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Abstract: Prostate cancer (PCa) is the most commonly diagnosed male malignancy and the second biggest cause 
of cancer death in men of the Western world. Higher incidences of PCa occur in men from North America, Oceania 
and Western countries, whereas men from Asia and North Africa have a much lower PCa incidence rate. Investiga-
tions into this population disparity of PCa incidence, in order to identify potential preventive factors or targets for 
the therapeutic intervention of PCa, have found differences in both environmental and genetic variations between 
these populations. Environmental variations include both diet and lifestyle, which vary widely between populations. 
Evidence that diet comes into play has been shown by men who immigrate from Eastern to Western countries. PCa 
incidence in these men is higher than men in their native countries. However the number of immigrants developing 
PCa still doesn’t match native black/white men, therefore genetic factors also contribute to PCa risk, which are sup-
ported by familial studies. There are a number of genetic polymorphisms that are differentially presented between 
Western and Eastern men, which are potentially associated with PCa incidence. Androgen and its receptor (AR) play 
a major role in PCa development and progression. In this study, we focus on genes involved in androgen biosynthe-
sis and metabolism, as well as those associated with AR pathway, whose polymorphisms affect androgen level and 
biological or physiological functions of androgen. While many of the genetic polymorphisms in this androgen/AR 
system showed different frequencies between populations, contradictory evidences exist for most of these genes 
investigated individually as to the true contribution to PCa risk. More accurate measurements of androgen activ-
ity within the prostate are required and further studies need to include more African and Asian subjects. As many 
of these genetic polymorphisms may contribute to different steps in the same biological/physiological function of 
androgen and AR pathway, an integrated analysis considering the combined effect of all the genetic polymorphisms 
may be necessary to assess their contribution to PCa initiation and progression. 

Keywords: Prostate cancer, ethnical disparity, risk factors, genetic polymorphism, androgen, androgen receptor

Introduction 

Prostate cancer (PCa) is the most common 
male malignancy and the second leading cause 
of cancer mortality among men in Western 
countries [1]. However, there is significant dis-
parity between the incidence and mortality of 
the disease among different countries and 
races. People in North America, Oceania, North 
and Western Europe have a much higher dis-
ease incidence than Asian and North African 
populations [1]. There are evidences to show 
that PCa development is due to multiple fac-
tors, such as environmental exposure, diet and 
genetic variation; and these factors, differen-

tially present in different populations, may be 
associated with prostate carcinogenesis 
through the induction of certain somatic 
genomic alterations, which are detected at dif-
ferent frequencies between populations [2-4]. 
Important evidence that diet and environmen-
tal factors contribute to PCa include studies on 
Asian immigrants in North America and Europe, 
who have a significantly higher incidence of PCa 
than residents in Asia [5, 6]. Fat consumption is 
higher in the Western population than Asian, 
and is associated with around 2-fold increased 
PCa risk [7]. In contrast to the elevated PCa risk 
by saturated fat intake, soy products and green 
tea, which are more popular in Asian men, were 
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shown to associate with decreasing PCa risk 
[8-12]. However, although Asian immigrants in 
North America and Europe have a higher inci-
dence of PCa than residents in Asia, it is still 
lower than white and black men in those 
regions [5, 13, 14]. Immigrant studies in the US 
also showed that, even under the same envi-
ronmental conditions and medical care system, 
there were significant differences in mobility 
and mortality of PCa between white and African 
American men [15]. Asian American men pre-
sented with lower clinical stage PCa but a more 
adverse biopsy grade than Caucasian and 
African American men [16, 17]. These data sug-
gest that genetic factors also play an important 
role in the racial and regional difference in PCa 
incidence and mortality. In addition, evidence 
of the importance of the genetic contribution to 
PCa is supplied by the study of familial disease, 
which accounts for approximately 10-15% of 
PCa cases. A meta-analysis study found that 
first degree family members of PCa patients 
are at a 2.53-fold lifetime risk of developing the 
disease [18]. Another review also showed that 
the risk of developing PCa is about 15% if a first 
line relative has suffered, this risk increases to 
20% if a father or brother under the age of 60 
have suffered from the disease [19]. While it 
can be argued that family members have a sim-
ilar life style and environmental exposure, twin 
studies have provided more convincing evi-
dence of the genetic effect of PCa. Monozygotic 
twins, who are genetically identical, were found 
to have a higher risk of developing PCa than 
dizygotic twins, who only share 50% of their 
genes [20-22]. 

We will review the ethnical disparities of genet-
ic polymorphism and its association with differ-
ences in PCa incidence or progression. As 
androgen and androgen receptor (AR) play a 
critical role in both normal prostate and PCa 
growth [23, 24], in this article we will focus on 
genes involved in androgen biosynthesis and 
metabolism, as well as those associated with 
AR pathways, whose polymorphisms affect 
androgen level and androgen biological or phys-
iological functions. 

Androgen in prostate cancer development and 
ethnic differences in androgen levels

The growth of normal prostate epithelial cells 
or PCa cells depends on androgen. PCa is 
extremely rare in men castrated before puberty 

[25] and androgen deprivation is currently still 
the standard therapy for advanced PCa. 
Androgens have also been implicated in the 
occurrence of the TMPRRS: ERG fusion gene. 
This fusion gene has been found at different 
frequencies between populations, occurring in 
50% of PCa samples from Western men, in 
comparison to around 10% in Chinese men [2]. 
This fusion gene can be induced in the PCa cell 
line LNCaP following treatment for 24h with 
DHT and in non-cancer cell line PNT1A and 
PNT2 following long term exposure to DHT [26-
29]. Therefore, androgen levels may be an 
important factor in PCa risk.

Some studies have reported variation in the 
serum levels of androgen between different 
ethnic backgrounds, consistent with variation 
in PCa incidence between different ethnicities. 
They reported black men had higher serum lev-
els of testosterone, free testosterone and dihy-
drotestosterone (DHT) than white men [30, 31], 
and DHT to testosterone ratios were highest in 
African-American, intermediate in white, and 
lowest in Asian-American men [31, 32]. This 
indicates that a high androgen level is a risk for 
PCa. However, studies stratified by age found 
that the difference in serum testosterone only 
exists in young men. Ellis et al [33] compared 
525 African American men and 3654 non-His-
panic white men in different age categories. In 
the 31 to 34 year-old group, African-American 
men had a 6.6% higher mean serum testoster-
one level than white men, yet in the 40 to 50 
year-old group, the difference was only 0.5%. 
Kubricht et al [34] reported that African 
American and white men aged over 40 had 
comparable serum testosterone levels. 
Moreover, some studies found no racial differ-
ences in circulating testosterone and DHT [35, 
36]. 

Regarding the association between androgen 
level and PCa, most case-control studies did 
not support that serum androgen levels contrib-
ute to PCa development [37-53], only two stud-
ies reported positive association between PCa 
and circulating testosterone level [54, 55]. A 
large pooled analysis including 18 prospective 
studies also reported that PCa risk is not asso-
ciated with serum levels of testosterone, free 
testosterone, or DHT [56]. Although the pooled 
analysis showed a negative result, Hsing et al 
[57] indicated circulating levels of testosterone 
might not reflect androgen action in the pros-
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tate. In the serum, the concentration of DHT, 
which has a higher affinity for AR was far less 
than the concentration of testosterone, where-
as the concentration of DHT in prostatic tissue 
was several times higher than that of testoster-
one [57, 58]. Due to technical limitation, it is 
difficult to directly measure the androgen level 
of prostate tissue, particularly in the healthy 
population. There is only one study reporting 
androgen level analysis in prostate tissue. The 
study found that black men had a higher tissue 
concentration of sex hormone-binding globulin 
(SHGB) and androstenedione than white men, 
but the testosterone and DHT levels in prostate 
tissue are similar in black and white men [59]. 
Recent studies of androgen induced gene prox-
imity and fusion genes [26-29] indicate that 
high androgen levels at a certain physiological 
developmental stage, is a risk factor for induc-
ing genomic alterations in prostate cells, and 
consequently increases the risk of PCa. The 
conflicting results either support the associa-
tion between androgen level and PCa risk, or 
oppose it in different studies using different 
research approaches. This may be due to the 
complexity in measuring the real effective 
androgen or associated protein levels. The 
ideal way to measure the impact of androgens 
on PCa should be the DHT levels within the 
prostate tissue from the period of puberty, 
when there is a boost of androgen levels, to age 
50 or 60, when PCa occurs. However, currently 
it is technically difficulty to do this. Novel tech-
niques to repeatedly measure tissue androgen 
levels in an individual through a long period are 
urgently required. For now we have to estimate 
the action of androgen in the prostate by other 
means.

Genes involved in androgen synthesis and 
metabolism 

While it is difficult to identify the form of andro-
gen that potentially contributes to prostate car-
cinogenesis and difficult to quantitatively mea-
sure the active form of androgen in the prostate, 
many studies have focused on genes involved 
in androgen synthesis and metabolism. 

Many of these genes have been found to har-
bour genetic polymorphisms. These polymor-
phisms can potentially change androgen levels 
in prostate tissue, and therefore, may give a 
better idea of the action androgen is playing in 
prostate tissue than measuring levels of circu-

lating androgen. Here we summarize the report-
ed genetic polymorphisms in these pathways 
(Figure 1), which have been reported at differ-
ential racial frequencies and implicated in vari-
ations of PCa risk between different popula-
tions (Table 1).

CYP11A1

CYP11A1 gene on 15q23–q24 encodes the 
P450scc enzyme, which is the first and also 
rate-limiting step of biosynthesis for both tes-
tosterone and estrogen, it catalyzes cholesterol 
to pregnenolone. There is a pentanucleotide 
(TAAAA)n repeat located in the 5’UTR of the 
gene, ranging from 4 to 10-repeat sequences 
[60]. Although the association between (TAAAA)
n repeat and androgen level is unclear, popula-
tion studies have found higher prevalence of a 
6-repeat allele in Japanese populations com-
pared with the higher prevalence of a 4-repeat 
allele in European and African populations [60, 
61]. Japanese PCa patients without the 
4-repeat allele had an increased risk of meta-
static PCa compared to those with the 4-repeat 
allele [61]. However, a positive association with 
PCa risk was not identified from a few studies 
of European populations [62-66]. 

CYP17

CYP17 gene is located on chromosome 10 and 
encodes the cytochrome P450 17 enzyme 
(17a-hydroxylase/17, 20-lyase). This enzyme 
catalyzes two reactions in the biosynthesis of 
testosterone in the gonad and adrenal glands. 
The first step is conversion of pregnenolone to 
17-hydroxypregnenolone (hydroxylase activity), 
and the second step is the subsequent conver-
sion to dehydroepiandrosterone (lyase activity) 
[67, 68]. The 5′-untranslated promoter region of 
the CYP17 gene contains a single nucleotide 
polymorphism, a T to C substitution, that gives 
rise to A1 (T) and A2 (C) alleles (rs743572). This 
T to C transition creates a potential Sp1 binding 
site (CCACC box) or promoter region, which was 
suspected to increase the transcription of the 
CYP17 gene [69]. However contradictory results 
were reported from a later study [70].

Frequency of the A2 allele was highest in Asian, 
intermediate in Caucasian and lowest in Black 
men [71, 72]. However, case-control studies for 
association between the A2 allele and PCa risk 
were inconsistent. More than half of the stud-
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ies indicated that the A2 allele may be associ-
ated with an increasing PCa risk [73-80]. 
However, a number of studies suggested no 
association [81-84] and a few studies even 
showed a possible increased risk of PCa from 
the A1 allele [85-87]. It is a paradox that the 
Asian population, with a higher frequency of the 
A2 allele, have a lower incidence of PCa than 
Black and white populations. Results from two 
meta-analysis studies may partially explain this 
contradiction. They found that a significant 
association between A2 polymorphism and 
PCa risk only existed in the black population, 
but not in Caucasian or Asian populations [71, 
88]. Therefore, the A2 type of CYP17 may coop-
erate with other genetic or environmental fac-
tors existing in the black population to contrib-
ute to the risk of PCa.

SRD5A2

Steroid 5α-reductase irreversibly converts tes-
tosterone into DHT. Two forms of steroid 
5α-reductase exist, steroid 5α-reductase type 
1 (SRD5A1) and steroid 5α-reductase type 2 
(SRD5A2). SRD5A1 is expressed more abun-
dantly in extra-prostatic tissues, such as the 
skin and SRD5A2 is exclusively expressed in 
the prostate [89]. 5α-reductase activity was 
lower in Asian than white and black men [90, 
91]. 

The SRD5A2 enzyme is encoded by the SRD5A2 
gene, which is located on chromosome 2p23. A 
substitution polymorphism A49T (rs9282858) 
results in replacement of an alanine (A) residue 
at codon 49 with threonine (T), which has been 

Figure 1. Androgen pathway and genes involved in androgen biosynthesis and metabolism. Abbreviations, DHEA: 
dehydroepiandrosterone; DHT: dihydrotestosterone.
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Table 1. Genetic polymorphisms in genes associated with androgen biosynthesis/metabolism and AR 
which show differential racial frequencies and potential association with prostate cancer 
Gene Variant Racial frequency difference Association with pros-

tate cancer risk
Asian White  Black 

CYP11A1 (TAAAA)n repeat More 6-repeats in Japanese, 4-repeats in 
European and African 

IC IC IC

CYP17 T>C (rs743572) Highest in Asians, intermediate in Caucasians, 
lowest in Blacks

No No Yes 

SRD5A2 A49T Sparse in whites and blacks, not detected in 
Asians

IC IC IC

V89L Higher in Asians than Caucasians and Blacks IC IC IC
(TA)n repeat Longer repeat higher in whites than Asians Yes Yes NA

HSD3B1 N367T (rs1047303) Higher frequency in Caucasians, middle in 
African Americans and lower in Asians

IC IC IC

HSD3B2 (TG)n(TA)n(CA)n repeat Most common alleles occurred at different 
frequencies

NA Yes No 

HSD3B2 rs1819698 and 
rs1538989

Higher in African-Americans than Caucasians NA No Yes

CYP19A1 rs2470164 Higher in Caucasians than African Americans NA Yes No
Arg264Cys (rs700519) Higher frequency in Indians than African 

Americans and Caucasians
Yes IC No 

(TTTA) n Short repeat (A1) at high frequency in Asians IC IC IC
CYP3A4 A>G (rs2740574) Higher in African descents than Caucasians 

and Asians
IC IC IC

CYP3A5 CYP3A5*3C (rs10249369) More in Caucasians than Africans NA Yes No 
CYP3A43 CYP3A43*3 (rs680055) More in African Americans than Caucasians NA No Yes 
HSD17B1 Haplotype CAGC More in whites and blacks than Asians Yes No No 
AKR1C3 A>G (rs3763676) More in Caucasians than Asians NA Yes NA
SHBG D356N More in whites than blacks NA IC IC
AR CAG repeat Longest in Asians, intermediate in whites, 

shortest in blacks
IC IC IC

GGN repeat Longest in Asians, medium in whites, 
shortest in blacks

IC IC IC

UGT2B15 D85Y More 85D allele in Asians than Caucasians IC IC IC
NA: no report in the population; IC: Inconclusive.

reported to increase the activity of 5α-reductase 
5-fold, both in vitro and in vivo [92]. The preva-
lence of the T allele was 2-2.8% and 1% in con-
trol subjects of European and African descent. 
It is absent in men of Asian descent [93-95]. 
The association between A49T and PCa risk 
has been extensively investigated, but the 
results are controversial. Three meta-analyses 
for this polymorphism have been published. In 
a study by Ntais et al [95] (7 studies with a total 
of 1594 cases and 2137 controls), the T allele 
has shown a modest effect on PCa susceptibil-
ity. However, the meta-analysis results from Li 
et al [94] (24 studies with a total of 4,998 
cases and 5,451 controls) indicated A49T was 
probably not associated with PCa risk. A recent 
meta-analysis including 31 association studies 
with 14,726 PCa cases and 15,802 controls 
also found that the T allele had no significant 
effect on the overall PCa risk, but the T allele 

significantly elevated the risk of high stage 
(Stages III-IV) disease [93]. The prevalence of 
the T allele is sparse in the general population, 
with a frequency of T/T homozygosity of only 
0.5% in healthy Caucasians, who have a rela-
tively higher frequency of the T allele than other 
populations [93]. This rarity of T allele cases 
may also contribute partly to the inconclusive 
results for the association between A49T and 
PCa risk.

The V89L (rs523349) polymorphism results in 
a valine (V) to leucine (L) substitution at condon 
89, which decreases 5α-reductase activity 
[96]. Men with the LL genotype had almost a 
30% reduction of activity of 5α-reductase than 
men with VL or VV genotypes [96]. The L allele 
was more commonly found in Asian (46.9-50%) 
than Caucasian (28.1-37.5%) and African men 
(25-33.5%) [93-95]. The V89L variant was also 
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common in men in Greenland who had a low 
risk of PCa [97]. These studies suggested that 
the V89L substitution may be a protective fac-
tor for PCa, but some recent case-control stud-
ies did not find significant association between 
the V89L polymorphism and PCa risk [87, 98, 
99]. All meta-analysis studies also excluded 
such an association in all ethnic groups [93-
95], except one, which found a small increase 
in PCa risk in Europeans with the L allele [100].

The TA dinucleotide repeat polymorphism is 
present in the 3′ untranslated region of 
SRD5A2. It has three main polymorphsims with 
different numbers of TA-dinucleotide repeats, 
(TA)0, (TA)9 and (TA)18 [101]. The frequencies of 
(TA)9 and (TA)18 alleles were 14% and 9% in 
healthy subjects of European and Asian 
descent, respectively [95], but 32% in African 
American men [102]. (TA)18, in particular, is 
present in a much higher frequency in African 
American than Caucasian and Asian American 
populations, where this allele is rare [95, 102]. 
Although it is expected that the longer TA 
alleles, presenting more frequently in the high 
PCa risk African American group, may increase 
cancer risk. Interestingly, meta-analysis stud-
ies (4 studies, 1109 cases and 1378 controls) 
presented the opposite result, the longer alleles 
were associated with a modest PCa risk reduc-
tion in Caucasian men [95]. Case-control stud-
ies in Chinese and Indian men (191 and 157 
cases respectively) also reported that homozy-
gous (TA)0 leads to higher PCa risk than longer 
alleles [99, 103]. It is not clear whether the lon-
ger repeat alleles also have a protective role in 
the Black population, due to lack of case-con-
trol studies in men of African descent.

HSD3B family

The HSD3B1 and HSD3B2 genes, located on 
1p13.1, encode 3β-hydroxysteroid dehydroge-
nase/∆5-∆4 isomerase 1 and 2 isoenzymes 
(3β-HSD types 1 and 2). The proteins are bi-
functional enzymes that catalyze androstendi-
one production in steroidogenic tissues and 
convert the active DHT into inactive metabo-
lites in steroid target tissues [104]. 

A N367T (AAC>ACC, rs1047303) polymorphism 
in HSD3B1 has been reported to present at a 
high frequency in Caucasian (31%), inter-medi-
um frequency in African American (11.7%) and 
low frequency in Asian men (8.5%), although 

the variant has a similar activity to the wild type 
[105]. Chang et al [106] reported that the N 
type variant increased PCa risk moderately in 
Caucasian men, but this was not supported by 
further studies [64, 107]. 

A complex (TG)n(TA)n(CA)n dinucleotide repeat 
polymorphism was found in intron 3 of the 
HSD3B2 gene [108]. The common alleles 
occurred at very variable frequencies in differ-
ent racial populations, with the longer alleles 
more commonly found in Asian men [109, 110]. 
The longer the allele length, the more stable 
the hairpin structures they formed and subse-
quently, the faster the degradation rate of DHT. 
Short alleles have been found to be associated 
with an increased PCa risk in Caucasian but not 
in African American men [109].

Beuten et al [111] found that two SNPs in 
HSD3B2, rs1819698 and rs1538989, were 
more common in African American than 
Caucasian men and increased PCa risk in 
African American but not Caucasian men. 

The interaction between HDS3B1 and HSD3B2 
polymorphisms has also been investigated. 
Although the N367T polymorphism in HSD3B1 
is only weakly associated with PCa risk, the 
combination with HSD3B2 rs1819698 greatly 
enhanced the association [106].

CYP19A1

The CYP19A1 gene, located on chromosome 
15q21.1, encodes the enzyme aromatase, 
which catalyzes the irreversible conversion of 
C19 androgens, androstenedione and testos-
terone, to the C18 estrogens, estrone and 
estradiol respectively. More than 30 SNPs have 
been detected in different populations. Several 
SNPs (rs2470152, rs749292, rs727479) were 
confirmed to be associated with serum estra-
diol of men [112, 113]. 

Beuten et al [111] explored polymorphisms of 
CYP19 by genotyping 2,452 samples from 
Caucasian and African American men, some of 
these polymorphisms (rs2470152, 
rs12439137, rs3751592, rs2470164) were 
associated with PCa risk and had different 
racial distributions. Particularly rs2470164, 
which was reported to increase PCa risk in 
Caucasian men, had a dramatically different 
frequency among healthy Caucasian (50%) and 
African American men (5.6%). 
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The tetranucleotide repeat (TTTA)n is located in 
intron 4 of CYP19A1, TTTA repeat numbers 
range from 7 to 13 and are designated as A1 to 
A7 according to the repeat number. Most stud-
ies for this polymorphism were among Asian 
men. A1 was found to occur more frequently 
(about 50% of the population) than all other 
alleles in Asian men [114, 115]. Suzuki et al 
[116] reported that the shorter repeat (A1 and 
A2 alleles) significantly increased familial PCa 
risk in Japanese men. Huang et al [115] found 
the homozygous A1 genotype had a significant-
ly greater risk of developing PCa in Taiwanese. 
However, in conflict with their results, another 
study in Japanese men found a longer repeat 
was significantly associated with increased 
PCa risk [114]. Latil et al [82] reported that 
some specific repeat lengths were associated 
with PCa risk in men of White French ethnogeo-
graphic origin, but studies among US men 
reported no association with PCa [64]. 

The polymorphism Arg264Cys substitution 
(rs700519) was found at a higher frequency in 
Indian men (27%) [117] in comparison to African 
American (16.8%) and Caucasian men (4-8.1%) 
[107, 111, 118]. Studies among Caucasian and 
Indian men showed a tendency for this poly-
morphism to increase risk [117, 118], but large 
case studies failed to confirm the results in 
Caucasian men [107, 111, 113].

CYP3A family

Cytochrome P450 3A (CYP3A) enzymes hydrox-
ylate testosterone and dehydroepiandros-
terone to less active metabolites. The CYP3A 
locus consists of four genes in humans, 
CYP3A4, CYP3A5, CYP3A7 and CYP3A43, all of 
which reside in a 231 kb region of chromosome 
7q21-22.1 [119]. 

CYP3A4 is involved in the oxidative deactiva-
tion of testosterone, an A to G mutation 
(CYP3A4*1B, rs2740574) was reported to 
decrease CYP3A4 protein activity, thus increase 
the availability of testosterone [120]. 
CYP3A4*1B has a higher frequency in men 
from African descent than Caucasian and is 
absent in Asian men [121-125], but case-con-
trol studies didn’t find an association between 
CYP3A4*1B and PCa risk in men of African 
descent who had a high frequency of the vari-
ant [78, 111, 124, 126]. In addition, reports in 
Caucasian men were contradictory [111, 124, 

127]. Studies for the association between 
CYP3A4*1B and the progression of PCa were 
also inconclusive, some studies reported 
CYP3A4*1B is associated with aggressive PCa 
in Caucasian and African American men [122, 
123, 125, 127, 128], however others studies 
disagreed [129-131]. 

CYP3A5 catalyzes 6β-hydroxylation of testos-
terone, it has been suggested that CYP3A5 is 
expressed at high levels in the non-tumoral 
prostate tissue, specifically in the basolateral 
cells, and that this expression does not occur in 
the tumor. An A to G transition (A6986G) within 
intron 3 leads to a variant in the CYP3A5 mRNA 
expression in human prostatic tissue [132]. 
The allele CYP3A5*1 (A allele) produces a cor-
rectly spliced transcript leading to high levels of 
full-length CYP3A5 mRNA and protein [125, 
133]. The allele CYP3A5*3 (rs776746, G allele) 
creates a cryptic splice site leading to the inclu-
sion of a novel exon, and ultimately a prema-
ture stop codon [133]. CYP3A5*3/*3 decreas-
es CYP3A5 mRNA content 13-fold compared to 
CYP3A5*1/*3 [132]. CYP3A5*1 has a higher 
frequency in African American individuals than 
Caucasian or Asian men [133]. CYP3A5*1 was 
suggested to show obvious linkage disequilibri-
um with CYP3A4*1B in Caucasian and African 
men [127, 133, 134], and the CYP3A4*1B/
CYP3A5*1 haplotype was inversely associated 
with risk among Caucasian men with less 
aggressive disease [125]. Studies in Japanese 
men whose CYP3A4*1B was absent may help 
confirm that the CYP3A5*1 allele is associated 
with PCa risk, however cannot exclude that 
CYP3A4*1B may also be a risk factor. They 
reported CYP3A5*1/*1 men had lower risk of 
developing a low-grade localized PCa than 
CYP3A5*3/*3 men [135]. On the other hand, 
although CYP3A5*3 was reported not to asso-
ciate with PCa in either white or African men 
[126], the CYP3A4*1B/CYP3A5*3 haplotype is 
significantly associated with increasing PCa 
risk in European American but not in African 
American men [125, 136]. Moreover, CYP3A5 
is also reported to interact with SRD5A2 or 
KLK3 which could influence development of 
PCa [137].

CYP3A43 is predominantly expressed in the 
prostate [138]. The CYP3A43*3 allele 
(rs680055) frequency was significantly higher 
in African American than Caucasian men [127, 
139]. There was a 2.6-fold increase in PCa risk 
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among individuals with the CYP3A43*3 homo-
zygous genotype compared with those with the 
CYP3A43*1 homozygous genotype in African 
American, but not in Caucasian men [127, 139]. 

There are very few studies on CYP3A7, Simense 
et al [140] found the CYP3A7*1C (rs11568825) 
G allele decreased levels of estrone sulphate, 
dehydroepiandrosterone sulfate, androstenedi-
one and estrone, however no significant asso-
ciation was observed for CYP3A7 genotypes 
with PCa risk.

HSD17B family

The 17β-hydroxysteroid dehydrogenases 
(17β-HSDs) are involved in regulation of estro-
gens and androgens by catalyzing the reduc-
tion of 17-ketosteroids or the oxidation of 
17β-hydroxysteroids. 

17β-HSD1, encoded by HSD17B1 on 17q21 
plays a role in estrogen and testosterone bio-
synthesis. Cunningham et al [64] reported a 
polymorphism of HSD17B1 (Ser313Gly, 
rs605059), detected in 40% of patients, mainly 
Caucasian men, had a possible association 
with either familial or sporadic cases of PCa. 
However, large numbers of multi-ethnic studies 
(The Breast and Prostate Cancer Cohort 
Consortium, BPC3) have since found no asso-
ciation [141]. BPC3 detected four common 
SNPs (rs676387, rs605059, rs598126, 
rs2010750). Although none were found to be 
associated with PCa risk, they reported some 
haplotypes that consisted of the four SNPs had 
varying frequencies between different races. 
The haplotype CAAC was only common in 
African American men, CAGC was more preva-
lent in white and black than Asian men, and 
CAGC was inversely associated with PCa risk in 
Latino and Japanese American but not in 
African American, Native Hawaiian, or white 
men [141].

17β-HSD2 encoded by HSD17B2 on 16q24 is 
involved in the conversion of active androgens 
into their less active forms. SNPs in HSD17B2 
(rs1424151) were found to have significant 
associations between plasma testosterone 
level in Caucasian men [142], but no associa-
tion with PCa was detected [64, 142].

17β-HSD3 encoded by HSD17B3 on 9q22 cata-
lyzes androstenedione to testosterone. The fre-

quency of the G289S polymorphism 
(rs2066479) of HSD17B3, was 4.3-7.3% in 
Caucasian men and was reported to significant-
ly increase PCa risk in Italian men [143], but 
studies in Finnish and Swedish men found no 
positive associations [107, 144]. 

The HSD17B4 gene on 5q21 encodes andro-
gen/estrogen inactivating enzyme 17β-HSD4. It 
was reported to be associated with the out-
come of PCa patients [145, 146].

Human 17β-HSD5 belongs to the aldo-keto 
reductase (AKR) superfamily and is formally 
known as AKR1C3 encoded by the AKR1C3 
gene on 10p14-p15, it catalyzes the conver-
sion of androstenedione to testosterone and 
DHT to androstanediol. An A to G substitution 
was identified in exon 2 that confers a Glu77 
Gly (rs41306308) change, this occurred in 
4.8% of Caucasian men but was completely 
absent in Asian men, and the Glu77Gly poly-
morphism was associated with lower testoster-
one levels in serum [147]. Furthermore a pro-
moter polymorphism (A to G, rs3763676) of 
AKR1C3 is more prevalent in Caucasian than 
Asian men [147] and men with the A allele have 
a borderline significant decreased risk of PCa 
[148].

UGT2B15

UGT2B15 is a member of UDP-
glucuronosyltransferases (UGTs) family which 
glucuronidate steroids and many endogenous 
chemicals, encoded by the UGT2B15 gene 
located on 14q13–q21.1. It has a high capacity 
to glucuronidate 3α- androstenediol and a 
moderate capacity for DHT. A nonsense muta-
tion in codon 85 (aspartate>tyrosine, D85Y, 
Asp85Tyr) has been identified in the UGT2B15 
gene. The 85Y variant associates with a 2-fold 
increase in activity for 3α- androstenediol and 
DHT, it is likely to lead to lower androgen expo-
sure compared with 85D. A study found that 
Asians had a higher 85D allele frequency than 
Caucasians [149]. Case-control studies are 
inconclusive, several studies reported the 85D 
allele increased PCa risk [150-153], but anoth-
er two studies reported no association with 
PCa [64, 154].

Sex hormone binding globulin

Sex hormone-binding globulin (SHBG) gene is 
located on 17p12-p13 and encodes a steroid 
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binding protein that is a major regulator of free 
plasma androgens. It also mediates androgen 
and estrogen signaling at the cell membrane 
via cyclic adenosine monophosphate. Most 
studies found black men who had higher PCa 
risk had higher plasma SHBG level than white 
and Asian men [155-157]. Black men were also 
found to have higher levels of SHBG in their 
prostate tissue than white men [59]. 
Interestingly, although the higher risk popula-
tion have a higher SHBG level, a collaborative 
analysis of 18 prospective studies found the 
fifth highest serum SHBG levels had a relative 
PCa risk reduction of 14% when compared with 
the fifth lowest [56]. 

A common polymorphism in the SHBG gene, 
D356N, encodes for an additional 
N-glycosylation consensus site, which may 
reduce its clearance from circulation and alter 
its binding to membrane receptors [158]. 
Berndt et al [129] carried out a multicenter 
study and found the SHBG D356N heterozygot-
ic polymorphism had a higher frequency in 
white men (17%) than black men (7.8%). The 
D356N heterozygote is associated with increas-
ing PCa risk in non-Hispanic white but not in 
black men. Studies carried out in British and 
US men reported no association between PCa 
and SHBG polymorphisms [64, 159].

Androgen receptor gene (AR gene) polymor-
phism

AR gene is located at Xq11.2-q12, the open 
reading frame is separated over eight exons 
that encode for AR. AR comprises of four func-
tional domains including the amino-terminal 
transcriptional activation domain, the DNA 
binding domain, a hinge region, and the carbox-
yl-terminal ligand binding domain [160]. 
Expression of AR protein was found to be high-
er both in benign prostate tissue and PCa tis-
sue in black men compared with white men 
[161, 162]. The amino-terminal transcriptional 
activation domain, encoded by exon one, 
includes two high frequency polymorphic 
repeats, CAG and GGN [163]. AR expression 
level and function were found to have an 
inverse association with the length of CAG or 
GGN repeat in in vitro studies [164, 165].

The length of CAG repeats ranges from 8 to 35 
repeats in the normal population. Hispanic men 
have been reported to have the longest aver-

age CAG repeat length (23-25). The Chinese 
population have longer CAG repeats (average 
between 22-23) than that of the Caucasian 
population (average between 21-22), and the 
black population have the shortest average 
CAG repeats (average between 19-20) [35, 97, 
166-175]. Several studies reported testoster-
one levels were significantly elevated in men 
with greater CAG repeat length [167, 176, 177], 
but other studies found no correlation between 
CAG repeat length and serum testosterone lev-
els [178-180]. Studies of polymorphic CAG 
repeats associating with PCa risk were also 
inconsistent, several studies found the shorter 
CAG repeats associated with increasing PCa 
risk [171, 181-188], a meta-analysis reported 
the association was different in different popu-
lations, longer repeat carriers (>/= 20 repeats) 
had 11% decreased risk in populations from 
USA, 53% decreased from Europe, and 20% 
decreased from Asia [189], however recently 
several projects, including two multiple-center, 
large-sample studies didn’t find association 
between CAG repeat length and PCa risk [166-
168, 170, 175, 190-194]. A few studies among 
the East Asian population even observed that 
longer than average CAG repeat length is more 
common in PCa cases compared to the con-
trols [195, 196]. Instead of studying longer or 
shorter CAG repeat length, one study focused 
on some specific CAG repeat numbers, Ding et 
al [164] reported 17 CAG-repeats was much 
more common in PCa patients (8.5%) than in 
the general European and American popula-
tions (1.3%). 

The biological role of GGN trinucleotide repeats 
is less clear, polymorphisms in the normal pop-
ulation range from 10 to 31 repeats, present as 
a (GGT)3GGG(GGT)2(GGC)n motif. Similar to CAG 
repeat variation in different populations, black 
men have shorter GGN repeats than white and 
Asian men [197, 198]. Most studies to evaluate 
the relationship between PCa and GGN repeat 
length were carried out in Caucasian men. 
Case-control studies were also controversial 
among Caucasian and Asian men. A shorter 
GGN repeat length was found to be associated 
with PCa risk in several studies [172, 199-201]. 
One study found that PCa risk was higher in 
American men with 23 GGN repeats than all 
other repeat numbers [202]. However, more 
studies found no association between GGN 
repeats and PCa risk [168, 181, 182, 193, 
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194, 203-205]. Unlike the inconclusive results 
in white and Asian men, the only two studies 
including black men consistently reported no 
associations between PCa risk and GGN poly-
morphism [168, 182]. 

The size or composition of a GGN repeat was 
reported to have no correlation with the length 
of the CAG repeat [163], however, there may be 
interaction between them. When a subgroup 
with two short repeats (CAG <22; GGN <or =16) 
was compared with those in which both alleles 
were long (CAG > or =22; GGN >16), increasing 
PCa risk was observed in Caucasian men [199], 
but the result couldn’t be replicated in a later 
study which found the haplotye with short CAG 
(<22) and short GGC repeats (<or =17) didn’t 
increase PCa risk [193].

Other genetic polymorphisms associated with 
prostate cancer predisposition

Besides these genes related to androgen, 
some other genetic polymorphisms have also 
shown population differences and have been 
implicated for possible association with PCa, 
as they play important roles in cellular prolifera-
tion, differentiation and apoptosis (Table 2). 
The epidermal growth factor receptor (EGFR) 
gene is located at 7p12. EGFR, encoded by 
EGFR gene is a cell surface protein that binds 
to epidermal growth factor. A dinucleotide (CA)n 
repeat polymorphism, ranging from 14 to 21 
repeats, was suggested to regulate EGFR 
expression. The frequency of longer alleles is 

significantly higher in Asian men than Caucasian 
and African men [206]. Although there is no 
direct evidence to suggest the polymorphism is 
associated with PCa, the longer allele with 21 
repeats showed an 80% reduction of gene 
expression compared with the shorter allele 
with 16 repeats [206, 207]. EGFR protein over 
expression was found in 36% of the prostate 
tumor samples [208]. Another candidate gene 
RNASE L is located in the hereditary PCa 1 
(HPC1) gene region (1q24-25). The polymor-
phism Arg462Gln in RNASEL has a higher fre-
quency in Caucasian than African American 
men and is associated with increasing PCa risk 
in these men [209, 210], but a study among 
Japanese men reported the Gln462 allele 
decreased the risk of familial PCa [211]. 
Homozygous Asp541 in RNASE L is significantly 
less frequent in Asian than Caucasian and 
African men [211-214]. The Asp541 allele is 
associated with decreasing PCa risk in African 
American men but increasing risk in Japanese 
men [211, 212]. The ELAC homolog-2/heredi-
tary PCa (ELAC2/HPC2) gene at 17p11 is 
involved in DNA inter strand crosslink repair 
and mRNA editing, it has a possible role in the 
regulation of cell cycle progression. The poly-
morphisms Leu217 and Thr541 in ELAC2 were 
more prevalent in Caucasian than in Asian and 
black men [212, 215]. A meta-analysis report-
ed the Leu217 allele and Thr541 polymor-
phisms significantly increased PCa risk in Asian 
men but moderately affected Caucasian men 
[215]. Leu217 could also significantly increase 
PCa risk in African American men [212]. X-ray 

Table 2. Genetic polymorphisms in non-androgen associated genes with differential racial frequencies 
Gene Variant Racial frequency difference Association with prostate cancer risk

Asian White Black
EGFR CA repeat Longer in Asians than whites and blacks NA NA NA
RNASEL Arg462Gln More in Caucasians than Asians and African-

Americans
IC IC IC

Asp541Glu Less Asp allele homozygote in Asians than 
Caucasians and Africans

IC IC IC

ELAC2 Ser217Leu More in Caucasians than Asians and blacks Yes No Yes 
Ala541Thr More in Caucasians than Asians and blacks Yes No No 

XRCC1 G>A (rs25487) Similar in Asian and Whites, but higher than 
African descents

Yes No No 

CDH1 −160 C/A Higher in whites and blacks than Asians IC IC No 
VDR TaqI Lowest in Asians IC IC IC

ApaI More in Asians than Caucasians and Africans IC IC IC
Poly(A) Lowest in Asians No No No 
BsmI Lower in Asians than other populations IC IC IC
FokI More in Asians than Caucasians and Africans IC IC Yes 

NA: no report in the population; IC: Inconclusive.



Androgen-associated ethnical differences and prostate cancer

137 Am J Cancer Res 2013;3(2):127-151

repair cross-complementing group 1 (XRCC1) is 
an important DNA repair gene located at 
19q13.2-13.3. The polymorphism Arg399Gln 
correlates with DNA repair activity. Meta-
analysis found Gln399 associated with higher 
PCa risk in Asian men but not Caucasian men 
[216, 217]. E-cadherin (CDH1) gene encoding 
an adhesion glycoprotein, located at 16q22.1, 
has a -160C/A polymorphism in the promoter 
region. The A allele has approximately 68% 
decreased transcriptional activity compared 
with the C allele [218]. Most studies showed 
the A allele increased the risk of PCa among 
Caucasians [219-223], but did not affect men 
from African descent [222, 223]. Studies in 
Asian men reported inconclusive results 
[224-226]. 

There are several common allelic variants in 
the vitamin D receptor (VDR) encoding gene 
VDR, located on chromosome 12q13-q14, 
including BsmI (rs1544410), ApaI (rs 7975232), 
TaqI (rs731236), FokI (rs10735810) and a 
poly(A) in the 3’UTR region. They are in strong 
linkage disequilibrium with each other in white 
individuals except FokI. The frequency of the 
FokI allele and the ApaI A allele is higher in 
Asians than Caucasians and Africans, whereas 
the frequency of the BsmI B allele is much 
lower in the Asian population compared to 
other populations. The TaqI and poly (A) poly-
morphisms occur at a similar ratio, with the low-
est percentage in Asians [227]. 1,25 (OH) 2D3, 
the active form of vitamin D, inhibits the prolif-
eration of epithelial cells derived from normal 
and malignant prostatic tissues [228]. The vita-
min D receptor (VDR) is a crucial mediator for 
the cellular effects of vitamin D and interacts 
with other cell-signaling pathways that influence 
cancer development. However, the case-con-
trol studies looking at the association between 
VDR polymorphisms and PCa risk are inconsis-
tent. An earlier meta-analysis, including 26 
studies suggested that none of these VDR poly-
morphisms are related to PCa risk [229], 
whereas most recent studies reported positive 
associations [190, 230-236]. The study design 
may be an impormat factor to infleunt the 
resuts.

With the development of SNP array technology, 
a genome wide association study (GWAS) 
emerged for identifying small and moderate 
risk SNPs. The first two GWAS studies identified 
a 3.8 Mb interval on chromosome 8q24 as sig-

nificantly associated with susceptibility to PCa 
in 2006 [237, 238]. Today GWAS have been 
remarkably successful in identifying dozens of 
common genetic variants or loci associated 
with PCa [239-241]. Most of those PCa predis-
position SNP loci were initially identified in 
Western populations and half of them are not 
associated with PCa risk in the East Asian pop-
ulation [239, 240]. Two SNPs located at chro-
mosome 4 have also been reported to show 
specific ethnical association with PCa risk 
[242]: rs12500426, which exhibited an associ-
ation in Europeans but not in Asian or African 
American men and rs7679673, which was 
associated with disease in European and Asian 
populations but not in African American men. A 
replication study of five PCa loci initially identi-
fied in an Asian population (rs13385191, 
rs12653946, rs1983891, and rs339331, 
rs9600079) found that one SNP (rs9600079) 
was not associated with PCa risk in European 
populations [243]. 

Conclusions 

Most studies for androgen-related genes 
showed a trend that the alleles leading to high-
er androgen levels are more common in high 
risk populations, although a few studies report-
ed the opposite results, such as the A2 allele of 
CYP17, which potentially increases androgen 
synthesis and has the highest frequency in 
Asian men, middle in Caucasian and lowest in 
African [71, 88] and CYP3A5*1, which may 
decrease testosterone activity but is more 
prevalent in men of African descent than 
Caucasian and Asian men [133]. However, the 
evidences show that the resultant androgen 
level difference among populations is contra-
dictory. This may be caused by several factors. 
1. Androgen and DHT concentration is affected 
by both androgen synthesis and metabolism, 
which are controlled by multiple genes, most of 
them with polymorphisms that play a role in 
this pathway. Polymorphisms in some genes 
may be compensated by other genes and, 
therefore, the total effect on the change in 
androgen levels is small. 2. Androgen action is 
determined by cooperation of androgen and 
AR. Populations with a longer CAG repeat poly-
morphism of AR, which leads to higher plasma 
androgen levels to compensate for lower AR 
transactivity [167, 176, 177], usually have more 
genetic polymorphisms leading to lower andro-
gen concentration. These opposing genetic 
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effects may also minimize the population dis-
parity of androgen levels. 3. There are different 
forms of androgens and the androgen level in 
plasma and the prostate tissue is not correlat-
ed. It is not surprising that previous studies 
measuring different forms of androgens gener-
ate different results. Unfortunately, accurately 
measuring DHT levels in the prostate tissue, 
which may be the most effective indicator of 
androgen activity in the prostate and may be 
closely associated with the role of androgen in 
prostate carcinogenesis, is currently difficult. 4. 
Due to the complexity and limited effects of 
each of the genetic factors in determining 
androgen levels and the potential subtle differ-
ence among populations of androgen levels, 
population studies with a large number of indi-
viduals from each population are required, but 
yet have rarely been achieved in previous 
studies.

Regarding the association between those poly-
morphisms and PCa risk, case-control studies 
for most genetic polymorphisms were inconclu-
sive and some SNPs were only found to be 
associated with disease in a particular popula-
tion. In addition to the above explanation, which 
may affect androgen level and PCa risk in com-
plex ways, gene-gene interaction or gene-envi-
ronment interaction may contribute to these 
controversial conditions. Some SNPs are found 
to have no association with PCa individually, 
but several adjacent loci could increase PCa 
risk. As a haplotype, some genes on different 
chromosomes or in different pathways were 
also reported to interact with and increase PCa 
risk. An example of this is the SRD5A2 V89L VV 
genotype, which interacts with VDR FokI TT/CT 
genotypes in non-Hispanic white men to 
increase PCa risk [233]. Interestingly, the inter-
actions of genetic polymorphisms with other 
factors have also presented racial differences, 
Barnholtz-Sloan et al [136] reported that the 
CYP3A43 genotype displays a distinct hierarchy 
of gene-environment and gene-gene interac-
tions. In European American men it is associ-
ated with PCa risk in combination with a history 
of benign prostate hypertrophy, a familial his-
tory of PCa and age at consent. However, in 
African American men, the CYP3A4/CYP3A5 
haplotype of this gene is associated with PCa 
risk in combination with a familial history of 
PCa, a higher individual proportion of European 
ancestry and the number of GGC AR repeats. 

Inconclusive results may also be due to the 
majority of previous studies, especially large 
numbers of case-control studies, having been 
carried out in white men. Limited case numbers 
of Asian and African men, result in studies lack-
ing sufficient power to confirm results. Besides 
the limited case numbers, Kittles et al [124] 
indicated other characteristics in studies on 
men of African descent. The African American 
population was genetically heterogeneous 
because of its African ancestry and subsequent 
admixture with European Americans, so strong 
population stratification happened among 
African Americans. The results of their study 
revealed the potential for confusion in associa-
tion studies including African American men.

In summary, due to the complex nature of the 
AR pathway, there are many different ways that 
genetic polymorphisms can contribute to the 
deregulation of this pathway and PCa risk. 
Future studies need to include an integrated 
analysis of the combined effect of these poly-
morphisms on the AR pathway, as well as 
androgen metabolism/biosynthesis in addition 
to more accurate measurements of prostatic 
DHT levels. Analysis of these polymorphisms 
also becomes more problematic due to racial 
disparities in the research data. Future studies 
should include more African and Asian subjects 
and take into account all the factors consid-
ered when judging the PCa risk. While these are 
currently difficult to achieve, functional confir-
mation of those genetic factors in affecting car-
cinogenic molecular or biological features may 
help to establish their contribution to PCa 
development.
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