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Abstract

Marine protist species have been used for several decades as environmental indicators under the assumption that their
ecological requirements have remained more or less stable through time. However, a growing body of evidence suggests
that marine protists, including several phytoplankton species, are in fact highly diverse and may quickly respond to changes
in the environment. Predicting how future climate will impact phytoplankton populations is important, but this task has
been challenged by a lack of time-series of ecophysiological parameters at time-scales relevant for climate studies (i.e. at
least decadal). Here, we report on ecophysiological variability in a marine dinoflagellate over a 100-year period of well-
documented environmental change, by using the sedimentary archive of living cysts from a Scandinavian fjord (Koljö Fjord,
Sweden). During the past century, Koljö Fjord has experienced important changes in salinity linked to the North Atlantic
Oscillation (NAO). We revived resting cysts of Pentapharsodinium dalei preserved in the fjord sediments and determined
growth rates for 18 strains obtained from 3 sediment core layers at salinity 15 and 30, which represent extreme sea-surface
conditions during periods of predominantly negative and positive NAO phases, respectively. Upper pH tolerance limits for
growth were also tested. In general, P. dalei grew at a higher rate in salinity 30 than 15 for all layers, but there were
significant differences among strains. When accounting for inter-strain variability, cyst age had no effect on growth
performance or upper pH tolerance limits for this species, indicating a stable growth response over the 100-year period in
spite of environmental fluctuations. Our findings give some support for the use of morphospecies in environmental studies,
particularly at decadal to century scales. Furthermore, the high intra-specific variability found down to sediment layers
dated as ca. 50 years-old indicates that cyst-beds of P. dalei are repositories of ecophysiological diversity.
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Introduction

Our knowledge of past environments and climate change

throughout Earth’s history depends on proxy and modelling data,

as instrumental recording only began by the end of the 1800 s and

for most parameters only within the past few decades. Environ-

mental reconstructions using biological proxies make use of

present-day species ecologies to infer past conditions. It is assumed

that species distributions and abundances reflect their response to

environmental gradients, and that their environmental optima

have remained more or less stable over time. In the marine realm,

protists such as foraminifera, coccolithophores, diatoms, and

dinoflagellate are widely used as climate proxies, due to their high

numbers and rich fossil record. They are identified on the basis of

their morphology, as morphospecies. Marine protist species have a

long evolutionary history, short generation times, huge population

sizes, and a large potential to disperse. This has led some authors

to argue that protist species are ubiquitous and present little

phenotypic variation [1], [2]. In contrast with this view, increasing

evidence from molecular and ecophysiological studies [3], [4], [5],

[6] suggest that morphospecies of marine protists are in fact highly

differentiated. Several laboratory studies, e.g. [7], [8], [9] have

revealed large intraspecific variation for key ecophysiological

properties. Therefore, the use of morphospecies in environmental

research may disregard important diversity and the potential for

natural populations to respond rapidly to changing environmental

conditions [10].

The response of some present-day phytoplankton species to

projected future climate scenarios has been tested under controlled

laboratory conditions [8], [9], [11], [12], [13]. Although this

approach is suitable for detecting phenotypic variability and

immediate responses (e.g. acclimation), it is of limited value to

assess evolutionary responses, because it does not allow gradual

adaptation to occur over many generations. In order to improve

such predictions, it is important to understand temporal intraspe-

cific variability, at timescales relevant for climate studies (i.e.
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decades rather than seasons). One possible approach is to take

advantage of the fact that several phytoplankton groups (notably

diatoms and dinoflagellates) form resting stages as part of their life-

cycles. These resting stages are deposited in marine sediments and

can remain viable for at least a century [14], [15], [16]. Resting

stages are physiologically dormant and can be viewed as ‘‘time

capsules’’, as they allow for the preservation of biological material

through time. The germination of resting stages formed in the past

provides a novel possibility to directly test the response of past

living populations to inferred changes in the environment at a

decadal to century scale.

Koljö Fjord, a sill fjord located on the west coast of Sweden,

offers exceptional conditions for such temporal studies. A

combination of very limited oxygen supply, virtually no bioturba-

tion, and minimum tidal activity has built up a natural archive of

fine and undisturbed sediments [17], [18]. A relatively long series

of historical hydrographic data have been collected in Koljö Fjord

since the 1930’s [18], [19]. Hydrographic conditions in the fjord

are influenced by the North Atlantic Oscillation (NAO). During

negative phases of the NAO, cold winters are frequent in the area,

as well as a wind regime that enhances upwelling offshore,

resulting in strong water-column stratification and bottom oxygen

depletion. In contrary, positive phases of the NAO generally lead

to a well-mixed water-column and higher bottom oxygen levels in

this fjord [18]. During the past century, the NAO has oscillated

from a predominantly positive phase (from ca. 1900–1930) to a

negative phase (from ca. 1930–1970), returning to the positive

phase of today after the 1970’s–1980’s [18], [19], [20]. These shifts

in NAO conditions are reflected in the sedimentary record of the

fjord. During the period 1930–1970, bottom salinities were

typically between 28.5–31 [18], and the water column stratified,

with surface salinities reaching 16 [21]. In contrast, during the

predominantly positive NAO period after 1970–1980, deposited

fjord sediments are non-laminated, indicating a mixed water-

column, and bottom salinities typically varied between 26–29 [18].

Hence, phytoplankton species dwelling in the surface waters of the

fjord have, over the past century, experienced extremes of salinity

ranging roughly from 15 to 30.

The target species for this study, Pentapharsodinium dalei, is a small

thecate dinoflagellate common in shallow marine environments

north of the North Atlantic Current [22]. Cysts of this species are

often a dominant component of polar and cold-temperate

dinoflagellate cyst assemblages [20], [22], [23], [24], [25]. In the

North Atlantic and adjacent seas, P. dalei cysts represent .25% of

assemblages in areas with summer salinities between 20–29 [22].

This species has been found as part of the spring bloom in

temperate waters [23], [26], whereas in Arctic fjords it is most

abundant during late summer-when stratified high productive

conditions prevail [27]. In Koljö Fjord, the cyst record of P. dalei

indicates that it has been more abundant during the negative

phase of the NAO (ca. 1930–1970) and decreased markedly

during positive phases of the NAO (before 1930 and after 1970)

[20].

Our aim was to investigate the ecophysiological response of

Pentapharsodinium dalei through the past ca. 100 years, a period

spanning well-documented salinity shifts in the fjord. For that, we

determined the growth rates of 18 revived strains from three

discrete sediment layers deposited during 1) the positive NAO

phase before 1930; 2) the negative NAO phase between 1930–

1970 and, 3) the recent positive phase. The strains were grown at

high (30) and low salinity (15), simulating NAO+ and NAO-

extreme scenarios, respectively. Our hypothesis was that, if the

salinity shifts had represented a strong selective pressure and

natural selection had acted at a decadal scale, the recent and oldest

strains (NAO+; higher surface water salinity) would have higher

fitness (i.e. growth rates) in the high salinity treatment, while the

strains collected from the intermediate layer (NAO-; lower surface

water salinity) would have higher growth rates in the low salinity

treatment. We further monitored pH levels during the experiment,

and estimated the upper pH tolerance limit for growth of each

strain, to further characterise intraspecific variability at the

ecophysiological level [28], [29], [30].

This study represents the first attempt to use the living

sedimentary record of phytoplankton resting stages to study

adaptation to environmental change at the ecophysiological level.

Our results highlight the relevance of intraspecific diversity in

determining the tolerance of a population to environmental

change, and further emphasize the role of resting stage banks as

depositories of biodiversity.

Materials and Methods

Five sediment cores were retrieved from Koljö Fjord with a

modified micro-Kullenberg piston-corer from 45 m water-depth at

58u13 N, 11u34 E in April 2006. All cores were X-rayed while

intact and 210Pb, 226Ra and 137Cs activities were analysed via c-

gammaspectrometry for K4, a 73 cm-long core. A combined

CRS-CIC model was applied to establish the chronology of the

sediments [31]. The other cores were correlated with K4 based on

easily discernible structures in the X-ray images. Further details

concerning the age-control are given in [14], [15]. The cores were

sliced at 1 cm intervals and, to avoid contamination between

layers, the outer few millimetres were discarded from each layer.

The core layers were individually placed in sealed plastic bags and

kept at 4uC in the dark until further processing.

Sediment samples were rinsed and the living dinoflagellate cyst

fraction was recovered by density separation [32]. While keeping

the sediment fraction cool, individual Pentapharsodinium dalei cysts

were isolated under the light microscope with micropipettes and

set to germinate in 96-micro well plates filled with TL medium (see

below) of salinity 25. After cyst germination, individual vegetative

cells were isolated to establish clonal strains. The strains were kept

in TL medium (salinity ,23) under a light regime of ,60 mmol

photons m21 s21 in a light:dark cycle of 16:8 at 15uC (temperature

regulated room). From the total culture collection (.190 strains),

we randomly picked six strains from three discrete layers of core

K3: Layer 1 dated to 2006, Layer 2 from 21 cm depth, dated to

196065; Layer 3 from 34 cm depth dated to 1922612 to be

included in the growth rate experiment [15].

The 18 strains were grown at salinity 15 and 30 in triplicate

70 ml-polycarbonate flasks illuminated from below (total of 108

flasks), with an irradiance of 150 mmol photons m22 s21, and a

light:dark cycle of 16:8 h. All strains were acclimated to the

experimental salinity and irradiance for 17 days prior to the start

of the experiment. From the first day of acclimation, salinity was

adjusted from the initial 23 in steps of ,5 d21. Thus, experimental

salinities (15 and 30) were achieved 15 days before the start of the

experiment. After the acclimation period, 300 exponentially

growing cells ml21 from each stock (strain and salinity) were

inoculated in fresh TL medium and grown for three days before

the first sampling.

TL medium is a standard enriched phytoplankton culture

medium containing L1 trace elements [33], soil extract, and

vitamins [34]. Nitrogen is added in the form of NaNO3 and

Phosphorus in the form of Na2HPO4 12 H2O, at final

concentrations of 16.5 mgN l21 and 1.7 mg P.l21. Such concen-

trations of essential elements represent levels several times higher

than those required to saturate growth rates or limit the biomass
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yield of phytoplankton cultures [35], [36]. However, pH will

increase dramatically in unlimited-cultures with no air-exchange

and become the growth-limiting factor before any nutrient

becomes depleted. This is a consequence of a high photosynthetic

activity, which will incorporate carbon into biomass faster than the

supply from air-exchange and respiration, leading to the elevation

of the pH. Therefore, when using confined flasks for culture

experiments with high light and nutrient levels, it is important to

keep track of pH and make sure that estimated growth rates are

not affected by high pH limitation.

To estimate the exponential growth rate of the 18 strains in two

salinities, we monitored cell concentrations and pH every 1–3

days, until the cultures had reached the stationary phase (due to

elevated pH in the closed experimental flasks–up to 26 days). The

sample volume (5 ml) was taken with a graduated pipette and

replaced with fresh medium (pH = 7.5). The position of the flasks

was changed randomly between samplings. Cell concentrations

were determined manually, under a light microscope, by counting

at least 300 acidic Lugol (1% final concentration)-fixed cells in

Sedgewick-Rafter chambers. pH was measured immediately

before sampling to the nearest 0.01 unit with a pH meter

(Copenhagen pHM-83 Autocal). The pH sensor was calibrated on

a daily basis using IUPAC buffers pH 7.0 and 10.0. The pH in the

added fresh medium was adjusted (to 7.5) by adding 1 M HCl or

NaOH. The concentration of dissolved inorganic carbon (DIC) in

the fresh medium, measured using an infrared gas analyser (IRGA)

and compared with a 2 mM standard, was 2.0 mM and 1.2 mM

in 30 and 15 salinity, respectively.

Strain specific exponential growth rates (d21) were determined

in each successive sampling interval. Exponential growth rates m
(d21) were calculated according to: m = ln(xt22xt1)/t22t1, where

xt2and xt1 is the cell concentration at end (t2) and start (t1) of the

sampling interval, respectively. To obtain balanced exponential

growth rate estimates, a minimum of 4 points (7 days) on the

growth curve were included in the calculations. The end of the

exponential phase was set as the first successive time interval

yielding a significantly lower value than the average integrated

growth rate from day 0–6 (Linear Model).

Upper pH tolerance limits for growth (the pH level where

growth rate #0.0) were estimated from the parallel curves of cell-

concentrations and pH as functions of time for each strain and

salinity treatment. The upper pH limit was estimated as the pH

level between the first sample interval yielding a growth rate not

different from 0.0 d21 (LM). For more details on upper pH

tolerance limit calculations see: [30], [36], [37].

Diagnostic plots performed using the statistical software R [38],

showed that the data on growth rates and cell concentration at

stationary phase were normally distributed with equal variance,

but the pH data were not (these were therefore rank-transformed).

To investigate if the strains differed in growth rates and upper pH

tolerance limits, we used a linear model (LM, corresponding to a

one-way ANOVA) with growth rate/rank transformed pH limits

as functions of strain (n = 18). Differences on growth at high and

low salinity for each strain were tested using Students t-tests (n = 3).

The effects of sediment layer (or cyst age) and salinity on the

growth rates and upper pH tolerance limits were tested using a

linear mixed effects model (LMEM) with strain as a random effect

and both layer and salinity as fixed effects. By considering strain a

random effect, the models account for variability due to strain. P-

values for the fixed effects in the LMEMs were calculated using

Maximum Likelihood Ratio tests (ML) comparing the model that

contained the fixed effect with the reduced model without the fixed

effect. Likelihood ratio tests were chi-square distributed. The

LMEMs were conducted using the R-package lme4 [38]. Random

effects were normally distributed for growth rates, rank trans-

formed pH tolerance limits, and cell concentration at stationary

phase, according to quantile-quantile plots of the predicted

random effects.

Results

Cell concentration increased exponentially as a function of time

for all strains at both salinities for a period of 6–14 days (Figure 1

A–F) with the exception of one strain from layer 1 at salinity 15,

where cell concentration increased initially, but cells ceased to

divide after 5 days (Figure 1 A) (cyst formation was observed in this

culture). No apparent lag-phases were observed and low variation

between replicate flasks indicates that acclimation and balanced

growth rates were successfully achieved prior to the start of

sampling (time = 0). Following the increase in cell concentrations,

pH increased as a function of time and reached maximum levels

when the cultures ceased to grow (Figure 1 G–L). One strain from

Layer 2 in the 15 salinity treatment stopped growing after 12–15

days of exponential growth and it was therefore not possible to

determine its upper pH limit for growth (Figure 1 C). The mean

cell concentration for all strains in the stationary phase was

1590461484 cells ml21 at salinity 30 and 87356988 cells ml21 at

salinity 15. Tolerance limits for high pH varied little between the

strains (overall range 8.7–9.1, Table S1) with an overall mean and

median of 9.0 (Figure 1 G–L). Due to its low growth rate, one

strain from Layer 3 reached the stationary growth phase and

upper pH limit after 65 days (Figure 1 E–F, K–L, first 27 days

shown).

Growth rates differed significantly among strains (LM,

F = 24.32, p,,0.001, df = 18) and ranged from 0.02–0.65 d21

with an overall mean of 0.31 d21+20.03 (Table 1). When

comparing the growth rate at salinity 15 and 30 for each strain, 3

strains from layer 1; 2 from Layer 2; and 1 from Layer 3 showed

statistically significant differences (Table 1).

Overall, the mean growth rate was significantly higher at

salinity 30 (0.3560.03 d21) than at 15 (0.21 d2160.01 d21)

(LMEM, X2 = 26.77, p,0.001, df = 1) (Table 2, Model 1). Growth

rates for strains in the 15 salinity treatment were more variable, as

shown by the higher coefficients of variation (Table 1), ranges and

interquartile ranges (Figure 2). Median growth rates were

significantly higher at salinity 30 than 15, although these differed

less for layer 1 (Figure 2). When comparing the different layers,

there was no statistically significant effect of time (cyst age) on

growth rates at high and low salinity (LMEM, X2 = 0.825,

p = 0.66, df = 2) (Table 2).

Upper pH tolerance limits were not significantly affected by

salinity or cyst age (Table 2, Model 2). However, cell concentra-

tions at stationary growth phase were significantly higher in the 30

than the 15 salinity treatment (LMEM, X2 = 27.99, p,,0.01,

df = 1; Table 2, Model 3). This finding is related to the buffer

capacity of the 15 salinity medium (,1.2 mM DIC) compared to

the 30 salinity medium (,2.0 mM DIC). In the lower-buffered

medium, pH changes more rapidly and reaches pH tolerance

limits before the higher-buffered 30 salinity medium. This shows

that growth and biomass yield was not limited by DIC at

stationary phase, but by the high pH itself (as we can assume no N,

P, or trace elements limitation due to the characteristics of the

culture medium used–details given in the materials and methods

section).

Discussion

Our work represents a novel approach to the study of climate-

and environmental-driven changes in marine phytoplankton

A Century Record of Ecophysiological Variability
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populations. The possibility of reviving resting stages formed

during a ca. 100-year period has made it possible to experimen-

tally trace back the ecophysiological variability of Pentapharsodinium

dalei in Koljö Fjord, Sweden. Our data suggest that two distinct

and ecologically significant traits, i.e. salinity response and upper

pH tolerance limits for growth were stable for this species across

the studied time period.

The ecology of marine protists, particularly phytoplankton

species, has traditionally been studied in the laboratory. Many

studies have attempted to define the responses of species to

changing environmental parameters by experimentally testing

single strains, and often strains which had been kept in the

laboratory for years or even decades [11], [12], [29]. These studies

implicitly assumed that the experimentally measured properties of

laboratory strains were static and reflected those of the natural

populations. There are two fundamental problems with this

tradition [10]. Firstly, marine protist species often consist of

physiologically and genetically differentiated strains and strain-

specific variation in growth rates is well documented [39].

Secondly, ecophysiological properties (such as growth rate as a

function of salinity) may change during long-term culturing in the

stable laboratory environment [10]. Data for growth rates and

upper pH tolerance limits for growth of multiple strains of the

common dinoflagellate Heterocapsa triquetra suggest that such

changes occurred over a 50-year period of laboratory maintenance

[30].The strains used in our experiment were revived simulta-

neously from resting stages deposited in sediments dating back to

1922612. This allowed us to overcome potential concerns of

physiological changes having occurred due to long-term mainte-

nance in the laboratory. To address the other concern (i.e. strain-

specific variability in natural populations), we randomly picked six

strains from each sediment layer. The established strains were kept

under identical conditions and grown at an intermediate salinity of

23 before acclimation into the tested experimental conditions

(salinity 15 and 30). Our experimental setup is thus rather

conservative.

Figure 1. Cell concentration and pH as a function of time. Cell concentrations (A–F) and pH levels (G–L) are shown according to sediment core
layer (age-depth) for the 18 Pentapharsodinium dalei strains tested at salinity 15 and 30. Points represent mean values of three replicates and bars
represent s.e.m. (standard error of the mean). *1–strains for which upper pH limits could not be determined (see Results section); *2–strain for which
upper pH limits were reached after 65 days.
doi:10.1371/journal.pone.0061184.g001
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Table 1. Observed growth rates for the 18 strains tested at salinity 15 and 30 with standard error.

Sediment core layer Strain nr. Salinity 15 Salinity 30

Growth rate (d21) Std. error (d21) Growth rate (d21) Std. error p,0.05

Layer 1 (Recent) 1 0,33 0,06 0,32 0,06

2 0,15 0,05 0,28 0,06 *

3 0,22 0,06 0,20 0,06

4 0,29 0,05 0,42 0,06

5 0,48 0,06 0,60 0,07 *

6 0,02 0,05 0,22 0,06 *

Mean 0,25 0,06 0,34 0,06

Range 0,46 0,01 0,40 0,01

CV (%) 63 44

Layer 2 (196065) 7 0,43 0,06 0,41 0,06

8 0,65 0,05 0,45 0,06 *

9 0,29 0,06 0,36 0,06

10 0,22 0,05 0,28 0,06

11 0,26 0,06 0,46 0,06 *

12 0,11 0,06 0,23 0,06

Mean 0,33 0,06 0,365 0,06

Range 0,54 0,01 0,23 0

C.V. 58 26

Layer 3 (1922612) 13 0,38 0,04 0,36 0,04

14 0,35 0,06 0,37 0,05

15 0,29 0,06 0,35 0,06

16 0,24 0,06 0,35 0,06

17 0,16 0,06 0,17 0,07

18 0,18 0,05 0,37 0,07 *

Mean 0,26 0,05 0,33 0,06

Range 0,22 0,02 0,20 0,03

C.V. 34 20

The mean, range, and coefficient of variation (CV) are also provided for each layer (n = 18). * Student’s t-tests were applied to test if there was a significant difference in
growth rates at high and low salinity (5% significance level) (n = 3).
doi:10.1371/journal.pone.0061184.t001

Figure 2. Growth performance of Pentapharsodinium dalei strains according to sediment core layer and salinity level. Boxplots show
range (whiskers), median (bold line), and interquartile range (box height) for growth rates at salinity 15 and 30 for the three sediment core layers.
doi:10.1371/journal.pone.0061184.g002
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The fact that revived P. dalei strains from all three layers

generally grew better at higher salinity suggests a high level of

homogenization despite environmental change across the 100-year

time period. This homogenization may be due to the fact that, at

any given time, resting stages in the sediment represent a mixture

of newly formed and older cysts, resulting in considerable

generation overlap. Furthermore, dormant propagule banks may

slowdown the rate of evolution, because they effectively maintain

diversity and sequester a fraction of the gene pool from the

influence of microevolutionary processes in each generation,

according to studies of lake copepods [40], and also microbial

communities [41]. In a Danish fjord, resting cells of the coastal

diatom Skeletonema marinoi formed over a .150 years period and

analysed with microsatellite markers, revealed a single and

genetically uniform population, distinct from populations of the

same species found in open waters just outside the fjord [16].

Although distinct Skeletonema marinoi populations co-exist in the

surface waters of the fjord, the large propagule bank presumably

established quickly after an historical founder event appears to

successfully act as a buffer against new immigrants [16]. Our

results support the idea that phytoplankton resting stage banks

may act as buffers against rapid environmental change.

Growth rate variability was high for the strains revived from

Layers 1 and 2, but a drop in variability was evident in Layer 3,

which represents strains revived from the oldest sediments,

estimated to be up to one-century old. This drop in variability is

probably associated to a drop in viability with age, as the

germination success of P. dalei cysts isolated from Layer 3 (5%) was

considerably lower than for Layers 1 and 2 (28 and 61%,

respectively). This drop in potentially viable cysts, germination

success and variability after ca. 50 years of dormancy indicates an

upper limit to the study of past populations using the sediment

archive of this species in this particular environment. When

studying traits for which the response to different environmental

conditions must be measured in living organisms, cyst viability will

determine how far back in time phenotypes can be reconstructed.

However, ‘‘ancient’’ DNA retrieved directly from the cysts may

reveal population changes at the genetic level further back in time.

DNA has been retrieved from diapausing microcrustacean eggs in

lake sediments dated to ca. 200 years [42], and we have

successfully genotyped P. dalei cysts retrieved from Koljö Fjord

sediments dated to ca. 100 years using microsatellite makers

(unpublished data).

Our study revealed high intraspecific variability down to

sediment layers estimated to be up to ca. 50 years-old, showing

that the cyst bed of P. dalei is a repository of ecophysiological

diversity. Long-lived resting stage banks have been recognized for

a long time in terrestrial ecosystems (i.e. plant seed banks) and in

lakes [41], [43], [44] as archives of both genetic (intrapopulacio-

nal) and ecological (interspecific) information, but remain less

investigated in marine environments (with the exception of benthic

resting eggs of copepods). In coastal areas, environmental

conditions fluctuate largely on a seasonal basis, and may also

change markedly at multi-year scales (e.g. events of bottom water

exchange and oxygenation in Koljö Fjord). Coastal phytoplankton

populations are typically discontinuous, occurring at high

concentrations (blooms) only during limited periods of favourable

conditions. Additionally to being a product of sexual reproduction

(in most cases), it seems likely that long-lived dinoflagellate cysts

have been selected for as an effective bet-hedging strategy in these

fluctuating environments [45].

Our finding that P. dalei from all 3 layers grows better at high

(30) rather than low (15) salinity indicates that salinity alone fails to

explain the cyst record of the species in Koljö Fjord. Maximum

abundances of P. dalei cysts are found in sediments dated to 1930–

1980, when average sea-surface salinity is reduced. Harland and

co-authors [20] investigated the dinoflagellate cyst record of Koljö

Fjord, and suggested that nutrient availability in the surface waters

of the fjord during spring and summer, and the establishment of a

well-stratified and stable water column are the main factors

determining changes in the cyst record. Pentapharsodinium dalei is

found in coastal areas associated with high productive and well-

stratified waters [23], [26], [27]. The period corresponding to the

highest P. dalei abundances in Koljö fjord coincides with the

beginning of anthropogenic nutrient loading (cultural eutrophica-

tion) in many coastal areas along the Swedish coast. However, the

area surrounding the fjord has no extensive farming, no large

urban centers, and no industry. Furthermore, nutrient measure-

ments in the water column show no significant increase since the

1960’s, and the organic carbon content of the sediments is higher

Table 2. Summary statistics for the applied Linear Mixed Effects Models (LMEM) of growth rate, median pH tolerance limits, and
cell concentration at stationary phase as functions of cyst age/sediment core layer and salinity (fixed effects) with strain as a
random effect.

Model 1: Effect of cyst age (layer) and salinity on growth rate

Fixed effects X2 df p-value

Cyst age/layer 0.825 2 0.66

Salinity 26.77 1 ***

Model 2: Effect of salinity and cyst age/layer on median pH tolerance limits

Fixed effects X2 df p-value

Cyst age/layer 1.96 2 0.38

Salinity 0.04 1 0.83

Model 3: Effect of salinity and cyst age/layer on cell concentration at stationary phase

Fixed effects X2 df p-value

Cyst age/layer 0.92 2 0.63

Salinity 27.99 1 ***

P-values were calculated using Maximum Likelihood Ratio tests (ML). *** indicate p-values,0.01.
doi:10.1371/journal.pone.0061184.t002
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for the periods 1820–1930 and post-1980, and lower for the period

1930–1980 (when P. dalei is most abundant) [20]. The predom-

inantly negative NAO phase of 1930–1980 is associated with the

occurrence of frequent easterly and north-easterly winds, increas-

ing offshore upwelling. This leads to higher bottom water salinity

in the fjord, the formation of a strong pycnocline, and increased

water column stability. Rather than responding directly to salinity,

it is likely that the P. dalei fjord population has, from 1930–1980,

benefited from a generally increased stability of the water column,

and the nutrient supply brought to the surface by terrestrial runoff

in the spring.

Our study indicates that the marked changes in salinity

experienced in Koljö Fjord over the past 100 years did not induce

a significant alteration in the salinity response of Pentapharsodinium

dalei populations, nor a change in upper pH tolerance limits for

growth. The inferred stability suggests that the response of modern

populations may be extrapolated to assemblages of morphospecies

back through time despite changes in the environment-a

fundamental principle in (palaeo)environmental studies. However,

we cannot rule out the possibility that other traits may be more

susceptible to evolutionary change as selection pressures may differ

considerably between environmental factors. There is also a

possibility that subtle changes in populations may become

apparent if the number of studied strains is increased or when

natural populations are investigated. In a microcosm experiment

with Skeletonema marinoi abiotic stressors were reported to affect

differently monocultures and mixtures of genetically distinct strains

[46]. By taking advantage of future experimental advances (e.g.

flow cytometry, fluorometry and gene-expression) further studies

in the presented frame-work including more strains may provide

valuable insights into the responses of natural populations to

environmental change and how these may affect ecosystem

functioning. One promising approach is the application of high-

throughput sequencing techniques to study microevolutionary

changes at the genome level linked to environmental change.
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Palaeobot Palynol 128: 119–141.
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