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COMMENTARY

Drosophila SETs Its Sights on Cancer: Trr/MLL3/4 COMPASS-Like
Complexes in Development and Disease

Marc Alard Morgan, Ali Shilatifard

Stowers Institute for Medical Research, Kansas City, Missouri, USA

he COMPASS family, which functions in the regulation of

developmental gene expression, is a group of histone H3 lysine
4 (H3K4) methylases that is evolutionarily conserved from Sac-
charomyces cerevisiae (yeast) to human (1). Although there is only
one Setl/COMPASS in yeast, Drosophila cells possess three yeast
Setl-related proteins: dSetl, Trithorax (Trx), and Trithorax-re-
lated (Trr), all found within COMPASS-like compositions (1).
Mammalian cells possess two representatives for each of the three
subclasses found in Drosophila for a total of six COMPASS family
members: SET1A and SET1B (related to dSet1); MLL1 and MLL2
(related to Trx); and MLL3 and MLL4 (related to Trr). Expansion
of this family over evolutionary time implies a diversification in
the function of H3K4 methylation, and studies into the distinct
roles of the different branches of the COMPASS family support
this notion. Drosophila and mammalian Setl complexes mediate
the bulk of genomic H3K4 di- and trimethylation (2—4). In con-
trast, the Trx/MLL1/2 complexes act in a highly gene-specific
manner, in particular, controlling expression of distinct homeotic
genes, including those within the Hox gene clusters (1, 5). MLL1
has been extensively studied in mouse models and human cells, as
MLLI translocations cause aggressive infant leukemias (6-8). Trr/
MLL3/4 complexes are involved in nuclear hormone receptor sig-
naling in both Drosophila and mammals (9, 10), and inactivating
mutations have recently been implicated in human cancer (11—
16). Mammalian MLL3/4 are large proteins (approximately 5,000
amino acids), whereas Drosophila Trr is homologous to the car-
boxy-terminal PHD, FYRN, FYRC, and SET domain of MLL3/4.
A separate gene, LPT (Lost PHDs of Trr), encodes a protein ho-
mologous to the MLL3/4 amino terminus (3, 17). Moreover, Trr
and LPT associate in the same complex, suggesting that a gene
fission event had occurred in an ancestral gene in the Drosophila
lineage (3).

Set1/COMPASS in yeast is unique in its ability to mono-, di-,
and trimethylate its nucleosomal substrate (1, 18). The pattern of
localization of histone H3K4 trimethylation (H3K4me3) and
COMPASS on chromatin was first demonstrated to strongly cor-
relate with transcriptionally active promoters in yeast (19), and
this role of H3K4me3 in marking actively transcribed genes is
highly conserved across the eukaryotes and is indeed used as a
landmark for finding active promoters (20, 21). In contrast to
H3K4me3, H3K4 monomethylation (H3K4mel) is found on
poised and/or active enhancers (22, 23). Given that there are six
COMPASS family members in mammalian cells, it was not clear
until recently which COMPASS family member is involved in im-
plementing H3K4mel on enhancers. Recent work has now un-
covered an unexpected role for Trr/MLL3/4 in gene regulation
through enhancer-promoter communication. It was demon-
strated that Trr functions as a major H3K4 monomethylase tar-
geting enhancers in Drosophila (24). Moreover, loss of Trr impairs
long-range enhancer function during Drosophila wing develop-
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ment. Given the strong association of H3K4mel with enhancers
(22) and the emerging connections between MLL3/4 and human
disease, the relationship between Trr/MLL3/4 methylase activity
and gene regulation is an area of burgeoning interest.

In this issue, Kanda and coworkers from the Hariharan labo-
ratory (25) report the use of elegant genetic tools in Drosophila to
shed light on Trr function during development and draw a strik-
ing parallel between Drosophila Trr and MLL3/4 mutations in
human cancer. Using genetic mosaics, Kanda et al. demonstrate
that during Drosophila eye development, cells lacking Trr have a
clonal growth advantage over their wild-type counterparts. In
agreement with recent work identifying Trr as a major H3K4
monomethylase involved in enhancer function (24), they ob-
served a dramatic loss of H3K4mel in #rr mutant tissue accompa-
nied by altered activity of key developmental signaling pathways,
namely, Notch, Dpp/BMP, and receptor tyrosine kinases (RTK).
In stark contrast to the growth advantage conferred by Trr defi-
ciency, Trx mutant clones fail to proliferate and display increased
apoptosis, mirroring the phenotypes observed in mammalian
MIl1/2 loss-of-function studies (26, 27).

Quite remarkably, these distinct Trx (growth-promoting) ver-
sus Trr (growth-suppressing) functions may be conserved in
mammals. M1 knockout mice lack hematopoetic stem cells and
display embryonic proliferation defects, whereas gain-of-function
MII1 fusions cause aggressive leukemia (6, 27, 28). Similarly, MII2
mutant embryos are severely growth retarded at early develop-
mental stages and display widespread apoptosis (26). In contrast,
mice lacking the MII3 SET domain are viable but develop ureteric
tumors, demonstrating a tumor suppressor function (29). More-
over, a series of genome-wide studies have identified loss-of-func-
tion mutations in MLL3 and MLL4 and in their cofactor, UTX, in
diverse human cancers (11-16). Consistent with this, Drosophila
Utx mutant clones also display an overgrowth phenotype (30). As
for many of the Drosophila trr alleles characterized by the Hariha-
ran laboratory, many cancer-associated MLL3 and MLL4 muta-
tions result in truncation of point mutations in the catalytic SET
domain (Fig. 1). Intriguingly, chromatin profiling in human can-
cer suggests a key role for H3K4mel. The genome-wide distribu-
tion of H3K4mel undergoes a consistent alteration in colon can-
cer, often resulting in the loss of intestinal crypt-specific
H3K4mel marks (31). Collectively, these data provide evidence
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FIG 1 Mutations of Trr and MLL3/4. Amino acid alignment of Trr, MLL3, and MLL4 was generated using CLC Sequence Viewer 6. Known protein domains are
indicated. Sequence conservation between Trr, MLL3, and MLL4 is shown beneath the alignment. Yellow represents highly conserved regions, whereas blue
indicates regions of poor sequence conservation between the 3 related proteins. Reported nonsense mutations of Trr, including those reported by Kanda et al.
(25), are shown. Missense mutations of MLL3 and MLL4 were obtained from the Catalogue of Somatic Mutations in Cancer (COSMIC) database (http://cancer
.sanger.ac.uk/cancergenome/projects/cosmic/) (35). Note that the COSMIC website reports sites of MLL4 mutations relative to an alternatively spliced transcript
encoding a shortened 5,268-amino-acid protein. In the figure presented here, these positions were adjusted to match the 5,537-amino-acid protein that is most

commonly reported in the literature.

that Trr/MLL3/4-catalyzed H3K4 monomethylation functions to
suppress tumorigenesis in specific contexts. The present work
from the Hariharan laboratory is particularly significant and sug-
gests that Drosophila eye mosaics could provide an ideal platform
for dissecting the molecular mechanisms underlying MLL3/4 mu-
tations in human cancer.

Many important questions remain regarding Trr/MLL3/4
function. We do not understand what the precise mechanisms are
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that lead to overproliferation of ¢trr mutant clones and MLL3/4
mutant cancer cells. What are the genome-wide targets affected by
loss of Trr and MLL3/4, and are any of these targets conserved
between Drosophila and mammals? What are the factors that re-
cruit Trr/MII3/4 to enhancer sequences, and do mammalian
MLL3 and MLLA4 share overlapping targets? Recent work suggests
that direct enhancer-promoter interactions via cohesin complexes
may organize the chromatin of the interphase nucleus (32-34).
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Could loss of the H3K4me1 and/or Trr/MLL3/MLL4 COMPASS-
like complexes at enhancers grossly disrupt genome packaging
and lead to genetic instability? The current work from the Hari-
haran laboratory firmly establishes Drosophila as a powerful ge-
netic and biochemical model system to complement mammalian
genetics and high-throughput sequencing of human cancer for
the studies of Trr/MLL3/4 COMPASS-like complexes in develop-
ment and disease.
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