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Background: Adipose tissue is one of the richest sources of mesenchymal stem
cells that exhibit an outstanding ability to regenerate skin.
The Problem: Although the anatomical sites of adipose-derived stem cells
(ASCs) in the body are relatively oxygen-deficient (i.e., 1%–5% oxygen con-
tent), ASCs are usually cultured under normoxic conditions, and long-term
culturing of ASCs in normoxia may induce their senescence.
Basic/Clinical Science Advances: The review is an overview of the cellular
responses of ASCs during hypoxia, which collectively increase the wound-
healing potential of ASCs. Furthermore, the mechanism of action for stimu-
lation by hypoxia (i.e., a pivotal role of reactive oxygen species and related
signal pathways) will be discussed.
Clinical Care Relevance: Hypoxia is a critical stimulatory factor for ASCs.
Therefore, understanding the response and adaptation of ASCs to hypoxia
may be invaluable for developing novel cell therapeutic strategies.
Conclusion: Culturing ASCs under hypoxia may uniquely benefit prolifera-
tion, stemness, migration, and growth factor secretion. Therefore, the pre-
conditioning of ASCs by hypoxia shows a prominent wound-healing effect in
clinical use.

BACKGROUND
Regenerative medicine uses the

body’s own stem cells and growth
factors to repair damaged tissue,
such as skin. Adipose-derived stem
cells (ASCs) and their soluble factors
reportedly have been used to regen-
erate skin, and they offer a potential
solution for skin regeneration.1–4

For example, ASCs and their soluble
factors accelerate wound healing,
reduce wrinkling, improve pigmen-
tation, and promote hair growth.2–5

In addition to differentiation, trans-
planted ASCs and their soluble
factors induce the angiogenesis, in-
crease the proliferation of fibroblasts
and keratinocytes, and remodel
the extracellular matrix.6 Recently,

we found that culturing in hypoxia
enhances the wound-healing func-
tion of ASCs by increasing the pro-
liferation and secretion of growth
factors for ASCs.7 Furthermore, the
mechanism for the hypoxia-induced
stimulation of ASCs was investi-
gated that hypoxia generates reac-
tive oxygen species (ROS), which
activate platelet-derived growth fac-
tor receptor (PDGFR) pathways.8

Therefore, this review provides an
overview of the cellular responses of
ASCs during hypoxia and of the en-
hanced wound-healing potential un-
der hypoxic culturing conditions. In
addition, the mechanism of action
for stimulation by hypoxia will be
addressed.
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Abbreviations
and Acronyms

Akt = a type of serine/
threonine protein kinase

ASC = adipose-derived stem
cells

ASC-CM = conditioned
medium of ASCs

bFGF = basic fibroblast growth
factor

DPI = diphenyleneiodonium

ERK = extracellular signal-
related kinase

HIF-1a = hypoxia-inducible
factor-1 alpha

mTOR = mammalian targets of
the rapamycin

Nox = NADPH oxidase

PDGFR = platelet-derived
growth factor receptor

ROS = reactive oxygen species

VEGF = vascular endothelial
growth factor
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CLINICAL PROBLEM ADDRESSED

Vascular complications are commonly associated
with problematic wounds, which lead to tissue
hypoxia. In general, acute mild hypoxia supports
adaptation and survival, whereas chronic severe
hypoxia leads to tissue damage.9 Because the mi-
croenvironment near the wound is in an oxygen-
deficient state, it is interesting to elucidate the effect
of hypoxia on the wound-healing function of ASCs.

Low oxygen tension is reportedly an important
characteristic of the stem cell niche, and hypoxia
provides signals conducive to the maintenance of
definitive stem cell properties.10,11 Therefore, un-
derstanding the response and adaptation of ASCs
to hypoxic culturing may be invaluable for devel-
oping novel ASC therapies.

RELEVANT BASIC SCIENCE CONTEXT

Most stem cells in the body exist in environ-
ments with a low, or very low oxygen supply. Ad-
ditionally, in vitro, oxygen concentration is sensed
by stem cells, and low PO2 modifies their pheno-
types; therefore, use of PO2 matter should be more
carefully monitored in stem cell culturing.12 For
example, hypoxia can reduce spontaneous differ-
entiation and maintain clonality of human em-
bryonic stem cells, and it can enhance the
generation of induced pluripotent stem cells.12–14

In addition, when mesenchymal stem cells are
cultured under hypoxic conditions in vitro, their
proliferative and self-renewal capacities are sig-
nificantly improved.15 Likewise, ASCs favor hyp-
oxia and their phenotypes are regulated by it.

EXPERIMENTAL MODEL OR MATERIAL:
ADVANTAGES AND LIMITATIONS

The wound-healing effect was investigated in
excision wound models of nude mice after topical
application of ASCs and conditioned medium of
ASCs (ASC-CM).16 To study the mechanism, pri-
mary dermal fibroblasts were cultured, and the ef-
fect of ASC-CM on their proliferation, migration,
and collagen synthesis was measured. In addition,
the effect of hypoxia on the proliferation and growth
factor secretion of ASCs was examined using an
hypoxia incubator.7 The ASC-CM was harvested in
hypoxia (hypoCM) and the wound-healing potential
was compared with normoxia (norCM).7 ROS
generation by hypoxia was directly measured by
2¢,7¢-dichlorofluorescin diacetate intensity in a fluo-
rescent activated cell sorter. Phosphorylation of
PDGFR-b, a type of serine/threonine protein kinase
(Akt), and extracellular signal-related kinase (ERK)
was measured by Western blot analysis. Study of the
inhibition of ROS generation was examined using N-
acetyl-cysteine (NAC, ROS scavenger) and dipheny-
leneiodonium (DPI; NADPH oxidase [Nox] inhibitor).8

DISCUSSION OF FINDINGS
AND RELEVANT LITERATURE

ASCs promoted proliferation of dermal fibro-
blasts not only by cell-to-cell direct contact but also
by paracrine factors. ASC-CM enhanced the se-
cretion of type I collagen in dermal fibroblasts by
regulating the mRNA levels of extracellular matrix
proteins: upregulation of collagen and down-
regulation of matrix mataloproteinase-1. More-
over, ASC-CM showed a stimulatory effect on the
migration of dermal fibroblasts. In addition to this
in vitro evidence, ASCs and ASC-CM significantly
reduced the wound sizes and accelerated the re-
epithelialization of the excision wound model. In
addition to our study, other groups have demon-
strated the wound-healing effect of ASCs and their
mechanism of action, and found that locally
transplanted ASCs accelerate wound healing not
only by differentiation and vasculogenesis but also
by paracrine factors.6,17 Induced pro-angiogenic
potential of ASCs by hypoxia has been reported
that the transplantation of ASCs cultured in hyp-
oxia significantly increased the local blood flow and
angiogenic gene expression was partially improved
by hypoxia preconditioning.18,19

Incubation under hypoxic conditions enhanced the
proliferation of ASCs in either the presence or ab-
sence of serum. Furthermore, mRNA and protein
measurements showed that hypoxia upregulated the
secretion of growth factors such as vascular endo-
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thelial growth factor (VEGF) and basic fibroblast
growth factor (bFGF) in ASCs. HypoCM significantly
promoted collagen synthesis and the migration of
human dermal fibroblasts, compared with norCM. In
the animal studies, hypoCM significantly reduced
the wound size and accelerated the healing compared
with norCM. Inhibition of VEGF and bFGF in con-
ditioned medium using neutralizing antibodies at-
tenuated the wound healing in animal experiment,
which indicates that VEGF and bFGF are involved in
the enhanced wound-healing function by hypoxia.

Further investigation included a key mediator
and a signal pathway involved in the stimulation of
ASCs during hypoxia. Hypoxia significantly in-

creased ROS generation, which was greatly reduced
by NAC and DPI treatment. Likewise, the hypoxia-
induced proliferation and migration of ASCs were
reversed by NAC and DPI treatment, suggesting the
involvement of ROS generation in ASC stimulation.
In Western blot analysis, hypoxia increased the
phosphorylation of PDGFR-b, which was followed
by an activation of the Akt and ERK pathways.
These results suggest a pivotal role for ROS gener-
ation in the stimulation of ASCs by hypoxia.

INNOVATION

Hypoxia and the generation of ROS serve as a
second messenger in the intracellular signal
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transduction pathway.20,21 However,
most studies focus on the negative as-
pects of hypoxia and ROS generation.
Physiological levels of intracellular ROS
are required to activate the DNA repair
pathway for maintaining genomic stabil-
ity in stem cells and to increase the pro-
liferation and migration of stem cells. In
addition, stem cells efficiently manage
oxidative stress and have a high resis-
tance to ROS-induced death.22,23 There-
fore, attention must be paid to the
positive effects of hypoxia and ROS gen-
eration in ASC physiology.

SUMMARY ILLUSTRATION

Hypoxia initiates ROS synthesis in
ASCs via the Nox family. Increased in-
tracellular ROS levels activate receptor-
type or nonreceptor-type tyrosine kinases
in ASCs. Of them, PDGFR-b was pri-
marily phosphorylated. Activation of
these tyrosine kinases subsequently increases the
phosphorylation of PI3K/Akt/mammalian targets
of the rapamycin (mTOR) and ERK1/2 signaling
pathways. These events inhibit the degradation of
hypoxia-inducible factor-1 alpha (HIF-1a) by the
propyl-hydroxylation of the von Hippel Lindau
tumor suppressor protein and an increase in cy-
tosolic HIF-1a levels. HIF-1a translocates to the
nucleus where it modulates the transcription of
its target genes after binding to the hypoxia-re-
sponsive element in the nucleus. Upregulation of
target genes may increase the proliferation, mi-
gration, and growth factor secretion of ASCs,
which collectively enhances the wound-healing
function of ASCs.

CAUTION, CRITICAL REMARKS,
AND RECOMMENDATIONS

Typically, ASCs are cultured under ambient or
normoxic conditions. However, the O2 concentra-
tion in the physiological niches occupied by ASCs is
much lower. Thus, hypoxia can function as a pro-
phylactic signal, increasing proliferation, adhe-
sion, and migration of ASCs by ROS generation. In
addition to oxygen content, diverse culturing con-
ditions (i.e., supplement of growth factors, quality
of serum and its concentration, composition of ex-
tracellular matrix, and quality of culture wares)
collectively influence the proliferation and regen-
eration potential of ASCs. Therefore, caution
should be taken to optimize the expansion condi-
tions for ASC therapies.

FUTURE DEVELOPMENT OF INTEREST

While hypoxia and ROS generation are involved
in apoptosis, low and moderate intracellular ROS
levels act as a signal transducer that activates
ASCs. Because moderate ROS levels increase the
proliferation and regenerative potential of ASCs, it
is beneficial to expose ASCs to moderate oxidative
stress during manipulation. Hypoxia or the addi-
tion of an ROS donor may negate the expense of
culturing ASCs during expansion, and ROS pre-
conditioning may enhance the wound-healing po-
tential of ASCs in clinical use. Therefore, future
study should address the efficiency of ROS donors
and the optimal ROS concentrations for an ASC
culture.
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TAKE-HOME MESSAGE
Basic science advances
� ASCs and their soluble factors accelerate wound healing.

� Hypoxia enhances the wound-healing function of ASCs by in-
creasing proliferation/migration of ASCs and secretion of paracrine
factors.

� Hypoxia-enhanced ASC stimulation is mediated by generation of ROS
and activation of PDGFR pathways.

Clinical science advances
� Low oxygen tension is an important characteristic of the stem cell niche

and hypoxia provides signals conducive to the maintenance of definitive
stem cell properties.

� The long-term culturing of ASCs in normoxia drives them to senescence,
but hypoxia uniquely contributes to their expansion and wound-healing
functions.

Relevance to clinical care
� Before ASC transplantation, adaptation of ASCs to hypoxia may be in-

valuable for developing a prominent ASC therapy.
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