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Abstract
Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the
surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated.
Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the
antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a
central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate
the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating
phenotype (and vice versa) depends on the local cell density. The model consists of two reaction–
diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a
combination of numerical and analytical techniques to characterize the development of spatio-
temporal instabilities and travelling wave solutions generated by our model. We demonstrate that
the density-dependent go-or-grow mechanism can produce complex dynamics similar to those
associated with tumour heterogeneity and invasion.
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1. Introduction
Tumour invasion of normal tissue is a complex process, involving cell migration and
proliferation. In this paper, we focus on the invasiveness of glioma, an aggressive form of brain
tumour, where mutant cells invade the tissue in a diffuse manner. Gliomas are extremely
difficult to treat since small numbers of tumour cells may travel to other areas of the brain
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where they go undetected. Experimental evidence suggests that cell motility and proliferation
are inversely correlated in gliomas [9], with proliferating tumour cells moving slowly and
rapidly migrating tumour cells proliferating slowly. This observation is commonly referred to
as the migration/proliferation dichotomy (or the ‘go-or-grow’ hypothesis). Although it is likely
that genetic mutations play a role in glioma invasiveness, Giese et al. [9] have shown that
upregulation of genes relating to motility contributes to the invasive phenotype of malignant
glioma. Giese and coworkers have also proposed that cells with lower proliferation rates are
less susceptible to conventional cytotoxic treatments. Thus, a predominantly migratory
phenotype (i.e. the expression of a specific motility trait of glioma cells) with a temporarily
lowered proliferation rate may be able to invade the surrounding brain parenchyma even in the
presence of treatment. Therefore, it is important to understand the role of a migration/
proliferation phenotypic dichotomy in invasion dynamics. However, despite advances in our
understanding of glioma invasion [12] (see also the recent reviews of cancer modelling [4,
18]), the mechanisms that regulate such phenotypic switches remain to be elucidated.

Two identical cells may spontaneously become phenotypically different due to stochastic
variation in gene expression levels [22] or because they respond in a different manner to their
local micro-environment [16]. Because the molecular details of how cells communicate density
changes and respond to those changes are often unclear, cell density itself can be examined as
a source of signalling events [3] that may alter cell motility and cell growth (a process termed
contact inhibition). Even though there is no extended study of the dependence of glioma cell
motility on local cell density, Deisboeck et al. [7] have reported that density-dependent motility
is likely to occur in glioma invasion. In particular, onset of invasion could be triggered when
tumour cell density reaches a threshold.

Based on these remarks, and in order to understand better the invasiveness of malignant gliomas
and what controls changes in cell phenotype, we present a mathematical model of the reaction-
diffusion type and propose that phenotypic change is regulated by the cell density. The reaction-
diffusion framework [21] is often used to model the growth and spread of a population. One
of the best-known examples is Fisher’s equation, which has also been used to model glioma
growth [27]. A prominent feature of Fisher’s equation is the existence of a fixed-profile solution
which travels at a constant speed [21], and corresponds to an invasive front. Other authors have
studied the growth and invasion of gliomas by developing extended reaction–diffusion systems
[29], accounting in particular for directed cell movement due to chemotaxis [15] or for
anisotropy of the environment [14].

The concept of studying mixed populations of stationary and migratory species was first
applied to ecological systems. For examples, Lewis and Schmitz [17] modelled the invasion
of microbes by distinguishing mobile and stationary sub-populations. Hadeler and Lewis
[10] extended Fisher’s equation to describe the situation in which one part of the population
is sedentary and reproducing while the other part is migrating, and analysed the corresponding
phenomenon of spread. Hillen [13] derived a similar reaction–diffusion system as the diffusive
limit of a transport model for populations in which individuals move according to a velocity
jump process and stop moving when they reach areas of shelter or food.

Several recent studies have investigated the influence of the migration/proliferation dichotomy
on tumour invasion. Athale et al. [2] proposed an agent-based model to test the effect of a
regulatory network related to the ‘go-or-grow’ mechanism on the emergence of invasive
phenotypes and found that decisions at the single-cell level impact on the spatial dynamics of
the entire tumour. A lattice-based game theoretical approach [19], involving motile and
proliferating populations, has also been used to investigate the dynamics of tumour growth.
Alternatively, Fedotov and Iomin [8] studied the ‘go-or-grow’ hypothesis by formulating a
continuous random walk model. In a similar framework, Chauviere et al. [5] proposed a two-
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component model for motile and immotile cells (go-or-rest type) to explore sub- and super-
diffusive dynamics in cell migration. They successfully used their model to reproduce
experimental data from an invasion assay of glioma cells by assuming regulation of the
phenotypic switch by the cell density. In another recent work, Chauviere et al. [6] described
the phenotypic transition using two complementary density-dependent mechanisms to model
fast and slow moving (diffusing) cells; they found that their system exhibits Turing instabilities
under one mechanism and remains stable under the other. The instability eventually leads to
phase separation of the slow and fast moving cells. Hatzikirou et al. [11] have investigated the
role of the migration/proliferation dichotomy in the emergence of tumour invasion under
hypoxic conditions by using a lattice-gas cellular automaton. Finally, in [28], the ‘go-or-grow’
hypothesis has been identified as a central mechanism for reproducing in vitro data relating to
the invasion of glioma cells [26].

In this paper, we investigate the tumour dynamics when the phenotypic switch is regulated by
the local cell density. Our paper is organized as follows. In Section 2, we introduce our go-or-
grow model. In Section 3, we use a combination of numerical and analytical techniques to
show how the Turing instability in our model is affected by cell proliferation. In Section 4, we
present simulations of the go-or-grow dynamics. In Section 4.1 we identify distinct regions of
parameter space which give rise to qualitatively different types of travelling wave solutions
and in Section 4.2 we present the corresponding two-dimensional (2D) simulations. We
conclude and discuss possible directions for future work in Section 5.

2. Model equations
2.1. Go-or-grow model

We decompose the tumour cells into two sub-populations: a migrating population with density
ρ1 and a proliferating population with density ρ2. Then ρ = ρ1 ρ2 represents the total population
density. We use a reaction–diffusion framework to model the+population spread (assuming
linear diffusion) and logistic growth to model cell proliferation. We focus on modelling
phenotypic switches driven by environmental stimuli only and do not account for subcellular
processes such as genetic mutations. Therefore, the phenotypic switch that we model refers to
an exchange between the two sub-populations. We denote by (ρ) the probability that an
immotile cell becomes motile. In this way, we avoid having to specify a particular signalling
pathway and are able instead to focus on the effect that local changes in the cell density have
on cell phenotype.

The system of equations that we study is

(1)

where D is the diffusion coefficient of motile cells, μ is the rate at which cells change their
phenotype, r is the proliferation rate, and ρm is the carrying capacity associated with the logistic
growth term. Following [6], we consider two complementary mechanisms for the phenotypic
transitions, these being modelled by the following normalized sigmoidal functions:

(2)

(3)
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Under mechanism M1 the cells become more motile (i.e. switch from immotile (Type 2) to
motile (Type 1)) when the local total density ρ is low (in a sparse environment), and less motile
when the density is large (in a crowded environment), which corresponds to contact inhibition
of cell locomotion [1]. Conversely, under mechanism M2, cells become more motile when the
local total density is high, which reflects the effect of population pressure [21]. The parameter
ρ* is a density threshold at which the probabilities of remaining stationary or moving are equal
(Γ = 1/2) and α (> 0) describes the sharpness of the phenotypic switch. Initial and boundary
conditions for Equations (1) are discussed below.

2.2. Non-dimensionalization
We define the following non-dimensional variables:

(4)

where x is the position vector, L and T are length and time scales, and ρc is a characteristic
value of the cell density, which may be chosen to normalize the initial mass of the system, or
by setting ρc = ρm, the carrying capacity. We consider the length scale L to be characteristic
of the domain size (e.g. the radius of a cell culture dish in an in vitro experiment) and we specify
the diffusive timescale T = L2/D as the timescale of interest. Dropping the primes, we obtain
the non-dimensional go-or-grow model:

(5)

wherein  and the dimensionless parameters M and R are defined by

(6)

3. Turing instability analysis
In the absence of proliferation, R = 0 in the second of Equations (5) and the system simplifies
to the go-or-rest model [5]. In this section, we compare the spatio-temporal dynamics of the
go-or-rest and go-or-grow systems in the context of the development of diffusion-driven
instabilities in a one-dimensional (1D) Cartesian geometry.

3.1. Go-or-rest model
When R = 0, Equations (5) reduce to give

(7)

We solve Equations (7) on the unit interval 0≤x≤1, imposing periodic boundary conditions at
x=0 and x=1. We choose the characteristic density ρc to normalize the (time-independent) mass
of the system, so that

(8)
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When seeking a spatially uniform steady-state solution ( , ) to Equations (7), the global

mass conservation (8) becomes local (i.e.  at each location this property in the right-
hand side of Equations (7) and find that there is a unique spatially uniform steady-state given

by . It is possible to show that for both mechanisms, this solution is
locally, linearly stable to time-dependent perturbations, which we write

 to satisfy the local mass since the growth rate λ of such
conservation, perturbations is given by λ = − M (< 0).

It is straightforward to show that, under certain conditions, the spatially uniform steady-state
may be destabilized via diffusion-driven instability, leading to the emergence of spatial
patterns. Following the classical stability analysis (see [21], for example), we find that a
necessary condition for instability is

(9)

where Γ(1)∈(0, 1) regardless of the switching mechanism and Γ′=dΓ/dρ. Under mechanism

M2, Γ′(1)>0 and so the uniform steady-state ( , ) is unconditionally linearly stable to spatio-
temporal perturbations. In contrast, under mechanism M1, which can be seen as autocatalytic,
Γ′(1)<0 and instabilities can occur, leading to the formation of patterns for certain parameter
ranges. In particular, condition (9) can be rewritten as

(10)

for α>1/2. Since f(α) has a maximum at α=αm, f(αm)≃1.278, then when ρ* > f(αm) the

uniform steady-state ( , ) is linearly stable to spatio-temporal perturbations for all values

of α. By contrast, when ρ* < f(αm), there exist values of α for which ( , ) is linearly unstable
to spatio-temporal perturbations.

In order to study the development of instability, we use a mass-preserving finite-volume
method to solve numerically Equations (7) with a symmetric splitting operator scheme of order
2. The parabolic part is solved using a Crank–Nicholson scheme.

In Figure 1(a), we illustrate the pattern that is generated from the instability that emerges under
mechanism M1 when (M, α, ρ*) = (5.0, 4.0, 0.9). We plot the spatial distribution of the static
population at time t = 5. At this time, we observe the formation of immotile aggregates. The
spatio-temporal evolution of the motile and static cell densities is presented in Figures 1(b) and
(c) in the (x, t)-plane. Initially, the perturbed uniform steady-state (ρ1 ≃ 0.31 and ρ2 ≃ 0.69 for
the parameters of the simulation) density of motile cells ρ1 remains quasi-uniform, but then
decreases rapidly to very small values, while the immotile cells start forming sharp-edged
aggregates. The dynamics are due to exchanges between the populations and conservation of
total mass within the domain. In between the aggregates, both populations are present, but the
concentration of immotile cells is much lower than that of the motile ones.

The system seems to relax rapidly to a quasi-steady configuration (Figures 1(b) and (c)).
However, although only an infinitesimal portion of the population lies in the motile phase, it
is sufficient to affect the global dynamics, which leads to a system characterized by extremely
long timescales associated with metastability. This process is illustrated in Figure 2(a) and (b)
where we present the spatio-temporal evolution of ρ1 and ρ2 over longer times. We observe
that each immotile aggregate slowly shrinks over time and increases its density. This process
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is achieved through two steps. First, bursts of immotile cells are released at the aggregate edges
into the motile population, which sharpens the aggregates and reduces their width. Second,
these motile cells are then spatially redistributed (by diffusion) and halted by sharpened
aggregates (due to mechanism M1), giving rise to locally increased density. This autocatalytic
process concentrates the cell density of each cluster in a quasi-static manner, until the density
ρ2 reaches non-physical values.

3.2. Go-or-grow model
We next investigate how proliferation affects the dynamics of Equations (5) by assuming R >
0. We fix the characteristic density ρc to be the saturation density ρm in the logistic growth

term (i.e. ). By setting R = 1, Equations (5) become

(11)

in the domain [0, 1], with periodic boundary conditions at x = 0 and x = 1.

By inspection, note that Equations (11) admit two spatially uniform steady-state solutions: the

trivial solution (0, 0) and a non-trivial solution  that are identical to
the one of the go-or-rest model. A linear stability analysis=of the non-trivial steady-state reveals
that, as for the go-or-rest model, it is stable to spatially homogeneous perturbations. Further,
it is possible to show that a necessary condition for the development of Turing instability is

(12)

This condition is never satisfied under switching mechanism M2 since Γ′(1) > 0. However,
under mechanism M1, Γ′(1) < 0 and there exist parameter values for which condition (12) is
satisfied (see also Section 4.1), leading to the development of spatio-temporal instabilities.

As before, and for comparison with the results of Figure 1, we focus on mechanism M1 and
present in Figure 3 numerical results obtained for the same parameter set as for the go-or-rest
example, i.e. (M, α, ρ*) = (5.0, 4.0, 0.9). The spatio-temporal evolution of ρ1 and ρ2 in the
(x, t)-plane is presented in Figures 3(b) and (c). As for the go-or-rest model, immotile cells
accumulate at early times forming distinct sharp-edged aggregates in which the immotile cells
proliferate, while the motile population remains approximatively uniformly distributed and
simply decreases in density over time. At later times, the system dynamics diverge from those
of the go-or-rest model since proliferation of immotile cells occurs until the saturation threshold
is reached. This also maintains the motile population at non-negligible density due to the
phenotypic exchange between the populations. When the aggregate density rises above the
saturation limit, the logistic growth term not only limits the aggregate density, but also
accelerates its shrinkage. This situation is illustrated in Figure 3(a), where the spatial
distribution of motile and immotile cells is presented at time t = 5 for direct comparison with
the go-or-rest pattern of Figure 1(a).

Figure 4 reveals that, at later times, the go-or-grow dynamics differ radically from those of the
go-or-rest model. Since the logistic term causes net cell death in regions where the cell density
exceeds the carrying capacity (here scaled to unity), a large part of the immotile population is
actually removed from the system (i.e. the global mass decreases). When the density of the
aggregates falls below the threshold ρ*, the phenotypic switch is reactivated and the motile
population starts to increase almost uniformly, while the immotile population declines to low
levels.Thereafter, both the motile and immotile cell distributions are quasi-uniformly
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distributed in space such that ρ = ρ1 + ρ2 < 1 throughout the domain. Proliferation is
subsequently reactivated, the resting density increases and a second wave of instability is
triggered at t ≃ 140. The dynamics repeat in time, as suggested by the presence of a third wave
of instability that occurs at t ≃ 500, so that eventually oscillatory dynamics are generated.

While both the go-or-rest and the go-or-grow dynamics have the potential to generate patterns
under mechanism M1, the oscillatory nature of the go-or-grow dynamics differs radically from
that of the go-or-rest. In the following section, we will show that the proliferation term in the
go-or-grow model also allows for the formation of travelling wave solutions. We show that
condition (12) gives rise to regions of (M, ρ*)-parameter space for which travelling wave
solutions exhibit irregular dynamics behind the front. We discuss this and the oscillatory
dynamics in more detail in the following section.

4. Travelling wave solutions
In this section, we construct numerical solutions of Equations (11) in order to establish whether
the go-or-grow model admits travelling wave solutions. In so doing, we aim to investigate
further the influence of an immotile/stationary cell population on the dynamics of the emerging
travelling wave solutions.

4.1. Parameter space exploration
We look for 1D numerical travelling wave solutions of Equations (11). In the previous section,
we identified two fixed points of Equations (11): the trivial steady-state (0, 0) and the non-

trivial one . We speculate on the existence of a travelling wave
solution connecting these critical points.

We numerically solve Equations (11) in a large spatial domain (−150 ≤ x ≤ 150) to avoid
boundary effects associated with the no-flux boundary conditions we-impose at x = ± 150. The
initial condition for the moving population ρ1 is chosen as an even distribution through a sharp
sigmoidal function representing a core centred at x = 0 and a maximal value given by the non-
trivial steady-state (1). The initial condition for ρ2 is evaluated from ρ1 so that the exchange
term (i.e. the term multiplied by M in Equations (11)) is zero. We will discuss the choice of
this particular initial condition and its consequences for the resulting patterns in the next
section.

We study the formation of travelling waves for mechanisms M1 and M2. By means of numerical
investigation, we find that under mechanism M2 the solutions of Equation (11) always give
rise to a simple travelling wave, that is a moving front with constant shape and speed. In
contrast, mechanism M1 leads to more complex behaviours such as those presented in Figure
5 and discussed below.

In the definition of mechanism M1 (Equation (2)) we arbitrarily fixed α 4 (which allows for
Turing instability) and explored numerically (M, ρ*)-parameter space. We=found three types
of solutions corresponding to the regions 1–3 in the top graph of Figure 5. We have selected
three points Pi (i = 1, 2, 3) in this parameter space by fixing M = 1.6 and increasing ρ* to
illustrate the types of solutions that arise in each region.

In region 1, one can observe the formation of a well-defined travelling wave with a time-
independent profile and a spatially uniform core behind the moving front. Remark that, in this

region, the non-trivial fixed point ( , ) is stable with respect to Turing instability. The profile
of the travelling wave, invading from left to right, is shown at time t ≃ 377 in the bottom-left
plot of Figure 5 and corresponds to the parameter values at P1, i.e. (M = 1.6, ρ* 0.57). Of course
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the speed c of this travelling wave depends on the choice of parameter values=(we will study
this dependence in future work by performing a systematic travelling wave analysis and using
the travelling wave coordinate ξ = x − ct as done, for example, in [17]).

The upper curve that limits region 2 is the analytical instability condition (12). Thus, the non-

trivial fixed point ( , ) is also stable with respect to Turing instability in region 2. The lower
curve defining region 2 has been obtained by numerical investigation (see top graph of Figure
5) and is characterized by a stationary non-uniform core behind the moving front. Indeed, even
though the core is stable with respect to diffusive processes, the densities behind the front

stabilize to spatially non-uniform distributions and not to the non-trivial fixed point ( , ).
The corresponding density profiles at time t ≃ 377 are shown in the bottom-central plot of
Figure 5 at P2, i.e. (M = 1.6, ρ* = 0.6). We observe an oscillatory profile of the moving front,
where peaks of immotile cells form and remain as fixed patterns after the front went past.

Region 3 in Figure 5 is defined by the analytical instability condition (12). During the transient
period in which the travelling wave is established, the densities ρ1 and ρ2 tend to the non-trivial

steady-state ( , ), respectively. Here, this steady-state is unstable with respect to diffusive
processes (i.e. condition (12) is satisfied). Illustrative density profiles are exemplified at P3,
i.e. for the values (M = 1.6, ρ* = 0.75) in the bottom-right plot of Figure 5. In the core, behind
the moving front, the solutions degenerate into irregular spatio-temporal oscillations with no
apparent order, similar to results obtained in [23].

4.2. 2D numerical results
In this section, we numerically investigate the go-or-grow model in a 2D Cartesian geometry.

We solve the 2D version of Equations (11) on a rectangular domain using a nonlinear,
multilevel/multigrid method [30] combined with an adaptive, block-structured Cartesian mesh
refinement. This algorithm allows us to restrict mesh refinement to where it is needed (e.g.
front profile), thus minimizing computational costs. The equations are discretized in space,
using the centred difference scheme and in time using a semi-implicit Crank-Nicholson-type
approximation.

For comparison with the 1D simulations, we prescribe the initial distributions ρ1(x, y, t = 0)
and ρ2(x, y, t = 0) to be such that the exchange terms in Equations (11) are null, and add a
perturbation δ cos(ly) to the front in the y-direction. Here we consider δ 1 and l = 0.4.

We solve Equations (11) over the domain (−150 ≤ x, y ≤ 150) using a regular grid of 128 ×
128 points to cover the domain. Three levels of refinement are used so that the mesh has a
resolution equivalent to a uniform grid of size 1024 × 1024. The mesh refinement criterion is
|ρi|>∊ for some tolerance ∊. The timestep is Δt =10−2. Note that the computational domain is
taken large enough such that all the dynamics take place away from the boundary to avoid edge
effects.

First, we explore the regimes presented in the 1D configuration in Figure 5, using parameters
across the three regimes. We focus only on mechanism M1 since the system is stable to spatio-
temporal perturbations under mechanism M2. Results are presented in Figure 6 by showing
time-snapshots of the contour levels of the immotile population ρ2 over a 2D domain for five
different parameter sets.

The first observation is that the 2D results in Figure 6 confirm the 1D results summarized in
Figure 5. There exist three regions of the (M, ρ*)-parameter space associated with different
behaviours: simple travelling wave with uniform core in region 1, stationary non-uniform core
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behind the oscillatory moving front in region 2, and irregular spatio-temporal oscillations
behind the oscillatory moving front in region 3. Our results also show that the perturbation size
δ decreases to zero before any dynamical development, suggesting that there is no front
instability for these parameter sets (which we will analytically confirm in a future work).

In Figures 6(a)–(e), we present the transitions between the three regimes. In particular, Figures
6(a)–(c) show the regime for the three points Pi defined in the parameter space in Figure 5.
When fixing M = 1.6 and successively increasing ρ* from 0.57 (P1) to 0.6 (P2) and 0.75 (P3),
one goes from regions 1 to 3: In Figure 6(a), we observe a stable travelling wave with a uniform
core; in Figure 6(b), we observe that the front starts oscillating and leaves right behind it fixed
patterns of immotile cells, which leads to heterogeneity in the core; finally, in Figure 6(c), the
oscillations at the edge of the front propagate backward within the core, which leads to irregular
spatio-temporal oscillatory dynamics extending over the entire domain behind the moving
front.

As an additional confirmation, we now fix ρ* = 0.75 and decrease M, thus drawing a horizontal
segment in the (M, ρ*)-parameter space, starting from P3 where M =1.6 to further consider the
values M =1.25 and M =1. We find again the expected regimes: a travelling wave with fixed
patterns behind the moving front (after a transient period indicated by the uniform density in
the central core) in Figure 6(d) corresponding to region 2; a stable travelling wave with a
uniform core in Figure 6(e) corresponding to region 1.

Thus, we have shown here that the 2D results confirm the parameter regimes and the 1D
simulations presented in Figure 5.

So far, we have used a particular initial condition satisfying a null exchange between the two
populations. The reason for this particular initial condition lies in the observation that the
patterns forming in the core during the establishment of the travelling wave depend on the
initial condition. With such an initial condition, we have limited the occurrence of unusual
patterns forming during the transient establishment of the travelling wave and we have clearly
isolated the three regimes discussed previously. Here, we investigate the dynamics of the go-
or-grow model, using another initial condition and find different patterns as a result. We
consider the following two initial conditions:

(13)

and

(14)

that correspond to geometries that are initially rectangular and circular, respectively. The
results presented in Figures 7 and 8 show the spatio-temporal evolution of the densities ρ1 of
motile cells (left column) and ρ2 of immotile proliferating cells (right column).

In the rectangular geometry, when starting with an initially perturbed front, the first instability
that develops is located between the core and the travelling front. This instability is initiated
in the immotile population and maintains the same shape as the initial perturbation as shown
in Figure 7(b). At later times, another instability having the same shape as the initial
perturbation forms between the wave front and the first instability, which has now generated
patterns (Figure 7(c)) that propagate backward towards the left of the domain. Soon after,
oscillations (vertical stripes) develop at the right of the second instability (Figure 7(d)). Note
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that we observe three instabilities of different shapes occurring at different times and locations.
The differences in shape and density eventually result in a mixture of irregular and structured
patterns as the oscillations and/or the instabilities coalesce as shown in Figure 7(f). When the
front is not perturbed, we observe oscillations forming only within the core (Figures 7(g)). We
remark that the heterogeneities that arise from the instabilities are composed mainly of
immotile cells (right column of Figure 7), whereas motile cells typically localize at the edge
of the invading front, with a portion of them remaining almost uniformly distributed in the
core. There the density is, on average, too low to completely stop their movement (left column
of Figure 7)).

Meanwhile, simulations of the model in the circular geometry give rise to different patterns.
We present in Figure 8 the spatio-temporal evolution of the densities ρ1 of motile cells (left
column) and ρ2 of immotile proliferating cells (right column). When the front is initially
perturbed, we observe unusual patterns that branch within the core (Figures 8(b)–(d), right)
and give rise to stationary geometric structures. In the case of an initially unperturbed front,
we observe the formation of circular patterns as shown in Figure 8(e). Regardless of the initial
condition, the formation of these various patterns suggests a spatially heterogeneous
distribution of immotile cells that are mostly located within the core. As for the rectangular
geometry, motile cells are preferentially located at the edge of the front, i.e. near the surface
of the spheroid (Figures 8(b) and (c), left), with a portion remaining almost uniformly
distributed in the core. The spatial localization of each cell type is thus consistent with
experimental observations, the additional outcome of our model being that the regulation of
the go-or-grow by the local cell density allows for the formation of spatial heterogeneities
within the tumour’s core.

5. Discussion and conclusion
We have used a reaction–diffusion framework to study the invasion of glioma cells guided by
experimental evidence which shows that glioma cells exhibit a proliferation/migration
dichotomy, i.e. proliferating cells move slowly and migrating cells proliferate slowly [9].We
have considered a cell population that contains two distinct (migratory and proliferating)
phenotypes associated with tumour invasion. We have derived a system of partial differential
equations to model this system and have proposed a density-dependent term to model
phenotypic switches between the two sub-populations. In the absence of proliferation, motile
cells can enter resting phases and become immotile, which characterizes a sub-case of our
model that we denoted as go-or-rest. When proliferation is included, only immotile cells can
proliferate, which characterizes our go-or-grow model.

We have performed a Turing instability analysis of both models and found that both instability
criteria depend on the switching mechanism. We have shown that neither model exhibits Turing
instabilities under switching mechanism M2, whereas under the autocatalytic mechanism
M1, Turing instabilities can occur for certain parameter ranges. We have investigated the
stability of the spatially uniform steady-state by solving numerically the go-or-rest model,
using a slightly perturbed uniform steady-state as the initial condition and have found that
immotile cells accumulate to form aggregates due to the crowding effect when M1-regulated,
which in turn limits cell motility. By adding proliferation to the immotile population (as a
logistic term) and solving numerically the go-or-grow model, we have found that the same
mechanism leads to irregular oscillatory dynamics. Interestingly, for both models, the logistic
term is not sufficient to limit solutions to the saturating density that is exceeded when the non-
trivial uniform steady-state within the core is unstable.

Another interesting aspect of our go-or-grow model is the travelling wave behaviour. We have
shown that there are three regions of the (M, ρ*)-parameter space where travelling wave
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solutions exist with either a spatially uniform core behind the moving front, stationary patterns
within the core resulting from the oscillations at the moving front, or irregular oscillatory
dynamics that extend to the entire domain behind the moving front. These dynamical,
heterogeneous spatio-temporal solutions demonstrate the ability of the density-dependent go-
or-grow mechanism to produce complex dynamics associated with tumour heterogeneity
during invasion. Other recent modelling approaches have shown that heterogeneity within the
tumour’s core can be obtained by considering interactions with the micro-environment.
Matzavinos et al. [20] proposed a model of solid tumour growth, prior to angiogenesis, where
the effect of an immune system response gives rise to complex heterogeneous spatio-temporal
dynamics. Stamper et al. [25] proposed a model of vascular tumour growth where a
combination of cell proliferation and vessel occlusion produces waves developing into regular
or irregular spatio-temporal oscillations. By contrast, here, we propose that such complex
behaviours can also emerge without external coupling to an additional field, but simply by
considering cell-cell interactions through density-dependent regulation.

Another intriguing aspect is that the front speed seems to increase along the stabilization of
the core (Figure 5) which is related to the increase of the effective total proliferation rate, a
phenomenon that we will study in more detail in a future work. Solving the go-or-grow model
on a 2D domain has further shown that the spatio-temporal dynamics depend on the initial
conditions. In particular, similar to results obtained by Sherratt et al. [24] in the context of
predator-prey invasion, the influence of initial perturbations can be observed in long-time
solutions, which, in our model, gives rise to different types of pattern within the tumour’s core.
This observation suggests that the tumour’s spatial heterogeneity can be generated by
mechanisms of invasion driven by phenotypic adaptation only. The question that arises is why
glioma tumours would adapt to a particular strategy to invade the surrounding tissue. In our
model, the selection of a particular mechanism of invasion (i.e. the three sub-cases of M1 or
M2) is associated with a specific type of growth. Our model shows that glioma tumours can
grow fast and homogeneously (case (1) in Figure 5) or slow and heterogeneously (case (3) in
Figure 5), which may correlate with its progression and grade. Therefore, we suggest that
tumour progression may be associated with phenotypic adaptation through the selection of
particular mechanisms of invasion.

The migratory and proliferating dichotomy may also have implications on the tumour’s
response to therapy. For example, if a glioma is treated with a standard chemotherapeutic drug
(which targets mainly the immotile, proliferating cells), then motile cells may contribute to
relapse after chemotherapy. This suggests that therapies which target the non-proliferative cells
are needed and should be used in combination with standard chemotherapy. Additionally, the
space liberated following the death of immotile cells (i.e. a decrease of the cell density) would
stimulate phenotypic adaptation to the new micro-environmental conditions. In vivo, invading
cells may later encounter different environmental conditions that would favour a return to a
proliferating phenotype after a cycle of chemotherapy, eventually leading to tumour recurrence.
There, mechanisms M1 and M2 would play different roles. If we assume that the switching
mechanism M1 applies, then invading cells would propagate into the tissue until reaching
denser areas that would make them stop and proliferate to form islands distant from the initial
primary tumour. Under mechanism M2, motile cells would stop and, after a cycle of
chemotherapy, start proliferating at the location of the initial tumour where the density has
decreased. Therefore, additional cycles of chemotherapy may target these cells that re-enter
the cell cycle, which would make a local therapy more effective by ‘keeping the invasion under
control’. Thus, the investigation of the phenotypic adaptation as a new therapeutic target could
help for a better control of the tumour re-growth.

The main goal of this paper was to investigate the dynamics of a population of tumour cells
for which the switch from a migratory to a proliferating phenotype (and vice versa) depends

Pham et al. Page 11

J Biol Dyn. Author manuscript; available in PMC 2013 April 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



locally on the cell density. An important observation of malignant tumour invasion is the
formation of front protrusions (fingering phenomenon). In this study, we have focused our
analysis on pattern formation associated with diffusion-driven instabilities and we have not
observed front instability. In a follow-up paper, we will investigate the influence of the
mechanism of phenotypic switch on the emergence of front instabilities associated with
invasive fingering.
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Figure 1.
Turing instability and pattern formation for the go-or-rest model. (a) Spatial distribution of the
cell populations in the domain [0, 1] at times t = 0 and t = 5. The initial densities ρ1(x, t = 0)
and ρ2(x, t = 0) are shown by dotted and dashed lines, respectively. The solid line corresponds
to the spatial distribution of the static population at time t = 5. The corresponding profile
ρ1(x, t = 5) for population the motile is not presented since the values are much smaller in
magnitude. (b) Spatio-temporal evolution of the motile cell density ρ1. The horizontal axis is
used for space and the vertical one for time. The three contour levels indicate (from bottom to
top) the iso-values ρ1 = 10−1, 10−2 and 10−3. (c) Spatio-temporal evolution of the static cell
density ρ2. The horizontal axis is used for space and the vertical one for time. The contour
level corresponds to the value ρ2 = 1 used as the initial value of the total density. Parameter
values: (M, α, ρ*) = (5.0, 4.0, 0.9).
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Figure 2.
Long-time behaviour of the patterns generated from the Turing instability for the go-or-rest
model. Spatio-temporal evolution of (a) motile and (b) static populations. The horizontal axis
is used for space and the vertical one for time, with a logarithmic time scale that covers several
orders of magnitude. Both curves correspond to the long-time evolution of the simulations
presented in Figures 1(b) and (c). (a) The dashed lines represent the contour levels ρ1 = 4 ×
10−5 and indicate brief increases in the number of motile cells released at the edges of the static
aggregates. The quasi-horizontal contour levels suggest an almost spatially uniform
distribution (i.e. ρ1(x, t) ≃ ρ1(t)). (b) The solid lines represent the contour levels ρ2 = 1 as in
Figure 1(c) and show the slow shrinkage of the static aggregates.
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Figure 3.
Development of Turing instabilities for the go-or-grow model. (a) Spatial distribution of the
cell populations in the domain [0, 1] at time t = 5. The solid line corresponds to the spatial
distribution ρ2(x, t = 5) of the static population, whereas the dotted line represents the spatial
distribution ρ1(x, t = 5) of the motile population. (b) Spatio-temporal evolution of the motile
cell density ρ1. The horizontal axis is used for space and the vertical one for time. The three
lines correspond to the same iso-value ρ1 = 0.15 and suggest an almost spatially uniform
distribution. (c) Spatio-temporal evolution of the static cell density ρ2. The horizontal axis is
used for space and the vertical one for time. The contour level corresponds to the value ρ2 =
1 used as the initial value of the total density. Parameter values (M, α, ρ*) = (5.0, 4.0, 0.9) are
identical to those used in Figure 1.
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Figure 4.
Oscillatory dynamics generated from the Turing instability for the go-or-grow model. Spatio-
temporal evolution of (a) motile and (b) static populations. The horizontal axis is used for space
and the vertical one for time. Both curves correspond to the long-time evolution of the
simulations presented in Figures 3(b) and (c). (a) The dashed lines represent the contour level

, the value of the initial uniform steady-state (  for the simulation). These contour
levels suggest an almost spatially uniform distribution of motile cells that increases after the
initial instability depicted in Figure 3(b) and (c) until a threshold (reached at t ≃ 140), where
motile cells become static (i.e. ρ1 decreases by feeding the static population). This corresponds
to the development of a new instability of the static population, which later stabilizes and feeds
again the motile population, thus increasing again until similar dynamics are repeated at t ≃
500. (b) The dotted and dashed lines represent the contour levels ρ2 = 0.01 and ρ2 = 0.1,
respectively. They suggest that low values of the static population correspond to almost uniform
distributions (i.e. ρ2(x, t) ≃ ρ2(t)). When the immotile population increases enough due to an
influx from the motile population (at times t ≃ 140 and t ≃ 500), an instability occurs and briefly
leads to a non-uniform distribution of immotile aggregates. The latter disappear shortly by
releasing cells into the motile population due to the lack of density until the process repeats.
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Figure 5.
Types of travelling wave solutions for the go-or-grow model under mechanism M1. (Top)
Parameter regions of (M, ρ*)-plane corresponding to different behaviours of the solutions ρ1
and ρ2 (for a fixed value of the sharpness parameter (α = 4)). Region 3 is defined as unstable
to diffusion-driven processes (i.e. condition (12) is satisfied) and corresponds to simple
travelling wave solutions. The dotted line that separates regions 1 and 2 is the result of
numerical investigation. In region 2, solutions are characterized by an oscillatory profile of the
moving front, where peaks of immotile cells form and remain as fixed patterns after the front
went past. In region 3, the solutions degenerate behind the moving front into irregular spatio-
temporal oscillations with no apparent order. (Bottom) Snapshots at time t ≃ 377 of the density
profiles of the motile (ρ1 – red line) and static (ρ2 – green line) populations corresponding to
the points Pi in the top graph. The value of M is kept fixed while ρ* is increased from left to
right, which corresponds to the vertical path between P1 and P3 in the top graph. (Left) Simple
travelling wave solutions – P1 = (1.6, 0.57) in region 1. Note the small peak of the static
population at the edge of the front. (Centre) Oscillatory moving front – P2 = (1.6, 0.6)) in region
2. The oscillatory nature of the peak results in the formation of stationary patterns of immotile
cells behind the moving front. (Right) Irregular spatio-temporal oscillations behind the moving
front – P3 = (1.6, 0.75) in region 3.
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Figure 6.
Types of 2D travelling wave solutions for the go-or-grow model under mechanism M1. We
present plots of the immotile and proliferating cell population ρ2, our choices of M and ρ*
being guided by the parameter regimes depicted in Figure 5. Cases (a)–(c) are obtained by
fixing M and increasing ρ*; they correspond to the points Pi shown on Figure 5. Cases (c)–(e)
are obtained by fixing ρ* and decreasing M. For each set of parameter values, we plot the
density over the 2D domain at times when the dynamics change. The density level is given by
the colour bar to the right of each figure. Cases (a) and (e) are associated with region 1 (simple
travelling wave), cases (b) and (d) with region 2 (non-uniform stationary core behind the
oscillatory moving front), and case (c) with region 3 (irregular spatio-temporal oscillations
behind the oscillatory moving front).
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Figure 7.
2D pattern emerging from the go-or-grow travelling wave in rectangular geometry. We present
the spatio-temporal evolution of the motile population ρ1 (left column) and proliferating
population ρ2 (right column) evolving over a 2D rectangular domain. The density level is given
by the colour bar to the right of each figure. The initial condition is given by Equations (13)
and shown in (a). Plots (b)–(f) show the dynamics of the initially perturbed front at several
later times. For direct comparison with (f), plot (g) shows the solution at time t = 180 obtained
by using the unperturbed front (i.e. no transverse perturbation in Equation (13)) as the initial
condition.
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Figure 8.
2D pattern emerging from the go-or-grow travelling wave in circular geometry. We present
the spatio-temporal evolution of the motile population ρ1 (left column) and proliferating
population ρ2 (right column) evolving over a 2D domain. The density level is given by the
colour bar to the right of each figure. The initial stellar condition is given by Equations (14)
and shown in (a). Plots (b) to (d) show the dynamics of the initially perturbed front at several
later times. For direct comparison with (d), plot (e) shows the solution at time t = 160 obtained
by using the unperturbed front (i.e. no transverse perturbation in Equation (14)) as the initial
condition.
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