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Abstract
BACKGROUND—Although comorbid substance misuse is common in alcohol dependence, and
polysubstance abusers (PSU) represent the largest group of individuals seeking treatment for drug
abuse today, we know little about potential brain abnormalities in this population. Brain magnetic
resonance spectroscopy studies of mono-substance use disorders (e.g., alcohol or cocaine) reveal
abnormal levels of cortical metabolites (reflecting neuronal integrity, cell membrane turnover/
synthesis, cellular bioenergetics, gliosis) and altered concentrations of glutamate and γ-
aminobutyric acid (GABA). The concurrent misuse of several substances may have unique and
different effects on brain biology and function compared to any mono-substance misuse.

METHODS—High field brain magnetic resonance spectroscopy at 4 Tesla and neurocognitive
testing were performed at one month of abstinence in 40 alcohol dependent individuals (ALC), 28
alcohol dependent PSU and 16 drug-free controls. Absolute metabolite concentrations were
calculated in anterior cingulate (ACC), parieto-occipital (POC) and dorsolateral prefrontal cortices
(DLPFC).

RESULTS—Compared to ALC, PSU demonstrated significant metabolic abnormalities in the
DLPFC and strong trends to lower GABA in the ACC. Metabolite levels in ALC and light
drinking controls were statistically equivalent. Within PSU, lower DLPFC GABA levels related to
greater cocaine consumption. Several cortical metabolite concentrations were associated with
cognitive performance.

CONCLUSIONS—While metabolite concentrations in ALC at one month of abstinence were
largely normal, PSU showed persistent and functionally significant metabolic abnormalities,
primarily in the DLPFC. Our results point to specific metabolic deficits as biomarkers in
polysubstance misuse and as targets for pharmacological and behavioral PSU-specific treatment.
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1. INTRODUCTION
Magnetic resonance imaging (MRI) and proton MR spectroscopy (1H MRS) are invaluable
tools in addiction research, as they permit non-invasive interrogation of the integrity of
multiple aspects of neurobiology. MRS studies that investigate the neurobiological effects of
cocaine, amphetamines, or marijuana (i.e., mono-substance dependence) have revealed
abnormal levels of markers of neuronal integrity (N-acetylaspartate, NAA), cell membrane
turnover/synthesis (choline-containing metabolites, Cho), cellular bioenergetics (Creatine,
Cr), astrogliosis (myo-Inositol, mI) and alterations of glutamate (Glu) and γ-aminobutyric
acid (GABA), which are the primary excitatory and inhibitory neurotransmitter/
neuromodulators in the human brain (for review see (Licata and Renshaw, 2010)).
Alterations in brain metabolite concentrations have also been observed in alcohol dependent
individuals (ALC), primarily in the frontal lobes (Buhler and Mann, 2011; Durazzo and
Meyerhoff, 2007; Mon et al., 2012; Sullivan et al., 2000). We showed recently that
concentrations of Glu, NAA and Cr in the anterior cingulate cortex (ACC) of nine-days-
abstinent ALC were significantly lower than in healthy controls; mI and γ-aminobutyric
acid (GABA) in ACC as well as the other metabolite levels in the dorsolateral prefrontal
cortex (DLPFC) and parieto-occipital cortex (POC) were normal (Mon et al., 2012). Over 30
days of abstinence from alcohol, the ACC metabolite concentrations largely normalized
(Mon et al., 2012). Furthermore, mono-substance abuse/dependence is associated with
neurocognitive dysfunction (Abi-Saab et al., 2005; Di Sclafani et al., 2002; Hester and
Garavan, 2004; Lundqvist, 2005; Moeller et al., 2005; Oscar-Berman, 2000; Salo et al.,
2002; Simon et al., 2000; Verdejo-Garcia et al., 2011; Volkow et al., 2001), and
improvements in functions such as learning, processing speed and working memory have
been shown to relate to metabolic changes during abstinence (Meyerhoff et al., 2011).

Alcohol use disorders (AUD) are often accompanied by comorbid misuse of illicit drugs,
such as cocaine and methamphetamine (Stinson et al., 2005), and their misuse, individual or
combined, is associated with significant neurobiological, neurocognitive and psychiatric
abnormalities (Licata and Renshaw, 2010). Individuals with concurrent abuse/dependence
on more than one substance including alcohol (i.e., polysubstance abusers or PSU) represent
the largest group of individuals seeking treatment for substance use disorders in the United
States today (Kedia et al., 2007; Medina et al., 2004). Furthermore, more than 50% of
patients treated for drug abuse relapse within one year of treatment (McLellan et al., 2000).
Identification of the unique and common neurobiological abnormalities and related
neurocognitive characteristics in PSU and ALC will facilitate the development of more
efficacious pharmacological and behavioral interventions for these groups. Thus, measuring
potentially unique neurobiological abnormalities and related neurocognitive characteristics
in treatment seeking PSU and ALC is thought to be of high clinical importance.

Each class of substances alters neuronal integrity and neurotransmission via different
mechanisms (Buttner, 2011; Licata and Renshaw, 2010). Their combined abuse may have
unique, even different adverse effects on the brain than any mono-substance abuse. While
there are numerous neuroimaging studies on effects of individual substances on brain
biology, few studies have investigated drug effects in PSU. These can be summarized as
follows: two-week-abstinent PSU had prefrontal gray matter (GM) atrophy (Liu et al.,
1998). Cocaine use disordered ALC tended to have greater age-related white matter (WM)
volume decreases (Bjork et al., 2003) and persistently lower NAA concentrations in the
DLPFC than ALC (Meyerhoff et al., 1999). During early withdrawal, PSU demonstrated
cerebral phosphorus metabolite alterations (Christensen et al., 1996). Actively using PSU
had higher glucose metabolism rates in frontotemporal cortex than drug-free controls
(Stapleton et al., 1995); those rates, however, were lower in the right orbitofrontal cortex of
one-week-abstinent individuals abusing both methamphetamine and marijuana compared to
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“pure” methamphetamine abusers (Voytek et al., 2005). Non-abstinent cocaine dependent
ALC showed lower frontal GABA levels than controls (Ke et al., 2004). Abstinent ALC
with concurrent cocaine dependence had less WM in prefrontal brain regions than those
dependent on only one substance (O’Neill et al., 2001). Consistent with these
neurobiological abnormalities, studies in PSU have also indicated impaired cognition
compared to controls (Di Sclafani et al., 2002; Ersche et al., 2011; Horner, 1997; Selby and
Azrin, 1998; Verdejo-Garcia et al., 2004; Verdejo-Garcia et al., 2007). These few reports
illustrate that neurobiological correlates of polysubstance use disorders, as well as their
associations with neurocognition, are complex and still unclear.

To better understand metabolic alterations in a well-characterized cohort of abstinent PSU,
the specific goals of this study were to measure metabolite concentration differences
between abstinent PSU and ALC using high-field MRS in brain regions with relevance to
the development and maintenance of substance use disorders, and to measure potentially
associated neurocognitive (dys)function. Based on the cited literature, we hypothesized
unique and functionally significant regional metabolite concentration differences between
one-month-abstinent PSU and ALC as well as light drinking controls (LD), and specifically
lower cortical NAA (in the DLPFC) and GABA levels in PSU compared to both ALC and
LD.

2. MATERIALS AND METHODS
2.1 Participants

All participants provided written informed consent prior to study according to the
Declaration of Helsinki and underwent procedures approved by the University of California,
San Francisco and the San Francisco VA Medical Center. Twenty eight treatment seeking
PSU and 40 ALC were recruited from substance abuse treatment programs of the VA and
Kaiser Permanente. All ALC and PSU participants met DSM-IV criteria for alcohol
dependence. In addition, PSU participants met DSM-IV criteria for dependence on at least
one psychostimulant, with and without marijuana use disorder: cocaine (n=18),
methamphetamine (n=4), cocaine and methamphetamine (n=4); 2 PSU were dependent on
other substances (opiates, marijuana, and/or ecstasy). Group demographics and relevant
substance use characteristics are given in Table 1.

At study date, ALC and PSU were abstinent from alcohol and other substances, except
nicotine, for approximately one month. Further inclusion and exclusion criteria are fully
detailed elsewhere (Durazzo et al., 2004). Participants were excluded for neurological or
psychiatric disorders known to affect neurobiology or neurocognition. Hepatitis C, type-2
diabetes, hypertension, and unipolar mood disorders were permitted given their high
prevalence in substance use disorders (Hasin et al., 2007; Mertens et al., 2003; Mertens et
al., 2005; Parekh and Klag, 2001; Stinson et al., 2005). Sixteen light drinking controls (LD)
without history of biomedical and/or psychiatric conditions known to influence the measures
obtained in this study were recruited from the local community. Data from 85% of ALC and
94% of LD participants contributed to previous analyses (Mon et al., 2012).

2.2 Clinical Assessment
ALC and PSU participants completed the Structured Clinical Interview for DSM-IV Axis I
Disorder Patient Edition, Version 2.0 (First et al., 1998), and LD participants were
administered the accompanying screening module. Within one day of the MR study, all
participants filled out questionnaires that assessed depression (Beck Depression Inventory;
Beck, 1978) and anxiety symptomatologies (State-Trait Anxiety Inventory, Y-2; Spielberger
et al., 1977). Alcohol consumption was assessed with the lifetime drinking history semi-
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structured interview (Skinner and Sheu, 1982; Sobell and Sobell, 1990; Sobell et al., 1988),
which yielded estimates of the average number of alcoholic drinks consumed per month
over 1 year and 3 years, before enrollment and over lifetime. For PSU, lifetime substance
use history (other than alcohol) was assessed with an in-house interview questionnaire based
on the Addiction Severity Index (McLellan et al., 1992), NIDA Addictive Drug Survey
(Smith, 1991), drinking history, and Axis I disorders Patient Edition, Version 2.0 (SCID-I/P;
First et al., 1998). This instrument gathers information relevant to phases of drug use for
each substance a participant has a current or past disorder diagnosis on; including age of first
and last use, number of total lifetime phases, duration of individual and total lifetime phases
(including phases of abstinence), frequency and quantity of use during each phase, and route
of administration. It includes conversion of money spent per day to one metric, using
catchment area-specific conversion norms. Thus, monthly averages for grams of cocaine
and/or methamphetamine over 1 year prior to enrolment and over lifetime were estimated.
Level of nicotine dependence was assessed via the Fagerstrom Tolerance Test for Nicotine
Dependence (Fagerstrom et al., 1991), and total numbers of years of smoking and average
daily cigarettes currently smoked were recorded. To evaluate basic nutritional and
erythrocyte status and hepatocellular injury, we obtained laboratory tests for serum albumin,
pre-albumin, alanine aminotransferase, aspartate aminotransferase and γ-
glutamyltransferase, white and red blood cell counts, hemoglobin, and hematocrit.

2.3 Neurocognitive Assessment
Within 3 days of the MR study, all participants completed a neurocognitive battery focusing
on working memory (Wechsler Adult Intelligence Scale-III (WAIS-III) Digit Span),
processing speed (WAIS-III Digit Symbol Coding, Symbol Search; Wechsler, 1997),
visuospatial learning and memory (Brief Visual memory Test-Revised, BVMT-R; Benedict,
1997), as well as auditory-verbal learning and memory (California Verbal Learning Test-II,
CVLT-II: immediate recall trials 1-5 (learning), average of short and long delay free recall,
and average of short and long delay cued recall (memory); Delis et al., 2000). (For details
see Durazzo et al., 2007.) Premorbid verbal intelligence was assessed using the American
National Adult Reading Test (NART; Grober and Sliwinski, 1991). Group comparisons on
these measures will be detailed in a separate report.

2.4 MR Acquisition and Processing
MR data were acquired on a 4 Tesla Bruker MedSpec system with a Siemens Trio console
(Siemens, Erlangen, Germany) using an 8-channel transmit-receive head coil. 3D sagittal
T1-weighted and 2D axial T2-weighted images were acquired using Magnetization Prepared
Rapid Gradient imaging (1×1×1 mm3 resolution) and turbo spin-echo (0.9×0.9×3 mm3

resolution) sequences respectively. Volumes-of-interest (VOIs) for MRS were placed over
the ACC (35×25×20 mm3), POC (20×40×20 mm3) and right DLPFC (40×20×20 mm3)
(Figure 1), maximizing GM content as displayed on the structural MR images. NAA, Cr,
Cho, mI and Glu signals were acquired with a Stimulated Echo Acquisition Mode (STEAM)
sequence (Frahm et al., 1987). GABA signal was acquired from the same VOIs with a
modified J-editing sequence (MEGA PRESS; Kaiser et al., 2008). MR images were
segmented into GM, WM and cerebrospinal fluid (CSF; Van Leemput et al., 1999) to
estimate tissue fraction and CSF contributions to each VOI. (A full description of the
spectral processing methods can be found in Mon et al., 2012.) ALC and LD were scanned
fully contemporaneously, while PSU were scanned contemporaneously and in random order
with the latter half of the cohort. Data acquisition and processing conditions were the same
for all participants, and data processing was done by operators blind to participant diagnosis.
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2.5 Statistical Analyses
Separate univariate analyses of covariance (ANCOVA) were performed for each VOI
(DLPFC, ACC, and POC) and each metabolite, followed up with planned pairwise
comparisons to test for group differences among PSU, ALC and LD in metabolite
concentrations using SPSS, v20. Since age (e.g., Schuff et al., 2001) and differences in brain
tissue contributions to the VOIs (GM, WM, CSF; Jansen et al., 2006) affect observed brain
metabolite levels, we covaried for age and GM-tissue contribution, the target of our VOI
placement. The number of acquired J-edited (GABA) spectra was often lower than for
STEAM spectra (DLPFC: PSU=20 vs. 27, ALC=24 vs. 30, LD=13 in both; ACC: PSU=21
vs. 20, ALC=27 vs. 37, LD=14 in both; POC: PSU=20 vs. 23, ALC=30 vs. 35, LD=9 vs.
12). ANCOVA was also used to test for differences in participants’ characterization
measures. In pairwise group comparisons of metabolite levels, we corrected alpha levels
(0.05) to account for the multiplicity of metabolites in each VOI via a modified Bonferroni
procedure (Sankoh et al., 1997). This approach yields adjusted alpha levels for each VOI
separately using the number of metabolites under investigation (six) and their average inter-
correlation coefficients (DLPFC: r=.54, ACC: r=.39, POC: r=.53); corresponding adjusted
alpha levels for pairwise group comparisons were 0.022 (DLPFC), 0.017 (ACC) and 0.020
(POC). Effect sizes were calculated via Cohen’s d (Cohen, 1988). For each VOI within
PSU, correlations (Spearman’s Rho) between metabolite concentrations and neurocognitive
measures (raw scores), drug consumption variables, age and days of abstinence were
calculated. Where necessary, relationships between metabolite levels and other measures
were corrected for age (partial correlations).

3. RESULTS
3.1 Participants Characterization

Characteristics for ALC, PSU and LD are shown in Table 1. PSU were younger than ALC
and had lower NART scores than ALC or LD. PSU and ALC had fewer years of education
than LD. Although PSU had a higher prealbumin concentration than ALC and LD, and ALC
had higher white blood cell counts than PSU and LD, these and other clinical laboratory
measures were within the normal range for all groups. PSU and ALC did not differ on any
alcohol drinking measure. The number of days abstinent from alcohol at time of study (sober
days) was equivalent at about 30 days; PSU were abstinent from any drug approximately 6
fewer days than from alcohol. PSU and ALC were equivalent on measures of depressive and
anxiety symptomatologies, both had higher measures than LD. Among smokers, the
Fagerstroem test indicated moderate nicotine dependence in PSU and moderate to high
dependence in ALC and LD; PSU smoked significantly fewer cigarettes per day than ALC
and LD. The ALC and PSU group each contained four participants diagnosed with hepatitis
C. Within each group, however, outcome measures of those with and without hepatitis C
were equivalent. The same applied to participants with (10 ALC, 5 PSU) and without
controlled hypertension. Finally, total brain tissue, GM, WM and CSF fractions in the three
VOIs did not differ significantly between groups (mean values: DLPFC: GM=0.38,
WM=0.55, CSF=0.06; ACC: GM=0.46, WM=0.33, CSF=0.20; POC: GM=0.61, WM=0.29,
CSF=0.09; unassigned 1%), and omitting GM-tissue contribution as covariate did not
appreciably change the results of observed group differences for any of the metabolites and
VOIs

3.2 Group Comparison of Metabolite Concentrations
Univariate tests were significant for group differences in the DLPFC: NAA (p=0.004), Cr
(p=0.015), Cho (p=0.020) and mI (0.018). Table 2 shows mean metabolite concentrations,
and pairwise group statistics. In planned pairwise comparisons of metabolite levels in the
DLPFC, PSU had significantly lower NAA, Cho and mI concentrations than both ALC and
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LD (p ≤ .022). Cr was significantly lower in PSU compared to ALC and tended to be lower
compared to LD. Effect sizes for differences between PSU and ALC were moderate for Cho,
Cr, mI and strong for NAA. Similar patterns were observed between PSU and LD. In the
ACC, no significant group differences were found. However, PSU showed a strong trend to
lower GABA concentrations compared to ALC and LD (moderate effect sizes:
0.64<ES<0.73). Effect sizes for all ACC metabolites but mI in comparisons of PSU to LD
were moderate to strong. In the POC, ALC showed a trend to elevated Cho levels compared
to both PSU and LD, whereas Cho was similar in PSU and LD. The statistically weaker
differences between PSU/ALC and LD were likely related to the smaller LD sample.

Considering that cigarette smoking affected brain metabolite concentrations in individuals
with AUD (Durazzo et al., 2004, 2006), in secondary analysis we covaried for smoking
status (non-smoker and smoker) in the three-group-comparisons. This did not significantly
alter the aforementioned results. Similarly, controlling for years of education, days of
sobriety, body mass index, NART, depression, anxiety and drinking severity measures did
not alter the above group differences. Therefore, those variables were not used as covariates
in our final analyses.

3.3 Correlations among main outcome measures within PSU
3.3.1 Metabolite concentrations and neurocognition—Metabolite concentrations
and cognitive performance are typically robustly associated with age. In the combined
cohort, age-metabolite relationships were found in DLPFC and POC, primarily with Cho
and Cr; in PSU only, DLPFC mI was significantly related to age (p=0.017, r=0.46), whereas
statistical trends for age-metabolite relationships were seen in ALC and LD only. Therefore,
we controlled for the effects of age when correlating other outcome measures. in the
DLPFC, NAA was positively related to visuospatial and working memory raw scores (see
Table 3), in the ACC, NAA and Cho were positively related to visuospatial learning and
processing speed raw scores of the BVMT-R and WAIS-III, respectively. GABA in the
ACC showed an inverse relationship with auditory-verbal learning (CVLT-II raw scores),
whereas in the POC, GABA was positively correlated with the visuospatial memory raw
score of the BVMT-R. Different associations were observed in ALC, who showed inverse
relationships between DLPFC mI and processing speed and between POC mI and
visuospatial learning (both: p<0.014, r>-0.48). No significant metabolite level-function
relationships were found in LD.

3.3.2 Metabolite levels and substance consumption—Within 13 PSU participants,
lower DLPFC GABA was related to greater monthly cocaine consumption measures,
averaged over both life time (p<0.019, r=-.64) and one year (p<0.016, r=-.65) (Figure 2),
and independent of average life time alcoholic drinks/month. Methamphetamine
consumption in eight PSU was not related to any metabolite concentrations in any VOI.
Moreover, in PSU, which showed significantly lower mI than ALC and LD, more days of
abstinence from any drug were related to higher DLPFC mI levels (p=0.01, r=0.50).

4. DISCUSSION
We employed high-field 1H MRS and neuropsychological assessments to compare regional
brain metabolite levels in the ACC, DLPFC and POC and examine their functional
relevance in alcohol dependent individuals with and without comorbid illicit substance
dependence after one month of abstinence. The ACC and DLPFC are important components
of the brain reward/executive oversight system (BREOS), a network that is critically
involved in the development and maintenance of all forms of addictive disorders (Goldstein
et al., 2009; Volkow et al., 2011).

Abé et al. Page 6

Drug Alcohol Depend. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In the DLPFC, PSU demonstrated significantly lower NAA, Cho, mI and Cr concentrations
than ALC. DLPFC GABA levels were inversely related to cocaine use. In the ACC, GABA
concentrations tended to be lower in PSU compared to both ALC and LD. Moreover,
cortical metabolite levels were significantly related to neurocognitive measures, affirming
the functional relevance of absolute MRS measures in PSU. Finally, metabolite levels in
ALC and LD were statistically equivalent, presumably due to longitudinal recovery of
metabolite levels found low in ALC earlier in sobriety (Mon et al., 2012).

Our results suggest that PSU, when compared to both LD and ALC, had abnormal neuronal
integrity (lower NAA), abnormalities in glial or cell membrane synthesis/turnover (lower
Cho), altered glial content or osmoregulation (lower mI), and trends to abnormal cellular
bioenergetics (lower Cr; Licata and Renshaw, 2010). These abnormalities at one month of
abstinence were specific to the DLPFC, a region critical for such integrating activities as
planning and organization, response inhibition, working memory, reasoning, problem
solving and set shifting (Goldstein and Volkow, 2011; Petrides, 2005). There were strong
trends to GABAergic abnormalities in the ACC, a region critical to decision making and
response inhibition. Since the detected metabolic differences were shown to be unrelated to
age, alcohol consumption, body mass index, smoking status, depression and anxiety
symptomatologies, the misuse of illicit drugs in PSU is likely related to the observed
metabolite group differences. Considering research in both ALC (reviewed in Licata and
Renshaw, 2010; Meyerhoff et al., 2011) and cocaine dependent ALC (Meyerhoff et al.,
1999), we further conclude that neurobiological abnormalities in alcohol dependent
individuals with comorbid illicit substance dependence are qualitatively and regionally
different at one month of abstinence and longer lasting than those related to alcohol
dependence alone.

Although not statistically significant, we observed differences of moderate effect sizes in
ACC metabolite levels between PSU and LD (e.g., NAA, Glu, GABA). This may indicate
greater metabolic abnormalities in the ACC of PSU earlier in sobriety, similar to what is
observed in one-week abstinent ALC (Mon et al., 2012) and opiate-depended individuals
(Yucel et al., 2007). This data therefore suggests partial metabolic recovery in PSU with
extended abstinence, reminiscent of ALC (Durazzo et al., 2006; Mon et al., 2012).
Longitudinal metabolic changes in abstinent PSU are also suggested by the association of
DLPFC mI with days of abstinence.

4.1 Myo-Inositol
Other reports showed lower NAA, Cho and Cr in anterior brain regions associated with
mono-substance use disorders (reviewed in Licata and Renshaw, 2010). However, whereas
most MRS studies on mono-substance dependence reported higher mI in frontal brain, we
found lower mI concentrations in the DLPFC of PSU compared to both ALC and LD.
Although the precise function(s) of cerebral mI is still debated (Griffin et al., 2002; Moore et
al., 1999), it is suggested to be a marker of astroglial content, with elevations mostly
interpreted as astroglial hypertrophy and/or proliferation adversely affecting brain function
(Licata and Renshaw, 2010; Meyerhoff et al., 2011; Mon et al., 2012; Schweinsburg et al.,
2001). Since the DLPFC VOI in this study contains a majority of WM tissue, lower mI may
indicate glial content (e.g., astrocytes) loss and/or damage related to polydrug consumption.
Reductions in mI could also occur through inhibition of its synthesis or uptake (Coupland et
al., 2005). The interaction of two or more different drugs used concurrently leads to
formation of adducts of the primary compounds and their metabolites (e.g., cocaethylene,
benzoylecgonine, norcocaine, norcocaethylene (Cardona et al., 2006; Toennes et al., 2003)).
They may have additional toxic and/or inflammatory effects (Farooq et al., 2009) and/or
might also inhibit mI synthesis or uptake.
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4.2 GABA
The trends to low GABA concentration in the ACC of PSU (17-20% lower than in LD or
ALC) indicate that the GABA system is altered in PSU. Our GABA findings are consistent
with Ke et al. (2004), who showed low GABA levels in the prefrontal cortex of a cohort
concurrently dependent on alcohol and cocaine. It is therefore likely that our GABA
findings were driven by the 18 PSU individuals dependent on these two substances.
However, their ACC GABA levels were equivalent to those in the 10 PSU individuals
dependent on substances other than cocaine. This, together with our finding of largely
normal GABA levels in ALC after both one week and one month of abstinence (Mon et al.,
2012), suggest that GABA abnormalities in the ACC are associated with concurrent use of
alcohol and illicit drugs in PSU, but not with alcohol dependence alone.

Our interpretation of lower metabolite levels (GABA, NAA, Cr, Cho, mI) relating to cell
injury or dysfunction associated with polydrug use is further supported by three
observations: First, we observed worse neurocognitive performance of PSU compared to
ALC and LD (results will be published elsewhere), and neurocognitive deficits have been
associated frequently with metabolic abnormalities (Meyerhoff and Durazzo, 2008).
Secondly, the positive correlation in PSU between days of abstinence and DLPFC mI levels
suggests an increase of mI into the normal range (some degree of metabolic recovery)
during the first 10-45 days of abstinence. Lastly, the inverse relationship between DLPFC
GABA levels and cocaine consumption in PSU, together with lower ACC GABA in PSU vs.
LD and ALC, suggest that the prefrontal GABA metabolic pool is impacted by chronic
cocaine consumption. On these grounds, we share the view put forth by Johnson and
colleagues, who suggest that efforts, which increase GABA levels/activity in PSU (e.g.,
topiramate treatment), may offer fruitful treatment possibilities (Johnson, 2005). However,
our observation of a simultaneous decrease of four different metabolites (incl. mI) in the
DLPFC of PSU might also be explained by possible substance use associated neuronal/glial
edema, leading to higher water, thus lower overall metabolite concentrations. We suggest
that both cell injury and/or swelling (in GM and/or WM) might occur in the DLPFC of PSU.

4.3 Study Limitations and Outlook
Given our PSU cohort was abstinent for about one month, greater or different metabolic
abnormalities may have been present earlier in abstinence, as observed in the ACC-specific
metabolite abnormalities in one-week-abstinent ALC (Mon et al., 2012). We suggest
metabolic recovery occurring in PSU. Longitudinal follow-up will assist in clarifying if the
observed abnormalities are reversible, or if our observations are influenced by premorbid
and/or comorbid factors not assessed in this study. Few metabolite levels correlated with
substance and alcohol consumption quantities, and notwithstanding the known limitations of
self-report, this suggests that metabolite level abnormalities may be (in part) premorbid. If
this were the case, brain metabolite concentrations could serve as biomarkers or risk factors
for the development of PSUD. Larger study samples will help identify the degree to which
comorbid factors such as cigarette smoking may have influenced our findings. Another
observation in need for further investigation is the age-related DLPFC mI increase in PSU,
not observed in ALC or LD: polydrug consumption may be associated with alterations of the
brain ageing process, similar to what was shown in cocaine dependent individuals (Ersche et
al., 2012). Furthermore, neurobiological abnormalities in the ACC and DLPFC are known to
be associated with increased risk of relapse to substance use (Baler and Volkow, 2006;
Goldstein et al., 2009; Heatherton and Wagner, 2011; Volkow et al., 2011). Hence, it is also
critical to investigate if the abnormal regional brain metabolite levels detected in this study
are related to relapse risk, as observed in those with AUD (Durazzo et al., 2008, 2010).
Different relapse rates in PSU and ALC may be related to their unique neurobiological and
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cognitive differences demanding differently designed treatment approaches for these
disorders.

4.4 Conclusions
MRS-derived metabolite concentrations show that PSU are uniquely different from ALC at
one month of abstinence. PSU showed persistent metabolic abnormalities, primarily in the
DLPFC, whereas metabolite levels in ALC are normal, after having recovered from
abnormal levels in the ACC (Mon et al., 2012). These abnormalities reflect neuronal and
glial injury/dysfunction and some are also related to neurocognition. Our results point to
specific metabolic abnormalities as polydrug abuse biomarkers and as potential targets for
pharmacological and behavioral PSU-specific treatment aimed at decreasing high relapse
rates in PSU.
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Figure 1.
Representative VOI placements (left: ACC, center: DLPFC, right: POC), STEAM and J-
edited GABA spectra obtained from PSU (note: intensity scale differs between spectra).
Spectra shown as fitted (after DC-correction and apodization). Glx: glutamate + glutamine.
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Figure 2.
DLPFC GABA concentrations of cocaine dependent PSU in relation to their monthly
cocaine consumption (averaged over last year before abstinence).
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Table 3

Age corrected partial correlations (r*) between brain metabolite concentrations and neurocognitive measures
within PSU.

Region Metabolite concentration and
cognitive measure

r* p

DLPFC NAA and visuospatial memory
NAA and working memory

0.42
0.53

0.045
0.019

ACC NAA and visuospatial learning
Cho and processing speed
GABA and auditory-verbal learning

0.51
0.55
-0.48

0.039
0.023
0.049

POC GABA and visuospatial memory 0.51 0.031
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