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The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for the
DNA damage response. SLX4 nuclease complexes mediate repair during replication and can
also resolve Holliday junctions formed during homologous recombination. Here we describe
the phenotype of the Btbd12 knockout mouse, the murine orthologue of SLX4, which
recapitulates many key features of the human genetic illness Fanconi Anaemia (FA). Btbd12
deficient animals are born at sub-Mendelian ratios, have greatly reduced fertility, are
developmentally compromised, and prone to blood cytopenias. Btbd12−/− cells prematurely
senesce, spontaneously accumulate damaged chromosomes and are particularly sensitive to
DNA crosslinking agents. Genetic complementation reveals a crucial requirement for
Btbd12/Slx4 to interact with the structure specific endonuclease Xpf-Ercc1 to promote
crosslink repair. The Btbd12 knockout mouse therefore establishes a disease model for FA
and genetically links a regulator of nuclease incision complexes to the FA DNA crosslink
repair pathway.

Repairing most forms of genome damage requires DNA cleavage, a process catalysed by
structure specific endonucleases (SSE)1,2. These enzymes are only recruited to chromatin
when they are required for DNA repair. An important regulator of SSEs is the highly
conserved SLX4/BTBD12 protein2-4. Previous studies suggest that SLX4 is likely to exert
its function in genome stability by interacting and regulating three different SSEs through
distinct and non-overlapping regions 5-7. At the N-terminus SLX4 interacts with the XPF-
ERCC1 nuclease complex, a central region binds MUS81-EME1 and a distinct C-terminal
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domain binds SLX1. In addition to interacting with SSEs, SLX4 also interacts with the
mismatch repair recognition complex MSH2-MSH3 and also with components of the
telomere shelterin complex, TRF-RAP16. Moreover yeast and human SLX4 are
phosphorylated by Tel1 and ATR kinases respectively 8,9 thereby connecting SLX4 to a
replication-coupled DNA damage response network. Here we generate and analyse a mouse
knockout of Btbd12, the murine orthologue of SLX4. These mice bear a striking
resemblance to the phenotype of Fanconi Anaemia in humans, providing a long sought after
animal model for this genetic illness.

Disruption of the murine Btbd12 locus and creation of knockout mice, carrying the
Btbd12tm1a(EUCOMM)Wtsi allele, were generated in the C57BL/6NTac background by the
EUCOMM consortium, phenotyping was conducted at both our facility and the Wellcome
Trust Sanger Institute. The structure of targeting construct, determination of site-specific
integration, neomycin copy number and germline transmission of the allele was confirmed
by PCR (Supplementary Fig 1 a-d). We confirmed that homozygous animals do not express
detectable Btbd12 mRNA by qPCR (Supplementary Fig 1e).

Btbd12−/− mice were born from heterozygous intercrosses, however the frequency of
homozygotes was 11%, below the expected Mendelian ratio (χ2-test; p=0.0007,
Supplementary Table 1). From birth Btbd12−/− mice displayed marked growth retardation
compared to wild type and heterozygous littermates (Figure 1a, b and Supplementary Fig
1f). Slx4 is highly expressed in the gonads (Supplementary Fig 2a), and unsurprisingly both
male and female Btbd12−/− mice displayed a dramatic reduction in fertility due to gonad
dysfunction. The fertility of a cohort of male and female homozygous animals crossed with
wild-type animals was severely reduced producing only 9 pups, compared to a cohort of
heterozygous littermate intercrosses producing 521 pups (Supplementary Table 2).

The SLX4-SLX1 heterodimer is a putative Holliday junction resolvase 5,6, predicting a role
for Slx4 in meiotic recombination. Histologically, Btbd12−/− ovaries at 16 weeks showed a
complete absence of oocytes with no evidence of normal follicular maturation or corpora
lutea(Fig 1c). Examination of 8-week-old testes revealed many tubules with evidence of
defective spermatogenesis (Supplementary Fig 2 b). However at 16 weeks the majority of
tubules lacked any spermatogenesis containing only Sertoli cells with the epididymis being
devoid of spermatozoa (Fig 1c). The combination of the histological features and functional
aspects of reduced fertility in Btbd12−/− mice resembles Fanca−/−, Fancl−/− and Ercc1−/−

mice, in all these instances infertility is the result of primordial germ cell failure (Fig
1c)10-13. The fact that limited spermatogenesis does occur and that young homozygous
males and females can produce viable offspring indicates that meiosis can occur in
Btbd12−/− mice. However it is noteworthy that in 8-week-old Btbd12−/− testes we observed
multinucleated tetrads, and cells with multipolar spindles and an increased number of
apoptotic bodies (Supplementary Fig 3a and b). These abnormalities could be consistent
with defective meiosis.

A significant proportion of Btbd12 deficient mice died soon after birth (Fig 2a). This
subpopulation was severely runted and invariably associated with developmental defects
resulting in domed skulls (Fig 2b, p=0.006, Fisher’s exact test). High-resolution X-ray
computed tomography images of a representative Btbd12−/− animal in Figure 2c show that
the skull is enlarged and abnormal in shape. MRI imaging revealed gross cerebral
enlargement due to a hydrocephalus causing cortical thinning, with compression of the
brainstem and cerebellar structures. Histological analysis of the brain of hydrocephalic mice
revealed extreme dilation of the lateral ventricles with rupture of the 3rd ventricle and of the
cerebral cortex (Fig 2d). The MRI revealed that the 4th ventricle was spared suggesting an
obstructive cause for the hydrocephalus (Fig 2e). Btbd12−/− mice also exhibited an increased
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prevalence of ocular abnormalities compared to control littermates (Fig 2f, Supplementary
Fig 4). MRI of a representative Btbd12−/− mouse with unilateral anophthalmia is shown in
Figure 2g, revealing absence of the globe and no visible optic nerve. A significant
proportion of Btbd12−/− mice also displayed a range of more subtle ocular abnormalities.
(Fig 2h and Supplementary Fig 4a-c).

We assessed the haematological status of Btbd12−/− mice measuring red blood cells, white
blood cells, and platelets (Fig 3 a-c). The mean white blood cell count is lower in Btbd12
deficient animals compared with the control group. More significantly, a proportion of
Btbd12−/− animals have very low levels of platelets. In most instances the same animals had
deficiencies of both blood constituents. In order to gain insight into this haematological
dysfunction we examined the capacity of blood progenitors to differentiate by colony
forming assays. As can be seen in Figure 3d-e, bone marrow progenitors obtained from
Btbd12−/− animals show a markedly reduced number of colony forming units for both
myeloid and pre-B cell lymphoid lineages. Finally, we tested whether there was evidence of
spontaneous genomic instability in the haematopoietic compartment. Figure 3f shows that
the prevalence of micronucleated normochromic erythrocytes is elevated 2.5-fold in
Btbd12−/− (Supplementary Fig 5)14. This indicates that spontaneous chromosomal instability
occurs in the haematopoietic compartment of Btbd12−/− animals.

Primary Btbd12−/− MEF cultures rapidly ceased proliferating in vitro under normoxic
conditions illustrated in Figure 4a. The reason for premature replicative senescence appears
to be the accumulation of damaged chromosomes (Fig 4b and c). We observed chromosomal
aberrations ranging from chromatid breaks to complex radial structures in metaphases
produced from third passage Btbd12−/− MEFs (data not shown). We tested if chromosomal
aberrations could be induced following treatment with DNA crosslinking agents. When
Btbd12−/− transformed MEFs (tMEFs) were exposed to mitomycin C (MMC) for 48 hrs a
dramatic increase in broken and radial chromosomes was observed. This induction of
chromosomal aberrations was comparable to the increase observed in Fanca−/− tMEFs and
significantly greater than in the Btbd12+/+ congenic tMEF cell line (Fig 4d and e,
Supplementary Fig 6 a-c).

We then asked if the Btbd12−/− tMEF cell lines were sensitive to exogenous DNA damage.
siRNA knockdown of SLX4 in human cancer cell lines results in hypersensitivity to the
alkylating agent methylmethane sulfonate (MMS)5-7, topoisomerase inhibitor camptothecin
(CPT)5,6 and crosslinking agents cisplatinum and MMC7. We therefore tested our cell lines
for increased sensitivity to these DNA damaging agents as well as to γ and UV irradiation.
It is clear from the data in Figure 5a and b that Btbd12−/− tMEFs were particularly sensitive
to the two different DNA crosslinking agents – MMC and cisplatinum. However no
hypersensitivity to MMS, γ, or UV irradiation was detected (Fig 5 c-e). Btbd12−/− tMEFs
were slightly sensitive to CPT (Fig 5 f). Finally we compared the Btbd12−/− tMEFs to
Ercc1−/−, Fanca−/− and Fancc−/− SV40 tMEFs for sensitivity to MMC and UV irradiation.
The data in Figure 5 g clearly shows that in a back-to-back comparison all strains are
sensitive to MMC, with the Btbd12−/− and Ercc1−/− knockouts being the most sensitive. In
contrast only the Ercc1−/− tMEFs are sensitive to UV irradiation (Fig 5 h). Btbd12−/− cells
are competent in the monoubiquitination, recruitment to chromatin, and focus formation of
Fancd2 (Supplementary Fig 7 a-c). Cumulatively Btbd12−/− cell lines show spontaneous and
mutagen-induced genomic instability akin to FA patient cell lines as well as cells obtained
from mouse FA gene knockouts 15.

Previous studies have already shown that all three SLX4 interacting SSEs (XPF-ERCC1,
MUS81-EME1, and SLX1) participate in crosslink repair 2,16,17. We therefore set out to
establish whether some or all of these interactions contribute to crosslink repair. We made
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two Slx4 deletion constructs that were predicted to disrupt key interactions with the
respective SSE (Fig 6a). Slx4ΔErcc1 deletes the N terminal 498 residues predicted to
disrupt the interaction with Xpf-Ercc15,6, whereas Slx4ΔSlx1 deletes C terminal 148
residues predicted to disrupt the interaction with Slx1. The interactions of these Slx4
truncations with each SSE were tested using the mammalian-2-hybrid system and the
expected interactions were lost (Supplementary Fig 8a).

Btbd12−/− tMEF cells lines stably expressing tagged Slx4, or Slx4 truncations were
generated. Western blot analysis showed that all cDNA constructs directed the expression of
nuclear proteins of the expected molecular size and with the predicted interactions with
either Ercc1 or Mus81 (Fig 6b and Supplementary Fig 8b). The full-length cDNA and
Slx4ΔSlx1 complemented the Btbd12−/− tMEF hypersensitivity to MMC (Fig 6c). In
contrast the Slx4ΔErcc1 did not complement this defect indicating that the interaction
between SLX4 and the heterodimeric endonuclease Xpf-Ercc1 is crucial for crosslink repair.
XPF-ERCC1 exerts its action when localised to chromatin, and in Btbd12+/+ cell extract a
proportion of the ERCC1 subcomponent can be detected constitutively bound to chromatin
(Fig 6d top). In contrast in the Btbd12−/− cells the levels of Ercc1 on chromatin were barely
detectable (Fig 6d top). Following exposure to MMC or UV (Figure 6d bottom and
Supplementary Fig 8c) there is an increase in Ercc1 in the chromatin fraction in Btbd12+/+

cells, whilst Btbd12−/− MMC damaged cells have a defect in the accumulation of Ercc1 in
chromatin.

Btbd12 knockout mice recapitulate many key features associated with human FA, including
the development of blood cytopenias and diverse developmental defects. The eye, brain,
skeletal defects (Supplementary Fig 9) and abnormal glucose metabolism (Supplementary
Fig 10) that we describe in Btbd12−/− mice have all been reported in human FA18. We note
that the phenotype of Btbd12 knockout mouse differs from those carrying knockouts of each
of these individual SSEs (Supplementary Table 3). The Slx4-Slx1 complex is a putative
Holliday junction resolvase and its inactivation may in part explain the loss of fertility due to
defective meiosis. However the infertility reported here closely resembles the infertility
reported in FA and Ercc1 knockout mice which is due to primordial germ cell
failure10,12,13,19.

We show here that the interaction between Slx4 and Ercc1 is required for crosslink repair, it
is therefore not a surprise that there are overlaps but importantly also significant differences
between the phenotypes of the Btbd12 and Ercc1 knockout mice. For instance the pattern of
sterility, bone marrow dysfunction and marked crosslinker sensitivity at the cellular level are
shared aspects to both knockouts. The key cellular difference between Ercc1 and Btbd12 is
the additional hypersensitivity of Ercc1−/− cells to UV20. Ercc1 deficient mice display a
severe phenotype with the majority of animals succumbing to hepatic failure before
weaning 21,20,22. This is in contrast with Btbd12−/− mice that do not show abnormal liver or
renal function at 15 weeks (Supplementary Fig 11). Progressive neurodegeneration occurs in
Ercc1 models but at 12 weeks Btbd12−/− had not developed neurodegenerative changes
(Supplementary Fig 12)23,24. The striking parallels that we draw between Btbd12/Slx4
knockout mice and human Fanconi anaemia make this gene a strong candidate for mutations
in undesignated FA complementation groups. In a convergence with our mouse genetic
study biallelic mutations in SLX4 have now been identified in a potential new FA
complementation group FANCP.
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Online Methods
Targeting of ES cells and animal husbandry

Heterozygous mice carrying a targeted Btbd12tm1a(EUCOMM)Wtsi allele, were obtained from
the EUCOMM consortium. ES cell lines were selected on neomycin and screened by long
range PCR. Correct integration of the 5′ arm was confirmed using an oligo external to the
targeting vector, V0RW_18_H08_gf2 , and an oligo inside the drug resistance cassette,
LAR3_1, all oligonucleotide sequences are provided in Supplementary Table 4. The 3′ arm
was screened using an oligo external to the targeting vector, V0RW_18_H08_gr1, and an
oligo inside the drug resistance cassette RAF5. In both cases the amplicon was verified by
sequencing. The presence of the loxP site was confirmed by sequencing using the LR oligo.
Three positive ES cell lines were obtained. Two independent ES cell clones were injected.
Targeted alleles from both clones were transmitted through the germline establishing
independent colonies of mice on a C57BL/6N background that were phenotyped in parallel.
Mice from these colonies were found to be indistinguishable excluding the possibility of
linked mutations. To confirm a single integration event DNA from Btbd12+/+, Btbd12+/−

and Btbd12−/− animals was used as template for neomycin copy number counting using Neo
and Dot1L primers (Supplementary Table 4). To genotype animals ear biopsies were
obtained, DNA extracted, and used as the template for PCR using the following oligos
GSlx4f, GSlx4r; GSlx4SAr. All animals were maintained in specific pathogen-free
conditions. In individual experiments all mice were matched for age and gender. All animal
experiments undertaken in this study were done so with the approval of the UK Home
Office.

Preparation of Murine Embryonic Fibroblasts (MEFs)
Btbd12 heterozygous animals were time mated and humanely sacrificed at E13.5. Primary
MEF cultures were obtained as described previously. When the cells reached confluence
they were trypsinized and replated, this was considered passage 1.

Replicative senescence
6×105 MEFs from individual embryos were plated in a 6 well plate in triplicate. For
subsequent passages cells were seeded at 1.2×105. Cells were passaged every 72 hours and
enumerated using trypan blue exclusion counting 100 images using a ViCell XR (Beckman
Coulter).

Cytogenetic analysis
was performed as described as previously. Briefly, tMEFs were treated with 50nM MMC in
media for 48 hours prior to harvesting. tMEFs or passage 3 primary MEF were treated as
described previously.

Transformation of MEFs
pBABE-SV40Puro virus was produced in PLAT-E cells (Cell Biolabs). 48h following
transfection the media containing retrovirus was collected, and 0.22 micron filtered. The
infection mix consisted of 50% retrovirus and 50% complete media supplemented with 4ug/
mL polybrene. Clones were selected for 10 days using 3.5μg/mL puromycin.

Complementation
Truncations of Btbd12 cDNA constructs were amplified with a N-terminal 2×FLAG tag
from murine cDNA IMAGE clone (30534878). They were sequenced and cloned into
pExpress and subsequently into pLoxBSR. The plasmids were transected into tMEF using
Lipofectamine LTX (Invitrogen) following the manufacturers instructions. Positive clones
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were selected using 10μg/mL blasticidin and screened for expression by western blot.
Selection was maintained on positive clones.

DNA damage sensitivity assays
500 cells were plated per well of a 96-well plate, 12 hours later DNA damaging agent was
added. Following 10 days MTS reagent (Promega) was added for 2 hours and absorbance
was measured at 492nm. Each point represents the mean of three independent experiments
each carried out in triplicate.

Sub-fractionation and Immunoblot
Sub-fractionation was achieved using a cellular subfraction kit (Thermo Scientific)
according to manufacturer’s instructions. Antibodies used were ERCC1 D-10 (Santa Cruz)
at 1:100, Mus81F-20 (Santa Cruz) at 1:1000, FLAG M2 (Sigma) 1:2000, Histone 1 (Santa
Cruz) 1:2000, PCNA (Sigma) 1:1000, β-tubulin (Abcam) 1:1000, FANCD2 antisera
described previously25.

Immunofluoresence
Cells were fixed with 3% paraformaldehyde for 15 minutes, and permeabilized with 0.2%
Triton-X100 in PBS for 10 minutes. Cells were processed as described previously. Mouse
FLAG M2 (Sigma) was used at a concentration of 1:500. Secondary Goat anti-Rabbit
Alexafluor-555 (Invitrogen) was used at 1:500. Preparations for FANCD2 foci were pre-
extracted with 0.1% Triton-X100 for 2 minute prior to treatment as above, rabbit anti-
hFANCD2 antibodies have been described previously and were used at 1μg/mL. Imaging
was performed on Nikon C1-si confocal microscope.

Mamalian-2-hybrid
was conducted as described previously25. The murine cDNA of each gene was amplified
from the IMAGE clone Btbd12 (30534878), Slx1 (40130991), Mus81 (5038349), and Xpf
(4911382) cloned into the mammalian-2-hybrid vector and sequenced. Firefly and Renilla
luciferase were assayed using Dual-Luciferase Reporter (Promega) following the
manufacturer’s protocol.

Micronucleus assay
flow cytometric analysis was performed as described previously14.

Peripheral Blood Counts
Blood was collected in ETDA microvette tubes (Startedt) and analyzed on a VetABC
analyzer.

Hematopoietic CFU Assays
were performed using bone marrow harvested from the femur. Cells were enumerated and
equal numbers seeded in Methocult GF M3434 (Stem Cell Technologies) for myeloid
lineages following the manufacturer’s instructions. Pre-B cell CFU assays were performed
using Methocult M3630 (Stem Cell Technologies) following the manufacturer’s
instructions.

Magnetic resonance imaging
Magnetic resonance imaging (MRI) data were collected from formalin-fixed whole animals
and heads at 9.4 T using an Oxford Instruments, a Varian INOVA console and a
quadrature 1H-tuned volume coil (Varian Inc., Palo Alto, USA). Animals were administered
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with 10mL/kg gadoteridol (ProHance®, Bracco diagnostics Inc., UK) by intraperitoneal
injection 30 min prior to administration of a lethal dose of anaesthesia; animals were
formalin-fixed and in some cases the heads were detached prior to imaging. Axial and
sagittal proton (1H) images were acquired from 1 mm slices using T1-weighted gradient
echo (repetition time 300 ms, echo time 2.7 ms) and T2-weighted spin echo (repetition time
3000 ms, echo time 30 ms) pulse sequences. The field of view was 5.12 × 2.56 cm and data
were collected into 512 × 256 matrices producing a 100 μm in-plane resolution. An
additional three-dimensional 100 μm resolution isotropic data set was collected for the
formalin-fixed heads using a gradient echo pulse sequence (field of view 4.80 × 1.92 × 1.92
cm, data matrix 480 × 192 × 192, repetition time 50 ms, echo time 2.7 ms).

X-ray Computed Tomography
Computed tomography was performed using a microtomography system (NanoPET™-CT,
Mediso Ltd., Hungary). Images were obtained by helical acquisition using an exposure of 65
kVp, 123 μA and 1100 ms and a 78 μm resolution isotropic data set was acquired. Images
were reconstructed using a modified cone beam filtered-back projection method using a
RamLak filter and displayed as maximum intensity projections (InVivoScope® 1.41,
Bioscan Inc., Washington DC).

Histology
Tissue samples were fixed in 10% NBF, paraffin embedded and 4μm sections were cut prior
to haematoxylin and eosin staining.

Real Time Quantitative PCR
was performed using Taqman probes obtained from ABI for Btbd12 (Mm01342405_m1).
RNA was isolated from Btbd12+/+ and Btbd12−/− using Trizol (Invitrogen) and reverse
transcription was performed using random hexamers and SuperScript III(Invitrogen). All
measurements were performed in triplicate and the relative amounts of cDNA were
compared with Hprt (Mm00446968_m1) as a reference for total cDNA. Subsequently, the
Btbd12+/+ cDNA concentration was used for normalization.

LacZ staining
was performed on tissues which were removed and fixed in 4% paraformadehyde for 30
minutes. Tissues were then washed three times in PBS supplemented with 5 mM EGTA ,
0.01% Deoxycholate, 0.02% NP-40 and 2 mM MgCl2. Tissues were then incubated at 37°C
for 6 hours in staining buffer (5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 5 mM EGTA, 0.01%
Deoxycholate, 0.02% NP-40, 2 mM MgCl2, 1mg/mL bromo-chloro-indolyl-
galactopyranoside) in the dark. Tissues were fixed again with 4% paraformaldehyde
overnight at 4°C before being transferred to 30% glycerol in 70% ethanol for long-term
storage.

TUNEL Assay
was performed using TACS 2 TdT Blue Label (Trevigen) following for the manufacturers
instructions. DNaseI treatment was used a positive control.

Glucose tolerance
was assessed in mice fed on a High Fat Diet (Western RD, 829100, Special Diets Services)
from 4 weeks old until mice reached 13 weeks. At 13 weeks mice were fasted overnight
before a blood sample was taken and glucose measured using an Accu-Check Aviva
(Roche). To perform intra-peritoneal glucose tolerance test (IP-GTT) mice were fasted for
16 – hours a bolus of glucose was administered intraperitoneally and blood glucose
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concentration from tail vein was measured using Accu-Check Aviva (Roche) after 15, 30, 60
and 120 minutes.

Clinical chemistry
was performed on 15-week-old mice. Mice were terminally anaesthetized and blood
collected from the retro-orbital sinus into lithium-heparin tubes. Plasma was immediately
analyzed on an Olympus AU400 Analyzer.

Neurobehavioural and Sensory assessment
was performed. At 9 weeks Open field, grip strength and modified SHIRPA were performed
as described previously 2627. Startle response was assessed at 11 weeks and hot plate was
performed at 12 weeks.

Occular assessement
was performed at 13 weeks using a Zeiss SL130 Slit –Lamp and a Heine Omega 500
Binocular Indirect Ophthalmoscope. Tropicamide was used to dilate pupil.

X-ray imaging
was performed at 14 weeks using a MX20 Imager (Flaxitron). Mice were anaesthetized with
Ketamine(100mg/kg), Xylazine (10mg/kg), Antisedan (1mg/kg) combination.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Btbd12 deficiency results in growth retardation and compromised fertility
a) A representative image of Btbd12+/+ and Btbd12−/− littermates at 7 weeks revealing
obvious growth retardation. b) Weights of male and female Btbd12+/+, Btbd12+/−, and
Btbd12−/− animals at 12 weeks confirming growth retardation of Btbd12−/− mice. (n=10 for
each genotype, central line represents median, box interquartile range, whiskers 90th
centiles, *** p<0.001, ** p<0.01.) c) Microscopic analysis of H&E stained sections of ovary
(x400, scale bar 50μm), testis (x50, scale bar 400μm) and epididymis (x400, scale bar
50μm) from Btbd12+/+, Btbd12−/− and Fanca−/− animals at 16 weeks. This revealed absence
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of oocyte maturation in Btbd12−/− females, and similar pattern of impaired spermatogenesis
in testis of Btbd12−/− and Fanca−/− mice with absence of spermatozoa from epididymis.
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Figure 2. Some Btbd12−/− mice die prematurely and display brain and eye developmental defects
a) Kaplan-Meier survival curve for cohorts of Btbd12+/+, Btbd12+/− and Btbd12−/− mice
(n=28 per genotype, p=0.011), a sharp drop in survival is evident in the Btbd12−/− colony
occurring within the first 3 months of life. b) An increased prevalence of hydrocephalus is
observed among the cohort of Btbd12−/− mice. (**p=0.006, Fisher’s exact test; Btbd12+/+

n=3/72, Btbd12+/− n=13/163, Btbd12−/− n=10/48) c) High resolution X-ray CT of
representative Btbd12−/− compared with littermate Btbd12+/+ control, a obvious skull
deformity is apparent in the Btbd12−/− mouse (scale bar 1cm). d) H&E sectioned
hydrocephalic brain from a Btbd12−/− mouse showing dilatation of the lateral ventricles (1)
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and rupture of the 3rd ventricle (3). (scale bar 1mm) e) High resolution MRI of a Btbd12+/+

animal compared with a hydrocephalic Btbd12−/− mouse. The image shows a large
hydrocephalus (*), arrowhead points to disrupted brainstem structure (scale bar 2.5mm). f)
An increased prevalence of a spectrum of eye abnormalities is observed in Btbd12−/− mice
(*** p=0.0008, Fisher’s exact test; Btbd12+/+ n=2/71, Btbd12+/− n=0/163, Btbd12−/−

n=11/48) g) High resolution MRI of representative Btbd12−/− compared with wild type
littermate showing unilateral anophthalmia (scale bar 2.5mm). h) Slit-lamp images revealing
the spectrum of ocular abnormalities observed in the cohort of Btbd12−/− animals (scale bar
1mm). These abnormalities range from corneal opacity (left), to microphthalmia (center) and
finally anophthalmia (right).
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Figure 3. A proportion of Btbd12−/− mice develop blood cytopenias associated with genomic
instability
Full blood count analysis of 4-12 weeks old Btbd12−/− with wild type littermates a-c (n=22
for each group) a) Peripheral blood erythrocyte concentration, ns; not significant p=0.0617
b) Peripheral white cell concentration, *p=0.0155 – note a sub-population of markedly
leukopenic animals. c) Peripheral thrombocyte concentration, **p=0.0027 – note a sub-
population of severely thrombocytopenic animals. (in a-c central line represents mean and
error bars standard error of mean) d) Proficiency of Btbd12+/+ and Btbd12−/− bone marrow
progenitor cells to form myeloid colony forming units (CFU) from 2×104 nucleated bone
marrow cells. Data obtained from the average of results obtained from 3 individual mice
(***p<0.0001, bar represents mean of three independent experiments and error bars standard
error of mean) e) Lymphoid linage was assessed through the ability of bone marrow cells to
form Pre-B cell CFU per 5×104 bone marrow cells (average 3 independent mice, *p=0.017,
bar represents mean of three independent experiments and error bars standard error of
mean). f) Flow cytometric analysis revealing the frequency of micronucleated
normochromic erythrocytes (Mn-NCE) in peripheral blood of unchallenged 16-week-old
Btbd12+/+ and Btbd12−/− mice (n=12 per genotype, ***p<0.0001, central line represents
mean and error bars standard error of mean). Micronuclei are a marker for genomic
instability.
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Figure 4. Btbd12 deficient cells undergo premature replicative senescence exhibiting spontaneous
and inducible chromosomal instability
a) Primary MEFs obtained from Btbd12+/+, Btbd12+/−, and Btbd12−/− embryos were grown
in culture under normoxic conditions and monitored for population doubling. The Btbd12−/−

MEF lines prematurely cease growing. Metaphases from early passage (P3) MEFs were
prepared and individually imaged. Each metaphase was then scored blind for the presence of
chromosome abnormalities revealing an increased b) number of aberrations per metaphase
(* p = 0.0268, t-test; bar represents mean and error bars standard error of mean) and c) an
increased frequency of abnormal metaphases (**p=0.0092, Fischers’ exact test). d) Image of
a single Btbd12−/− metaphase spread revealing chromosome aberrations similar to those
seen in FA cells (black arrows - radial structures; red arrows - chromatid break, scale bar
5μm). e) Cells were exposed to MMC, metaphases from these cells were scored for
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chromosome aberrations. MMC exposure leads to chromosomal instability in Btbd12−/− and
Fanca−/− transformed MEFs (* p<0.05, **p<0.0001, t-test; central line represents mean and
error bars standard error of mean )
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Figure 5. Btbd12 deficient MEF are hypersensitive to DNA interstrand crosslinking agents
Two independent Btbd12−/− transformed MEF lines were compared with congenic wildtype
transformed MEFs for cellular sensitivity to a range of mutagens by MTS cell viability
assay. Btbd12−/− MEFs were extremely sensitivity to a) mitomycin C (MMC), b)
cisplatinum, whilst they are not hypersensitive to c) UV irradiation, d) Methyl
methanesulponate (MMS) or e) γ-irradiation. Btbd12−/− MEFs were mildly sensitive to f)
camptothecin (CPT). The cellular sensitivity of Btbd12−/−, Ercc1−/−, Fanca−/− and Fancc−/−

MEFs were compared next to each other to g) the DNA crosslinking agent MMC and h) UV
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irradiation. Each point represents mean of three independent experiments, each carried out
in triplicate, error bars represent standard error of the mean.
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Figure 6. The interaction between Slx4 and Xpf-Ercc1 is required for crosslink repair
a) Cartoon representation of the Slx4 polypeptide, domain boundaries and interaction sites
for the relevant SSEs (Xpf-Ercc1, Mus81-Eme1 and Slx1) are shown. Two deletion
constructs that were predicted to disrupt the interaction with Slx1 (Slx4ΔSlx1) or the
interaction with Xpf-Ercc1 (Slx4ΔErcc1) are described. b) Anti–FLAG Western blot
showing the expression of FLAG-Slx4 and the truncations FLAG-Slx4ΔSlx1 and FLAG-
Slx4ΔErcc1 in transfected Btbd12−/− tMEFs. FLAG IP were then Western blotted for Ercc1,
the full length and FLAG-Slx4ΔSlx1 retain interaction to this SSE subcomponent whilst
FLAG-Slx4 Ercc1 abolishes this. The IP was also blotted for Mus81 showing that all
truncations interact with Mus81. c) MTS cell survival of Btbd12−/−, Btbd12−/− +
Slx4ΔErcc1 and Btbd12−/− + Slx4ΔSlx1 strains in response to MMC. Each point represents
the mean of three independent experiments carried out in triplicate and error bars represent
the standard error of the mean. d) Upper Panel: Sub-cellular fractionation followed by
western blot for Ercc1 in cellular fractions without DNA damage (Cyt-cytoplasmic, Nuc-
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nuclear, Chr-chromatin). A reduction of Ercc1 in the chromatin fraction is seen in the
Btbd12−/− cell line without DNA damage Lower Panel: Western blot analysis of Ercc1 in
the chromatin fractions of Btbd12−/− and Btbd12+/+ tMEFs exposed to MMC (U-untreated,
4, 8). The accumulation of Ercc1 on chromatin is reduced after MMC treatment in
Btbd12−/− cells.

Crossan et al. Page 20

Nat Genet. Author manuscript; available in PMC 2013 April 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


