner 1999) has proven to
provide a powerful toolbox to analyze the latter feature by comparing variance within two
sub-spaces, the UCM corresponding to a fixed value of a performance variable and the
orthogonal sub-space. In contrast, the ANIO deals with the former aspect, that is, the sharing
aspect of synergies (Terekhov et al. 2010). Unlike commonly used optimization methods, it
does not start with assuming a cost function based on some intuitive considerations from
physics, physiology, or psychology (Nubar and Contini 1961; Rosenbaum et al. 2001;
Prilutsky and Zatsiorsky 2002; Ait-Haddou et al. 2004), but analyzes a cloud of data points
obtained during performance that covers a broad range of task variables. The ANIO
procedure results in a cost function, which in case of four-finger tasks with two constraints
{FTOT; MTOT} has been shown to represent a second-order polynomial with person-specific
coefficients (Park et al. 2010, 2011a). Further, the cost function is used to compute an
“optimal” data set for the same values of the {FTOT; MTOT} constraints. The DANGLE
between this space and the space of original data may be used as an index of consistency in
following an optimization principle described by the cost function.

Figure 8 illustrates the idea using a two-element task with only one constraint, total force
(FTOT) produced by two fingers. The lines with a negative slope are the UCMs for different
FTOT values. Ellipses show possible experimental data distributions. The line fitted to the
observations that cover the whole range represents the sub-space of optimal solutions. Note
that it is not orthogonal to the UCMs (UANGLE < 90°). Note that the angle between the sub-
spaces of experimental data and optimal solutions (DANGLE) is very small.

The two approaches seem to be incompatible since direct optimization produces a single
solution for every set of task constraints while the idea of flexibility/stability assumes
numerous solutions, mostly elongated along the UCM as in Figure 8. However, within the
described scheme, there is no incompatibility because optimization defines not a single
solution but the center of a distribution of possible numerous solutions.

In the current study, the overall findings are well compatible with the described theory. Both
before and during fatigue, PCA of the finger force data showed that two PCs accounted for
well over 90% of total variance. It is important that the data fit a plane equally well before
and after the fatiguing exercise, which justifies assuming a quadratic polynomial cost
function in both conditions. The exact distribution of the total variance between the first two
PCs is of a lesser importance, and we will not consider this difference here, particularly
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because it was small. The computed cost functions produced sets of optimal solutions that
formed a plane that was nearly parallel to the plane of experimental observations (DANGLE
on the order of a few degrees). When the subjects performed repeated tasks over two sets of
{FTOT; MTOT} combinations, VORT was significantly smaller than VUCM for all analyses,
both tasks, and both before and during fatigue. This may be interpreted as multi-digit
synergies stabilizing both FTOT and MTOT simultaneously. By itself, this is not a trivial
observation. It supports a general idea that one of the major purposes of synergies is to allow
a multi-element system to participate in several tasks simultaneously with minimal
interference between the tasks (Zhang et al. 2008; Gera et al. 2010).

Fatigue-induced changes in synergies
Fatigue led to significant changes in both characteristics of multi-finger synergies. As
expected, during fatigue, the performance was less consistent in following an optimization
principle, which was reflected in higher DANGLE magnitudes. There were relatively minor
changes in the coefficients within the cost function. Only coefficients at the second-order
terms showed significant changes, an increase of kI (for the I finger) and a decrease in kR
(for the R finger). Higher coefficients mean that producing force with that particular finger
leads to higher cost function values that, by definition, are to be avoided. So, these results
may be interpreted as higher costs of using the fatigued finger balanced naturally with lower
costs for force production by other fingers (although only effects for the R finger reached
significance).

The fatigued I finger decreased its contribution to PR moments of force during both PR and
SU tasks (when it acted as a moment agonist and moment antagonist, respectively);
correspondingly, the share of the M finger in PR moment production increased. A similar
redistribution happened within the RL finger pair: The share of the L finger dropped, while
the share of the R finger increased (see Fig. 4). While the effect on the IM moment sharing
may be viewed as a direct consequence of I finger fatigue, the effects on the RL moment
sharing are less obvious. It is possible that symmetry of the IM and RL sharing patterns is a
default, which is being followed under a variety of conditions including the one we studied.

A number of earlier studies reported relatively minor changes in accuracy of performing a
variety of tasks by multi-element systems after fatigue of one (or a few) of the elements
(Forestier and Nougier 1998; Côté et al. 2002, 2008; Huffenus et al. 2006; Gates and
Dingwell 2008; Fuller et al. 2009). Since fatigue is known to lead to an increase in motor
variability (Carpentier et al. 2001; Evans et al. 2003; Allen and Proske 2006; Missenard et
al. 2008, 2009; Contessa et al. 2009), these phenomena suggest that multi-element systems
afford the central nervous system an advantage of being able to adjust to fatigue of an
element by adjustments in the coordination among the elements. An increase in the relative
amount of “good” variance (VUCM) has indeed been documented in several earlier studies
(Singh et al. 2010a, b; Singh and Latash 2011). Importance of redundancy for such effects
have been indirectly supported by a study of Kruger et al. (2007) who reported no increase
in the synergy index after fatigue of all four fingers.

Results of the current study have been unexpectedly ambiguous with respect to effects of
fatigue on the synergy indices (ΔV). Only PR tasks showed changes in the amounts of
VUCM and VORT that could be expected from the cited earlier studies. In contrast, during SU
tasks, VUCM dropped while VORT increased corresponding to a drop in the synergy index.
Earlier studies (Singh et al. 2010a, b) used total force production tasks only. In such tasks
subjects naturally prefer finger force sharing patterns with higher forces produced by the I
and M fingers as compared to the forces by the R and L fingers (Li et al. 1998; Zatsiorsky et
al. 1998). So, when there are no constraints on MTOT, subjects naturally produce a PR
moment of force with respect to the mid-point between the M and R fingers. Our results

Park et al. Page 12

Exp Brain Res. Author manuscript; available in PMC 2013 April 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with PR MTOT production confirmed an increase in the synergy index during fatigue, as in
the cited earlier studies.

There is an important difference between the PR and SU tasks: The I finger that performed
the fatiguing exercise was a moment agonist in the PR tasks and moment antagonist in the
SU tasks. So, we can tentatively conclude that increased co-variation (stronger synergies)
can be used by the central nervous system only if the fatigued element is an agonist within
the task. This may be related to the relative magnitude of the contribution of the fatigued
element to the task. If an element is an antagonist, its force is typically much lower as
compared to a comparable task in which the element is an agonist. The lower magnitude of
force is typically associated with lower force variance (Newell and Carlton 1988; Christou et
al. 2002; Shapkova et al. 2008). This low variance may not afford enough room for an
accurate adjustment of variance by other fingers.

Note that the I and M fingers typically show lower indices of variability as compared to the
R and L fingers (Gorniak et al. 2008). It is not surprising, therefore, that SU tasks that used
the R and L fingers as moment agonists were associated with significantly higher
coefficients of variation than the PR tasks. Similar results were obtained in a previous study
(Park et al. 2010) but not reported in that paper; we re-analyzed the data from that study and
confirmed the finding of significantly higher coefficients of variation in the SU tasks.
Fatigue led to opposite changes in the finger force variance for the two tasks such that the
variance magnitudes nearly equalized during fatigue. There was a significant difference
between the PR and SU tasks in the way the increased variance was distributed between the
UCM and the orthogonal sub-space: During the PR task, it was primarily channeled into
VUCM, while during the SU task it mostly contributed to an increase in VORT.

Several recent studies have emphasized positive effects on motor variability on motor
performance associated with repetitive actions. Our results are in line with this line of
thinking; they suggest that an increase in variability of individual effectors can attenuate
adverse effects of fatigue on the combined output of a redundant set of elements (although
confirmed for PR tasks only).

Comparing the effects of aging and fatigue
There is a surprising overlap between the effects of fatigue found in this study and effects of
aging described earlier (Park et al. 2011a). It seems as if fatigue made our participants older
with respect to motor performance of their hands. Indeed, both fatigue and aging led to: (1)
an increase in the DANGLE; (2) an increase in the coefficients at the second-order terms (k)
for forces by fingers other than I finger (the normalization by kI in the former study does not
allow direct comparisons of its changes between the studies); (3) a drop in the co-
contraction index, CCI; and (4) a drop in the share of the lateral fingers (I and L) in moment
production. The synergy index was lower for the elderly participants in the earlier study,
similarly to the current results for the SU task only.

The drop in CCI looks particularly counter-intuitive. In our study, as well as in the
mentioned study of elderly persons, lower values of CCI imply seemingly more economic
performance, which seems advantageous. This advantage may be only seeming. Indeed,
during fatigue, subjects decreased the shares of MTOT produced by lateral fingers (I and L).
This means that relatively larger forces had to be produced by the central fingers (M and R)
to reach required {FTOT; MTOT} combinations. Since the central fingers had smaller lever
arms, for a given MTOT, larger force had to be produced by the agonist finger pair (IM for
PR tasks and RL for SU tasks). Since FTOT is limited, this leaves less force for the
antagonist finger pair, resulting in smaller CCI. So, the smaller CCI is a mechanical
necessity given the drop in the share of the lateral fingers. This is an example of so-called
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chain effects (Zatsiorsky et al. 2002b, 2003; Zatsiorsky and Latash 2004; Shim et al. 2005)
when a sequence of mechanically necessitated cause-effect pairs leads to a non-trivial
outcome.

Concluding Comments
The main results of the study may be summarized as changes in both aspects of multi-digit
synergies, sharing patterns and co-variation, following fatigue of a finger. More subtle
changes include the redistribution of the moment of force between the central and lateral
fingers within each finger pair (IM and RL), changes in the co-contraction index (CCI) ,and
different effects of fatigue on multi-finger synergies during PR and SU tasks.

There have been a few methodological changes in this study as compared to the previous
ones using the ANIO approach. On the one hand, these changes were implemented to avoid
some of the earlier problems, such as difficult {FTOT, MTOT} combinations with high MTOT
and low FTOT, as well as normalization of the coefficients of the cost functions that made
kI=1 in all conditions. On the other hand, these changes complicate comparisons with earlier
studies, which may be viewed as a limitation of the current design.
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Appendix 1

Analytical Inverse Optimization (ANIO) approach
The optimization problem in the current study was defined as

(A1)

The two linear constraints are expressed as

(A2)

The task involved two constraints (FTOT and MTOT values) and four elemental variables
(finger forces). Thus, the solutions of this undetermined system were expected to be
confined to a two-dimensional surface in the four-dimensional force space. Planarity of this
surface was checked using the PCA. The following computational procedure explains how
the optimization cost-function is obtained.

First, we identify whether the optimization problem is splittable or not by observing the
(4×4) matrix:
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(A3)

Second, we check whether the experimental data actually lie on a hyperplane (and not for
instance on a curved hypersurface) and then define the observed hyperplane mathematically
as

(A4)

where A is a 2×4 matrix composed of the transposed vectors of the two lesser principal
components obtained from the PCA from the finger force data in session-1. A large
percentage of the total variance explained by the two first principal components was
considered an indicator that the data lie on a hyperplane. However, the data points were not
perfectly confined to a plane due to the variability of performance and instrumental noise.
Also, the plane computed from Eq. A4 is affected by experimental errors.

Third, we compare the experimentally determined hyperplane to the theoretical plane
derived from the Uniqueness Theorem. The experimental data must be fitted by the
following equation:

(A5)

where 

fi are arbitrary continuously differentiable functions. At the second step the data are
discovered to lie on the plane and hence the function fi '(.) are linear:

(A6)

where i = {index (I), middle (M), ring (R), and little (L)}.

Therefore,

(A7)

The values of the coefficients of the second-order terms ki can be determined by minimizing

the dihedral angle between the two planes: the plane of optimal solutions  and the
plane of experimental observations (A⋅FT=0). The values of the coefficients of the first-
order terms wi were found to correspond to a minimal vector length (w = (windex, wmiddle,
wring, wlittle)T ) bringing the theoretical and the experimental plane as close to each other as
possible. Vector w satisfy the following equation:

(A8)

where K = (kI, kM, kR, kL)T and w = (wI, wM, wR, wL)T.

Then, the functions gi in Equation A3 are the following:

(A9)
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where r is a nonzero number, consti can be any real number, and qi is any real number

satisfying the equation  (Terekhov et al., 2010). Multiplication of the cost function by
a constant value or adding a constant value to it does change the cost function essentially.
Hence we can arbitrary assume that r = 1 and consti = 0. According to the Uniqueness
Theorem identification of the cost function can be performed only up to unknown linear
terms which are parameterized by the values qi. We assume that qi = 0 in order to simplify
gi(xi). It must be kept in mind, however, that the true cost function used by the CNS might
have these terms.

Uniqueness Theorem (for the mathematical proof see Terekhov et al. 2010)
The core of the ANIO approach is the theorem of uniqueness that specifies conditions for
unique (with some restrictions) estimation of the objective functions. The main idea of the
theorem of uniqueness is to find necessary conditions for the uniqueness of solutions in an
inverse optimization problem. An optimization problem (i.e., direct optimization problem)
with an additive objective function and linear constraints are defined as:

(A10)

where X=(x1, x2,…, xn)∈Rn, gi is an unknown scalar differentiable function with g'(∙)>0. gi
came from the Lagrange minimum principle, which has a unique solution. On the contrary,
the functions of gi can be computed from the set of solutions X* (e.g., experimental data).
This inverse procedure is called the inverse optimization problem. C is a k×n matrix and B is
a k-dimension vector, k<n.

First, assume that the optimization problem (A10) with k≥2 is non-splittable. If the inverse
optimization is splittable, the preliminary step is to split it until a non-splittable subproblem
is acquired. If the functions gi(xi) in problem (A10) are twice continuously differentiable

(i.e., twice continuously differentiable functions fi ) and  is not identically constant,

complying  for all X ∈ X*,

(A11)

and

(A12)

then

(A13)

for every , where  and X* is the set of the solutions for all

B ∈ Rk. The constants qi satisfy the equation  where q = (q1, ⋯, qn)T. Primes
designate derivatives.

If the experimental data correspond to solutions of an inverse optimization problem with

additive objective function (gi) and linear constraints, equation  (X ∈ X*) must be
satisfied (i.e., the Lagrange principle). The Uniqueness Theorem provides sufficient
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condition (i.e., ) for solving the inverse optimization problem in a unique way up
to linear terms.

Appendix 2

Uncontrolled manifold (UCM) analysis (see Latash et al. 2002; Scholz et al.
2002 for details)

For FTOT, changes in the elemental variables (finger forces) sum up to produce a change in
FTOT:

(B1)

The UCM was defined as an orthogonal set of the vectors ei in the space of the elemental
forces that did not change the net normal force, i.e.:

(B2)

These directions were found by taking the null-space of the Jacobian of this transformation
([1 1 1 1] ei). The mean-free forces were then projected onto these directions and summed to
produce:

(B3)

where n=4 is the number of degrees-of-freedom of the elemental variables, and p=1 is the
number of degrees-of-freedom of the performance variable (FTOT). The component of the
de-meaned forces orthogonal to the null-space is given by:

(B4)

The amount of variance per degree of freedom parallel to the UCM is:

(B5)

The amount of variance per degree of freedom orthogonal to the UCM is :

(B6)

The normalized difference between these variances is quantified by a variable ΔV:

(B7)

where VTOT is the total variance, also quantified per degree of freedom. If ΔV is positive,
VUCM > VORT, caused by negative co-variation of the finger forces, which we interpret as
evidence for a force-stabilizing synergy. In contrast, ΔV=0 indicates independent variation
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of the finger forces, while ΔV < 0 indicates positive co-variation of the individual finger
forces, which contributes to variance of FTOT.

A similar procedure was used to compute the two variance components related to
stabilization of MTOT. The only difference was in using a different Jacobian corresponding
to the lever arms of individual finger forces, [dI dM dR dL].

We also analyzed the data with respect to stabilization of both FTOT and MTOT
simultaneously. In that case, the Jacobian was [1 1 1 1; dI dM dR dL]. The dimensionality of
VUCM for the analysis with respect to FTOT and MTOT separately is three (one constraint),
while the dimensionality of VUCM with respect to FTOT and MTOT simultaneously is two
(two constraints).
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Figure 1.
a: The feedback screens during the MVC task and accurate force-moment production tasks.
During each trial, the produced FTOT and MTOT values were displayed on the computer
screen, which showed the task and the cursor corresponding to the current FTOT along the
vertical axis and MTOT along the horizontal axis. b: The experimental setup. A wooden
piece was placed underneath the subject’s right palm in order to avoid changes in the
configuration of the hand and fingers. c: The finger pressing setup. The sensors, shown as
white cylinders, were attached to a wooden frame. The frame was fixed to the immovable
table.
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Figure 2.
The differences between the coefficients in the cost functions computed based on the before-
fatigue and during-fatigue conditions for a: the second-order (wi) and b: the first-order
terms (ki) for individual subjects. The positive values mean that coefficients increased
during fatigue, while negative values mean that coefficients decreased during fatigue. i = {I
– index, M – middle, R – ring, L – little}.
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Figure 3.
Co-contraction index (CCI) for different {FTOT; MTOT} combinations before fatigue (black
bars) and during fatigue (white bars). The average values across subjects are presented. The
error bars represent the lower and upper quartiles of the data distribution (25% – 75%). Low,
Mid, and High forces correspond to the ranged of 10 – 20%, 25 – 35%, and 40 – 45% of
MVCIMRL, respectively. PR and SU stand for pronation and supination, respectively.
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Figure 4.
a: The percent torque produced by lateral agonist (%MAGO_Lateral) to total agonist moment
(MAGO) and b: the percent torque produced by lateral antagonist (%MANT_Lateral) to the
total antagonist moment (MANT) before fatigue (black bars) and during fatigue (white bars).
The average values across subjects are presented. The error bars represent the lower and
upper quartiles of the data distribution (25% – 75%). Low, Mid, and High forces correspond
to the ranged of 10 – 20%, 25 – 35%, and 40 – 45% of MVCIMRL, respectively. PR and SU
stand for pronation and supination, respectively.
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Figure 5.
The total performance error (TPE) computed for total force (TPEF) and total moment of
force (TPEM) before fatigue (black bars) and during fatigue (white bars). The average values
across subjects are presented with standard error bars.
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Figure 6.
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a: Force shares of the index (I), middle (M), ring (R), and little (L) fingers before fatigue
(black bars) and during fatigue (white bars) averaged across subjects. b: coefficient of
variation (CV) before fatigue (black bars) and during fatigue (white bars). Values are means
± standard errors.
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Figure 7.
Two components of variance, a: VUCM, b: VORT, and c: z-transformed ΔV (dimensionless)
in the finger force space for the FTOT related, MTOT related, and {FTOT; MTOT} related. PR
and SU represent pronation and supination, respectively. Variances were quantified per
degree-of-freedom of corresponding spaces and normalized to the square of MVCIMRL. The
average values across subjects are presented with standard error bars.
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Figure 8.
An illustration of the main ideas with an imagined two-digit force production task. Data over
the first session (ANIO analysis) are represented with large dots; data over the second
session (UCM analysis) are represented by ellipses. The lines with negative slopes are the
UCMs. Note the angle between the space (line) of optimal solutions (the thick dashed line)
and the UCM, which differs from 90° (UANGLE < 90°). Note the small angle between the
space of experimental observations (the thin solid line) and space of optimal solutions.
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