
CGAP-Align: A High Performance DNA Short Read
Alignment Tool
Yaoliang Chen1, Ji Hong1, Wanyun Cui1, Jacques Zaneveld2, Wei Wang1, Richard Gibbs2, Yanghua Xiao1*,

Rui Chen2*

1 School of Computer Science, Fudan University, Shanghai, China, 2 Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of

Medicine, Houston, Texas, United States of America

Abstract

Background: Next generation sequencing platforms have greatly reduced sequencing costs, leading to the production of
unprecedented amounts of sequence data. BWA is one of the most popular alignment tools due to its relatively high
accuracy. However, mapping reads using BWA is still the most time consuming step in sequence analysis. Increasing
mapping efficiency would allow the community to better cope with ever expanding volumes of sequence data.

Results: We designed a new program, CGAP-align, that achieves a performance improvement over BWA without sacrificing
recall or precision. This is accomplished through the use of Suffix Tarray, a novel data structure combining elements of Suffix
Array and Suffix Tree. We also utilize a tighter lower bound estimation for the number of mismatches in a read, allowing for
more effective pruning during inexact mapping. Evaluation of both simulated and real data suggests that CGAP-align
consistently outperforms the current version of BWA and can achieve over twice its speed under certain conditions, all while
obtaining nearly identical results.

Conclusion: CGAP-align is a new time efficient read alignment tool that extends and improves BWA. The increase in
alignment speed will be of critical assistance to all sequence-based research and medicine. CGAP-align is freely available to
the academic community at http://sourceforge.net/p/cgap-align under the GNU General Public License (GPL).
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Introduction

In recent years, advances in sequencing have led to the production

of unprecedented amount of sequence data. Alignment, which maps

reads to the reference sequence, is one of the most computationally

demanding tasks performed in typical sequence data processing.

Accurate sequence alignment is critical for SNP calling [1], structural

variation detection [2] and further downstream analysis.

In order to efficiently and accurately map large numbers of short

reads many new alignment programs have been developed. The

algorithms underlying most of these tools can be classified into two

major categories [3]. The first category uses hash tables to hash

either read sequences, as in MAQ [1], SeqMap [4] and CloudBurst

[5], or the genome reference, as in SOAPv1 [6], PASS [7], MOM

[8] and ProbeMatch [9]. Although this technique can be easily

parallelized, the major drawback of using hash tables is that either

they must scan the whole genome, even when few reads are aligned,

or they require a large amount of memory to build an index for the

reference. The second category is based on string matching using a

representation of prefix/suffix trie [2], including suffix tree, suffix

array [10], enhanced suffix array [11] and FM-index [12]. The first

three representations are used by TRELLIS [13], MUMmer [14]

and Vmatch (http://www.vmatch.de). Unfortunately, these pro-

grams have poor performance on large-scale references including

the human genome due to memory constraints. The FM-index is a

type of substring index based on the Burrows-Wheeler transform,

with some similarities to suffix array. Owing to its small memory

requirement, it is utilized by numerous state of the art programs

including SOAPv2 [15], Bowtie [16], Bowtie2 [17] and BWA [18].

BWA has become one of the most widely used alignment tools

owing to its efficiency and accuracy. BWA possesses higher recall

and precision than SOAPv2 or Bowtie. However, both Bowtie and

SOAP2 are significantly faster than BWA. Therefore, it is highly

desirable to improve the speed of BWA while maintaining its

alignment quality. In this paper, we describe a new efficient

alignment tool, CGAP-align, following the framework of BWA. As
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part of short read mapping in BWA, possible mismatches and gaps

are enumerated during the traversal of the FM-index of the

reference sequence. The time efficiency of BWA is mainly impacted

by two factors. The first is the efficiency of locating a substring in the

reference. The second is the ability of the program to bypass

segments of the reference where the read would contain a large

number of mismatches, avoiding the need to enumerate all possible

sets of mismatches and gaps, through a process called pruning.

Improvements to these strategies have been implemented in CGAP-

align to optimize the efficiency of both the reference querying and

the pruning steps.

In this report, we first introduce a novel data structure, Suffix

Tarray, which speeds up the process of locating a read on the

reference. Second, we present an effective pruning strategy that

more accurately predicts the number of mismatches in a read prior

to alignment. Pruning is significantly improved by using a set of

training reads in advance to identify and study frequent patterns of

nucleotides. The performance of CGAP-align was evaluated on

both simulated data and several sets of real paired-end sequence

data. Our results indicate that by implementing both of these

improvements alignment speed is significantly increased without

sacrificing recall or precision.

Methods

1.1 Suffix Tarray (STA): Improving Reference Queries
To improve the alignment speed, we utilized a data structure,

Suffix Tarray (STA), to index reference sequences in CGAP-align.

STA uses a new index structure that is a hybrid of trie (inspired by

suffix tree) and suffix array data structures. Before we present the

concept of STA, we first briefly review the two most widely-used data

structures for sequence indexing: suffix array (SA) and suffix tree (ST).

1.1.1 Background: Suffix Tree (ST) & Suffix Array

(SA). Suffix tree is a data structure that encodes all of the

suffixes of a given string in the form of tree, allowing quick location

of substrings in O(|W|+N) time, where |W| is the length of the

substring and N is the number of occurrences of that substring.

More specifically, ST for a string X is a tree whose edges are

labeled with strings, such that each suffix of X corresponds to

exactly one path from the tree’s root to a leaf. In the case of

sequence data, a suffix tree for string X of n characters is queried

and constructed in linear time [19]. Owing to its query efficiency,

ST was once the predominant data structure for read alignment

[2]. However, ST usually requires O(n) memory with a large

constants leading to a large memory requirement. State-of-art ST

methods like TDD [20] and TRELLIS [13] cannot currently scale

up to the entire human genome without a disk-based strategy that

results in a suffix tree consuming tens of gigabytes of space.

Suffix array (SA) is an array of integers each of which gives the

start positions of suffixes of a string X in alphabetical order. The

alphabetic ordering of SA enables each substring of X to be

queried through a binary search on SA. Given a string W is a

substring of X, we define the interval [k, l] as the SA interval of W.

In particular, if W is empty, the corresponding SA interval is [1, n-

1], where n is the length of X. The set of positions of all

occurrences of W in X is thus {SA[i] : k#i#l }, where SA[i] maps

the SA position i to a reference coordinate. A SA, if optimally

implemented, consumes O(n) space with a small constant and can

be constructed in linear time [21](Ko et al., 2003). Further

improving the space efficiency, FM-index [12](Ferragina et al.,

2000), a compressed representation of SA, was developed. In FM-

index, SA intervals are retrieved by the summing corresponding C

and Occ values based on Burrows-Wheeler transform (BWT) [22]

(Burrows et al. 1994). Given a substring W and a character c,

Ferragina and Manzini [12](2000) shows that

k(cW )~C(c)zOcc(c,k(W ){1)z1

l(cW )~C(c)zOcc(c,l(W ))

and that k(cW)#l(cW) iff cW is a substring of X, where [k(W), l(W)]

and [k(cW), l(cW)] are the SA intervals of the substrings W and cW

respectively. During each query, a backward search is performed

on FM-index so that the substring W is scanned from the end to

the beginning. FM-index is constructed in O(n) time from the

reference X (as it can be constructed in linear time from a SA) and

used to query a substringfig of length m in O(m) time. Due to its

space efficiency, FM-index has recently been adopted by many

widely-used mapping tools, including SOAPv2 [15], Bowtie [16]

and BWA [18]. However, such space efficiency comes at the cost

of reduced query performance. Empirically, ST is much faster

than FM-index for queries on substrings [23].

1.1.2 Overview of the Suffix Tarray (STA) Structure. In

an FM-index, for a character c, Occ is a function of the SA position

y, which counts the number of the occurrences of c within the

suffix interval [1, y] of the SA. To accelerate the calculation of Occ

values, the SA is divided into buckets with a fixed size. For the SA

positions y that define the left bucket boundaries, the correspond-

ing Occ values are pre-computed and stored in a table. This allows

all other Occ values to be efficiently calculated by counting the

occurrences of the character c from the start of their corresponding

buckets instead of from the beginning of the SA.

However, retrieving a pre-computed Occ value is still much

faster than retrieving an Occ value in the middle of a bucket. This

observation implies that pre-computing frequent Occ values has

the potential to speed up the mapping process. The basic idea of

Suffix Tarray (STA) is to first find those most frequently visited

Occ values (and their C values) and then organize them in a ST so

that they can be efficiently accessed during alignment. With this

novel approach, we can take the advantage of both the time

efficiency of the ST and the space efficiency of FM-index. At a

high-level, STA can be viewed as a truncated suffix tree (TST)

encoding corresponding SA intervals of a FM-index at each leaf

(Figure 1). As the height of the tree is bounded to a reasonably

small value, we adopt trie as a light implementation of the TST.

There are two major steps to construct a STA for a reference

string X. In the first step, a FM-index is built for the entire

reference sequence to support the SA queries from the suffix tree

[18]. In the second step, we construct a truncated ST based on the

FM-index. All possible suffix strings of the reversed reference

sequence x̄ are enumerated. Instead of building the whole ST for

x̄, we truncate the ST according to the frequency values of the

nodes. The frequency value of a node in ST for x̄ is defined as the

number of occurrences of the substring which it represents in x̄. In

our example, the frequency value of the node ‘‘CT’’ is 2 since

there are 2 prefixes valued ‘‘CT’’ among all of the suffixes of x̄.

The nodes in tries will be discarded if their frequency values are

smaller than a threshold e which is calculated by St. We select a

maximal e such that the resulting trie has a size less than a user

specified trie size St. This is accomplished by a binary-search style

enumeration of the possible values of e. Initially, the possible range

of e is set to [1, |X|]. The program first tries to construct a trie

using a value P in the middle of possible range, such that in the

first iteration P is approximately |X|/2. If, during construction,

the trie size exceeds the size limit St, then the maximum possible

value for e is reduced to P-1. If, on the other hand, the trie is
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constructed without exceeding St then the minimum possible value

of e is increased to P. This process is iterated until the possible

range of e is reduced to a single value, which we assign to e. At last,

a truncated trie with frequency threshold e and size less than St is

built. Figure 1 is an example of a STA.

In the current version of CGAP-align, each trie node takes 36

bytes. One concern when building a STA is how to choose an

appropriate truncated trie size. If the size is too small, then the

index will not see a significant increase in query speed since the

FM-index will dominate the query process. Otherwise, memory

consumption will increase. Fortunately, since the frequency values

of novel nodes decreases rapidly with increasing trie size, a STA

with a moderate-sized trie can perform nearly as well as a STA

with a large trie. We denote ST100 as a full ST for truncated at

depth 100 and the frequency ratio of a trie as the values of all

nodes in that trie divided by the sum of frequency value of all

nodes in ST100. According to our experiment, when indexing the

human reference genome, a 300 MB sized truncated ST has a

frequency ratio of 13.32% while 1 GB has 14.68%.

1.1.3 Matching Substrings to Suffix Tarray.

Algorithm 1 :

STA index construction : X ,bð Þ==reference string X and the length of candidatestring b

Calculate BWT string B for reference string X ;

Calculate array C :ð Þ and Occ :,:ð Þ from B;

Build ST for all the reversed substrings occurring in X with frequencyw~e;

Procedures :

InexactSearch W ,zð Þ

return InexRecur W ,DW D{1,z,1,DX D{1,ST:rootð Þ;

InexRecur W , i, z,k, l, nodeð Þ

� if zvD i½ � then

� return �

if iv0 then

return k,l½ �f g

==deletion, edit cost : 1

I/InexRecur W ,i{1,z{1, k, l, nodeð Þ

for each c[ A,C,G,Tf g do

if node not null then

k/node:k; l/node:l;

node/node:child c½ �;

else;

k/C(c)zOcc(c,k{l)z1;

l/C(c)zOcc(c,l);

if kƒl then

==insertion, edit cost : 1

I/I|InexRecur W ,i,z{1, k, l, nodeð Þ

if c~W i½ � then

==no edit operation, edit cost : 0

I/I|InexRecur W ,i{1,z, k, l, nodeð Þ

else

==replace, edit cost : 1

I/I|InexRecur W ,i{1,z{1, k, l, nodeð Þ

return I
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The procedure to query a substring from STA is given in

Algorithm 1. Procedure InexactSearch(W, z) takes substring W

and maximal edit distance z as input, and returns the SA intervals

of substrings that match W with no more than z differences. The

algorithm framework is similar to that used in BWA, but with a

different index structure. The l and k values are re-calculated

based on STA. For a given node of ST, we denote node.child as its

child-list, while node.k and node.l define its SA interval values.

The lines with an asterisk mark the D-array pruning strategy used

in BWA, which will be discussed in section 1.2.

The actual implementation of CGAP-align differs slightly from

the pseudo code given in Algorithm 1. CGAP-align inherits the

logic of BWA’s inexact mapping, where ‘‘gap extensions’’ do not

add to the number of edits that have been performed (i.e.

IndexRecur will be recursively called with maximum edit distance

value z). This helps to detect relatively long gaps. However, it also

causes a potential issue resulting in false negative alignments in

both BWA and CGAP-align. This problem is addressed in section

2.2.

1.2 Data-Conscious D-Array Calculation (DCDC):
Improving Pruning

To improve the efficiency of mapping, a pruning step is

implemented in BWA. A lower bound is calculated for the number

of differences between W[0,i] (i.e. the i-length prefix of the read W)

and any substrings of the reference sequence and stored as the ith

element of array D, all prior to mapping. Reads with D[i] greater

than the maximum tolerated number of mismatches defined by

the user are excluded from further alignment. If calculating D-

array is faster than the time it would take to map the pruned part

of the search trees, pruning improves mapping efficiency. The

degree of improvement depends on both the speed at which the D-

array can be calculated and the accuracy of the estimation of D-

array. A more accurate estimation of D results in a smaller search

space and more efficient mapping. Figure 2 gives an example of

how D-array would work during a backward search on either FM-

index or STA. D-array prunes superfluous enumerations before

mapping, providing a significant boost in performance.
1.2.1 D-array: Background. BWA proposes a method to

estimate the D-array by splitting W into several small strings. Let

e(W) be the minimal number of the edit operations required to

make W exactly align onto the reference X. BWA divides W into

segments w1w2…wt, where e(wp) = 1 for 1#p,t and e(wp)#1 for

p = t. Then D[i] is approximated as p-1 for 1#i,|W|, where wp

contains the (i+1)th element of W, or t for i = |W|. For example,

given a reference X = ‘‘AACGTATCGACG’’ and a read

W = ‘‘AACTGA’’, BWA segments the W as ‘‘(AACT)(GA)’’ and

thus produces the D-array ‘‘000111’’. The time to calculate the D-

array for read W is in O(|W|) when the FM-index of the reverse

of X is used. In CGAP-align, the calculation of D-array is further

accelerated by using STA.

1.2.2 A Tighter Lower Bound for D-array. Identifying a wp

with e(wp).1 when splitting W generates a D-array with a tighter

lower bound. In the example described above, if we consider

segments with an e(wp) equal to 2, then we derive the segmentation

‘‘(AACTG)(A)’’ with the corresponding D-array ‘‘000122’’. By

allowing segments with more mismatches we derive a tighter

bound for D.

However, the above tighter bound comes at the cost of longer

computations. The time cost of verifying e(W) = k is exponential to

the value of k. Therefore, it is too expensive to calculate each e(wi)

value on the fly unless e(wi) is strictly restricted to be 1 (in this case

calculation of e(w) is O(|w|)). To address this issue, we add a pre-

processing step, in which we identify the frequent substrings from

the training read set with a e(w) = 2. This approach is feasible as

genomic sequences from the same species are similar among

individuals. Thus, by providing a training read set from each

species, it is possible to generate a list of species specific frequently

occurred substrings (w) with e(w) = 2.

In a pre-processing phase, an appropriate number of patterns

with the greatest frequency values are identified by a depth-first

visit on an FM-index built upon the training reads and then

organized into an Aho-Corasick (AC) automaton [24]. The

number of patterns is determined by the AC automaton size

specified by the user. Given a read W, an AC automaton helps to

find all substrings of W (denoted as w) that match to any of the

indexed patterns (denote as f) in linear time. A description of AC

automaton is given in section 1.2.3. For the sake of the efficiency,

we only index patterns with e(f) = 2 into AC automatons.

1.2.3 Aho-Corasick Automaton. In general, millions of

frequent patterns (FP) with e(f) = 2 are found in the pre-processing

phase. We use a AC automaton GT to organize these FPs so that

when given a read W, we are able to quickly query all of the FPs

that are contained in W in a single scan. This allows for efficient

segmentation of W according to the FPs it contains. We adopt the

AC algorithm [24] in which the FPs are organized in an AC

automaton. Instead of searching for occurrences of a single string f

within a main text string W, AC automaton supports searching for

Figure 1. An example Suffix Tarray for the reference sequence ‘‘ATCTTCAAGA’’. A trie (truncated suffix tree) for ‘‘AGAACTTCTA’’ is built on
the top of an FM-index. Each node of the trie stores k and l, where [k, l] is the SA interval of the substring that corresponds to the leaf node on the FM-
index.
doi:10.1371/journal.pone.0061033.g001
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occurrences of a set of strings F within W. An AC automaton

makes use of the information embodied by the string set F itself to

determine where to begin then next matching attempt if a

mismatch happens, thus bypassing re-examination of previously

matched characters in W. There is a particular type of state called

a ‘‘leaf state’’, each of which corresponds to a string f. The

transition to a leaf state Lf indicates an occurrence of f in W. When

a match is detected, we reset the automaton to its initial state and

continue the scanning on W. These steps are iteratively performed

until we meet the end of W. A simple example is shown in Figure 3.

1.2.4 Calculating the Better D-array.

Algorithm 2 shows the detailed procedure to estimate a tighter

D-array in CGAP-align. We use a greedy strategy to iteratively

find the first matched pattern string f of W from the AC

automaton GT. If no such f is found, we segment W by e(W[j,

i]) = 1 instead (the first ‘‘if’’ condition). As described above, when

we find a match in GT at position i, we reset the automaton,

scanning matches within W[i+1, |W|-1] in the following

comparison.

Results

As described above, two major changes have been added to the

current version of BWA. First, instead of FM-index we utilize

STA, a novel data structure that speeds up string matching by

constructing a trie on top of an FM-index. Second, we implement

a new pruning method DCDC. As mapping time increases

exponentially with the number of mismatches, it is highly desirable

to prune reads with large numbers of mismatches. To achieve this

goal, a data training process has been implemented to identify a set

of frequent substrings with two mismatches from the genome. This

pre-processed data allows for accurate calculation of the minimal

number of mismatches between a prefix and the genome, resulting

in further reduction of the search space.

Both functionalities have been implemented in C. To facilitate

the usage of CGAP-align, it offers a command line interface that is

almost identical to BWA and outputs SAM files (Sequence

Alignment/Map format). CGAP-align is distributed under the

GNU General Public License (GPL) with detailed documentation

and source code freely available through Fudan University, BCM-

HGSC and the Sourceforge web site. The pre-built indices for

some public references (eg. Hg19) are also provided.

2.1 CGAP-align Evaluation
To evaluate the performance of CGAP-align, we have

benchmarked it against BWA (version 0.5.9), SOAPv2 (version

2.20) and Bowtie2 (version 2.0.6), three of the most commonly

used alignment programs. Other tools like Bowtie are not included

because gapped alignments are currently not supported. All tools

run on 4 threads. Both BWA and CGAP-align were evaluated on

their ability to map 100 base pair long reads using either default

settings or relatively loose settings that allow up to 5 edits and a

gap extension of 3 base pairs (-n 5 -e 3 -l 25). The same data set is

used for SOAPv2, allowing up to 5 mismatches and a gap size of 4

(-v 5 -g 4). This setting is looser than SOAPv2’s default setting,

which enables it to find more alignments. For bowtie2, default

parameters are used (–sensitive) since no gap settings can be

adjusted. In addition, two modes of CGAP-align, the first with

STA alone (denoted CGAP-align) and the second with both

DCDC and STA (denoted CGAP-align*), were evaluated. STA

was built based on the human reference genome hg19 with

600 MB size. All of the experiments utilized the same AC

Algorithm 2 CalculateD W , X ,GTð Þ

Input : A read W ,the reference X and the AC automaton GT

Output : The D{array for W

j/0; z/0; k/0

for i~0 to Wj j{1 do

if W j, i½ � is not a substring of X then==e W j, ið Þð Þ~1

z/zz1

k/j

j/iz1

elseif any suffix of W k, i½ � matches a patternstring f in GT then==e W k,i½ �ð Þ~2

z/zz1

k/iz1

j/iz1

D(i)/z

A High Performance DNA Short Read Alignment Tool
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automaton with a size of 1000 MB trained from independent

WGS data for DCDC.

2.2 Evaluation on simulated data
The performance of BWA, CGAP-align, Bowtie2, and SOAPv2

on a simulated data set was examined. Wgsim, a program included

in SAMtools [25], was used to generate 20 million simulated

human genome shotgun 100 bp reads with a 2% error rate. As the

exact position of each simulated read in the genome is known,

both the sensitivity and specificity of the alignments could be

precisely calculated.

As shown in Table 1, a significant speedup was achieved by

CGAP-align while maintaining high mapping quality. We report

both the absolute running time (Hours) and the percentage relative

to BWA for all programs considered. When STA was used alone,

CGAP-align was about 10% to 20% faster than BWA. Since the

implementation of STA only accelerates the string matching step

without affecting alignment, identical results were obtained

between CGAP-align and BWA. Both programs produced

mapping results with high accuracy and sensitivity. Sensitivity

was measured by the true positive rate (TPR), which is defined as

the overall percentage of correctly mapped reads relative to the

number of input reads. In parallel, mapping specificity was

measured by the positive predictive value (PPV), which indicates

the percentage of correctly mapped reads relatively to the number

of the reads reported as mapping correctly by the algorithm.

Under default settings, 97.9% of the reads were accurately

mapped with a PPV of 98.7%. The effect of STA was also

evaluated under loose settings. A similar speed up was observed

under this condition, and identical mapping results obtained by

both CGAP-align and BWA as expected. For SOAPv2 and

Bowtie, lower TPRs were observed than for CGAP-align although

both run faster than CGAP-align.

Surprisingly, despite the use of training data, little speedup

observed after adding DCDC. As shown in Table 1, an almost

identical speed was observed for CGAP-align* under default

settings. We found that in this case only 5% of the reads’ D-arrays

were improved by DCDC. This is because, in our simulated data

set, most reads were aligned to the reference with only 1 or 2 edit

operations, leaving little optimization space for DCDC. On the

other hand, the DCDC itself consumed more time than the

original D-array strategy, which led to a poorer overall perfor-

mance. However, when we evaluated the programs on real data,

where more mismatches and gaps exist, DCDC resulted in a

significant speedup (Table 2).

Slightly different mapping results were obtained for CGAP-

align* compared with BWA under loose settings, due to the

inconsistency of the cost metrics used during read alignment and

D-array calculation. During the alignment of each read, BWA and

CGAP-align consider the edit costs gap extensions as 0, as

described in section 1.1.3. However, during the D-array calcula-

tion, these gap extension costs have to be counted as 1 because

otherwise any read could be regarded as a single gap, and no value

greater than 1 would be obtained in the D-array. As a result,

pruning based on D-array misses some true positive alignments, a

phenomenon that occurs in both BWA and CGAP-align. CGAP-

align*, which computes a better D-array, omits a little more than

BWA. In Discussion, we show a study case to illustrate such

omissions. Fortunately, according to our results, in most cases

CGAP-align* produces the same alignment as BWA, and only

infrequently omits marginal results. Such omissions are even more

trivial as only the best candidates are presented in the final

alignment. In this experiment, there were 8,544 reads with which

BWA obtained an extra 33,105 hits in comparison to CGAP-

align*. Of these reads, 8,306 of them (97.21%) contained multiple

hits, and only 607 of them were correct.

When mapping to the human genome, SOAPv2 uses 5.4 GB of

memory while BWA only uses about 3 GB. In our experiment,

CGAP-align without DCDC consumed 3.6 GB of memory, and

used 4.6 GB when DCDC was integrated. However, the memory

consumption can be controlled by adjusting the index sizes for

both STA and DCDC.

The relationship between the sequence error rate and the

performance of STA and DCDC is shown in Figure 4. STA only

optimizes the counting problem of the FM-index (i.e. determining

the number of matches of a substring occurring in a reference)

without modifying the locating problem (determining the positions

in the reference where the matches occur). A maximal speed up of

26.0% was observed when no errors were introduced as almost all

reads mapped precisely to their correct positions, reducing locating

costs. As the error rates goes up, multiple hits may occur for a

single read, which increases locating costs. The lowest speed up,

10.2%, was observed at an error rate of 0.04. With an error rate

between 0.04 and 0.1, the performance of STA improved as the

more and more reads became un-mappable, which again led to a

decrease in locating costs. On the other hand, DCDC had poor

performance with an error rate below 0.04, after which it rapidly

improved as most of the missing alignments were avoided through

pruning.

2.3 Evaluation on Real Data
We tested CGAP-align using whole exome sequence (WES)

data from two individuals (29.2 million read pairs for WES1, 31.6

Figure 2. An example of D-Array based pruning. The maximum
allowed number of differences, z, is 4. When backward search reaches
position i+1, the algorithm detects that at least 4 differences must exist
(as indicated in D[i]), while only three are allowed according to z due to
the previous mismatch at position j.
doi:10.1371/journal.pone.0061033.g002

Figure 3. An example AC automaton. The frequent pattern string
set F is {AA, AC, AG, C, G, T}. The grey nodes represent the leaf states.
The bold ‘‘T’’ edge is connected as among all the prefixes of the 6
patterns, ‘‘T’’ is the longest suffix of ‘‘AT’’. Given a short read W = ‘‘CAT’’,
the state transition sequence when querying W from the automaton is
,R, LC, R, 1, LT., which indicates the occurrence of frequent patterns
‘C’ and ‘T’.
doi:10.1371/journal.pone.0061033.g003
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million read pairs for WES2) and whole genome sequence (WGS)

data from a separate pair of individuals (107.8 million read pairs

for WGS1 and 86.3 million read pairs for WGS2). All read pairs

were produced by Illumina HiSeq with a 100 bp read length. Both

the consumed time (Hours) and the frequency with which reads

were confidently mapped (Conf) are reported in Table 2. For both

CGAP-align and BWA, we use mapping quality threshold 10 to

determine confident mappings. CGAP-align, utilizing STA alone,

obtained a speed up of approximately 10% to 20% compared with

BWA. Surprisingly, CGAP-align*, while achieving a small speed

up with default settings, shortened the running time by more than

50% with loose settings, due to the high error rates of the reads in

real data. While SOAPv2 was faster than all other candidates

including CGAP-align*, it found less confidently mapped reads

than BWA, especially for the WGS cases. On the WGS1 data,

where a significant number of mismatches between the reads and

reference were observed, CGAP-align and BWA confidently

mapped almost 10% more reads than SOAPv2 did. In comparison

to SOAPv2, CGAP-align* further shortens the performance gap

while maintaining a relatively high mapping rate. Overall, it

possesses impressive mapping rates in WES while the perfor-

mances when mapping WGS data still need to be improved.

Discussion

Due to the enormous number of reads generated by the next

generation sequencing technologies, the efficiency of read align-

ment has become a critical problem. In this article, we present

CGAP-align, a variant of BWA, which doubles the speed of the

alignment process. While SOAPv2 is also very fast, it is unable to

Table 1. Evaluation on simulated data.

Default Settings Loose Settings

Program Hours % TPR (%) PPV (%) Hours % TPR (%) PPV (%)

BWA 2.08 - 99.84 98.51 3.70 - 99.92 98.54

CGAP-align 1.77 85.10 99.84 98.51 3.29 88.92 99.92 98.54

CGAP-align* 1.80 86.54 99.84 98.51 2.89 78.11 99.92 98.54

Bowtie2 1.57 75.48 95.05 95.57 - - - -

SOAPv2 0.95 45.67 84.95 98.21 - - - -

The 10 million read pairs were mapped to the human genome. We recorded the run time (BWA in hours, CGAP-align and SOAP in percentage relative to BWA) on a
2.4 GHz Dual-Core AMD Opteron Processor 2216 HE with 4 threads running simultaneously (Hours & percentage relative to BWA), true positive rate (TPR) and positive
predictive value (PPV). CGAP-align gave identical results to BWA with a shorter run time.
doi:10.1371/journal.pone.0061033.t001

Table 2. Evaluation on real data.

Default
Settings

Loose
Settings

Program Hours %
Conf
(%) Hours %

Conf
(%)

BWA-WES1 3.350 - 97.31 7.130 - 97.39

CGAP-align-WES1 2.887 86.18 97.31 6.375 89.41 97.39

CGAP-align*-WES1 2.698 80.54 97.31 3.813 53.48 97.33

Bowtie2-WES1 3.117 93.04 98.43 - - -

SOAPv2-WES1 1.076 32.12 93.85 - - -

BWA-WES2 4.555 - 96.84 11.158 - 96.92

CGAP-align-WES2 3.857 84.68 96.84 9.699 86.92 96.92

CGAP-align*-WES2 3.829 84.06 96.84 5.598 50.17 96.85

Bowtie2-WES2 3.700 81.23 98.02 - - -

SOAPv2-WES2 1.314 28.85 92.94 - - -

BWA-WGS1 22.818 - 91.84 71.349 - 92.26

CGAP-align-WGS1 20.817 91.23 91.84 66.262 92.87 92.26

CGAP-align*-WGS1 19.717 86.41 91.84 30.159 42.27 92.19

Bowtie2-WGS1 8.433 36.96 83.31 - - -

SOAPv2-WGS1 10.311 45.19 82.03 - - -

BWA-WGS2 8.504 - 93.69 20.244 - 93.82

CGAP-align-WGS2 7.629 89.71 93.69 19.218 94.93 93.82

CGAP-align*-WGS2 7.047 82.87 93.69 9.379 46.33 93.76

Bowtie2-WGS1 5.283 61.12 84.45 - - -

SOAPv2-WGS2 4.647 54.64 88.34 - - -

29.2 million read pairs (WES1), 31.6 million read pairs (WES2), 107.8 million read
pairs (WGS1) and 86.3 million read pairs (WGS2) were mapped to the human
genome. The run time (BWA in hours, CGAP-align and SOAP in percentage
relative to BWA) on a 2.4 GHz Dual-Core AMD Opteron Processor 2216 HE with
4 threads running simultaneously (Hours & percentage relative to BWA),
percent of confidently mapped reads including paired mapping (Conf) are
shown.
doi:10.1371/journal.pone.0061033.t002

Figure 4. The error rates of the simulated reads vs. the speed
up of CGAP-align over BWA, defined as ((TBWA-TCGAP)/TCGAP).
Six sets of simulated human genome shotgun 100 bp reads with error
rates from 0 to 0.1 were generated. The speed up when using STA
under default settings and when using both STA and DCDC under loose
settings is reported.
doi:10.1371/journal.pone.0061033.g004
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map as many reads as CGAP-align. CGAP-align retains its high

recall and precision even when the error rate of the reads is high.

CGAP-align also outputs SAM files, allowing easy use of various

downstream analysis tools.

CGAP-align requires a tunable amount of memory beyond that

required by BWA, which equals to the size of the additional

indices for STA and DCDC. To make DCDC work, a set of

training reads are needed for CGAP-align to build the DCDC

index. In practice, any FASTA file containing reads that are

supposed to be mapped to the reference is qualified to be the

training dataset for that reference. However, we recommend not

using FASTA files larger than 2 GB to reduce memory cost and

time of DCDC index construction.

It is very easy to migrate from using BWA to CGAP-align. For

each reference sequence, only a single command line is needed to

build the additional indices used by CGAP-align. After that,

CGAP-align has an identical interface to that of BWA. In addition,

CGAP-align is backwards compatible with BWA, so BWA can do

read alignment using the FM-index produced by CGAP-align.

The main concern with using CGAP-align* is that it occasion-

ally misses alignments called by BWA. Figure 5 further investigates

a real example of the cause of these differences. Consider CGAP-

align* mapping during the alignment depicted in Figure 5 under

loose settings, where at most 5 edit costs are allowed. The

backward search starts from right to left. When the search goes to

the second mismatch, 3 edit costs have been counted. The D-array

element at the next position (red number on the forth row) also has

a value of 3, indicating that at least 6 edit costs are needed to map

W to X according to DCDC’s D-array. As a result, this alignment

is pruned by CGAP-align*. However, at the same position in

BWA’s case, the D-array value is 2 (telling us that at least 5 edit

costs are needed), which does not trigger the pruning, leading to

the discrepancy between the alignments. From the mechanism

behind this example, we can see that such discrepancies are quite

random and partially depend on the gap positions in the

alignment. As previously noted, only a very small fraction of

reads encounter this problem and the pruned alignments are

typically quite marginal.
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