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Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environ-
ments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehen-
sive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis
of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to
include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution
within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of
avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The charac-
terization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the
first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or
order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked
role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-
species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avi-
poxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will

clarify avipoxvirus taxonomy.

vian pox is a viral disease affecting more than 230 species in 23

orders of wild and domesticated birds (1). Poxviruses were
identified as causative agents of pox lesions almost a century ago
(2, 3), but understanding of their phylogenetics and epidemiology
remains rudimentary. The genomes of only two well-diverged
avian poxviruses (isolated from chicken and canaries) have thus
far been sequenced. All avian poxviruses (avipoxviruses) are as-
signed to the genus Avipoxvirus in the subfamily Chordopoxvirinae
of the Poxviridae family. Within the Avipoxvirus genus there are
currently 10 recognized species (established primarily in the pre-
sequence era, with subsequent limited use of restriction fragment
length polymorphism analysis): Fowlpox virus, Canarypox virus,
Juncopox virus, Mynahpox virus, Psittacinepox virus, Sparrowpox
virus, Starlingpox virus, Pigeonpox virus, Turkeypox virus, and
Quailpox virus, according to the International Committee on Tax-
onomy of Viruses (www.ictvonline.org). The exact number of ex-
isting avipoxvirus species, strains, and variants is unknown, since
new isolates continue to be identified from a wide variety of avian
species, such as Berthelot’s pipit (Anthus berthelotii) (4), lesser
flamingos (Phoenicopterus minor) (5), or crested serpent eagle
(Spilornis cheela) (6).

Avian pox infections cause significant economic losses in do-
mestic poultry due to decreased egg production, reduced growth,
blindness, and increased mortality (7). Effects of avian pox on wild
bird species can also be severe. The infection may produce several
negative effects including elevated predation among affected birds
(8), secondary infections, trauma, reduced male mating success
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(9) and death (10). The lifestyle of wild birds allows avian poxvi-
ruses to reach new hosts through bird migration, species introduc-
tions, and habitat change. Avian pox has been identified as an
important risk factor in the conservation of small and endangered
populations, particularly in island bird species (4). The impact of
the introduction of avian pox has been disastrous for the avifauna
of various archipelagos (11). Poxvirus infection has been respon-
sible for the population decline of native bird species on Hawaii
(12), Galdpagos (2, 13), and the Canary Islands (14). Avian pox
has also been identified as a risk factor in the reintroduction
programs of houbara bustard (Chlamydotis undulata macqueenii)
in the Middle East, Floreana mockingbirds (Mimus trifasciatus) in
Galapagos (15, 16), and peregrine falcons (Falco peregrinus) in
Germany (17). The recent emergence of an epizootic of conspic-
uous and distinctive avian pox among great tits (Parus major) in
the United Kingdom (18), and its penetrance of a historically well-
studied population near Oxford, allowed detailed study of the
epidemiology (19) and population-level impacts (20) of the dis-
ease in wild birds.
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The currently available vaccines against fowlpox, canarypox,
pigeon pox, and quail pox are each produced using virus strains
isolated from the respective avian group. There is an increasing
demand for new vaccines against avian poxvirus infections to help
protect a wide range of birds, especially endangered species (21).

Fowlpox virus is the type species of the Avipoxvirus genus. The
complete genomic sequences of Fowlpox virus (AF198100) (22)
and Canarypox virus (AY318871) (23) are available. The two ge-
nomes are highly diverged, sharing only ca. 70% sequence iden-
tity. The 365-kbp genome of Canarypox virus is larger than that of
Fowlpox virus (288 kbp) and shows significant differences in gene
content, particularly in the expansion and diversification of some
gene families that are already large in Fowlpox virus, notably the
ankyrin repeat proteins (19). The phylogenetic relationships
among avipoxviruses are only partially characterized. Compara-
tive analysis of genomic sequences is the most informative and
reliable method for comparing closely related viral genomes, so a
definite phylogeny will have to await additional genome sequenc-
ing. The relationships of avian poxviruses isolated from free-rang-
ing birds have been analyzed using DNA sequences of the 4b core
protein coding genomic region (21, 24-27). Until recently, the
significant divergence among avipoxviruses impeded the efforts to
identify other pan-genus PCR primers. Jarmin et al. (25) and
Manarolla et al. (21) sequenced the fpv140 locus (FPV140 gene;
virion envelope protein, p35) of some avian poxvirus strains,
while Thiel et al. (13) sequenced the intergenic region between
CA.X (CNPV114 gene; HT motif protein), and TK (CNPV113
gene; thymidine kinase) genes. Unfortunately, these markers ap-
peared to fail to identify some clades or subclades that were iden-
tified by the 4b core protein-based PCR system. These phyloge-
netic studies have concluded that the vast majority of avian
poxvirus isolates clustered into three major clades, represented by
the Fowlpox virus (clade A), the Canarypox virus (clade B), and the
Psittacinepox virus (clade C). However, other pan-genus markers,
similar to the 4b core protein coding genomic region, are needed
in order to achieve a more robust phylogenetic classification of
avian poxviruses.

This study was aimed at identifying another such pan-genus
marker from the wider set of genomic core genes (the DNA poly-
merase gene) and combining it with sequences from the 4b region
to provide a robust and global phylogenetic framework for the
study and classification of avian poxviruses. Our analysis included
partial 4b core protein and DNA polymerase gene sequences of
virus strains isolated from natural pox infection cases occurring in
111 wild and captive birds from 57 different species sampled in
North and South America, Europe, Asia, Antarctica, and the Pa-
cific Ocean.

MATERIALS AND METHODS

Sample collection and preparation. Samples were collected by biopsy or
during postmortem examinations from a wide range of clinically ill or
dead birds in the United States, Ecuador (Galapagos Islands), Argentina,
Chile, Hungary, Spain, Netherlands, Belgium, United Kingdom, South
Korea, and Antarctica (Table 1). Tissue samples were frozen at —20 or
—80°C or fixed in 10% neutral buffered formalin and embedded in par-
affin blocks.

Virus isolation on muscovy duck embryo fibroblasts (MSDEF) (28,
29) or the chorioallantoic membrane (CAM) of embryonated chicken
eggs (28,29) was carried out in several cases (Table 1). Alesion (ca. 1g) was
homogenized for 2 min using a tissue grinder in 10 ml of Hanks’ balanced
salt solution (Gibco-Invitrogen, Carlsbad, CA) supplemented with 5%
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glycerin (Sigma-Aldrich, St. Louis, MO) and 5% gelatin (Difco-BD,
Franklin Lakes, NJ). The tissue suspension was centrifuged at 800 X g at
4°C for 30 min. About 0.2 ml of supernatant was inoculated onto the CAM
of 13-day-old embryonated chicken eggs after filtration through a 0.45-
pwm-pore-size filter. The eggs were incubated for 5 days at 37°C before
harvesting. The CAM was excised under microscope and observed for
generalized thickening or lesions. MSDEF cell culture was prepared and
handled by the method of Docherty and Slota (28, 29). About 0.5 ml of
supernatant, after filtration through a 0.45-pm-pore-size filter, was inoc-
ulated into a 7-day-old confluent T-75 flask of MSDEF. The flask was
incubated at 37°C and 5% CO, in a humidified air incubator and read on
days 3 to 7 after inoculation to observe for cytopathic effect (CPE). The
flask was freeze-thawed for blind passage 7 days after the original inocu-
lation if no CPE was seen (28, 29).

DNA was extracted from frozen tissue samples, CAM homogenates,
tissue cultures, and paraffin-embedded samples with a QIAamp DNA
minikit (Qiagen, Inc., Valencia, CA) according to the manufacturer’s rec-
ommendations.

Primers, PCR, and sequencing. In order to amplify a fragment of the
avian poxviruses DNA polymerase gene, a PCR system was designed based
on the known Fowlpox virus DNA polymerase gene sequence (30) utiliz-
ing the primer pair: PoPrl, 5'-CGCCGCATCATCTACTTATC-3'; and
PoPr2,5'-CCACACAGCGCCATTCATTA-3'". Since this method was not
able to detect all poxvirus strains, a pair of universal primers (PPolF [5'-
GGCYAGTACKCTTATYAAAGG-3'] and PPolR [5'-CGTCTCTACGT
GTTTCGCT-3']) was designed from the consensus sequence of the
aligned DNA polymerase gene sequences of Fowlpox and Canarypox virus.
Alignments were generated with the web-based Multalin software (31),
while PRIMER?2 (Scientific and Educational Software, Cary, NC) and
PrimerSelect from the Lasergene software package (DNASTAR, Inc.,
Madison, WI) were used for primer design. The PCR amplifying a se-
quence of the 4b core protein gene was used as described by Lee and Lee
(32).

All PCRs were performed in a 25- .l total volume containing 10 to 100
ng of target DNA diluted in, 5 pl of 5X Green GoTaq Flexi Buffer (Pro-
mega, Inc., Madison, WI), 2 pl of MgCl, (25 mM), 0.75 pl of deoxy-
nucleoside triphosphates (10 mM; Qiagen), 2 pl of each primer (10 pmol/
wl), and 0.2 pl of GoTaq DNA polymerase (5 U/ul; Promega). The PCR
was performed in DNA Engine Thermal Cyclers PTC-0200 (Bio-Rad Lab-
oratories Inc., Hercules, CA).

For the PCR amplifying the DNA polymerase gene segment with the
PoPr1/2 primers the reaction consisted of initial denaturation for 5 min at
95°C, followed by 35 amplification cycles consisting of denaturation for
30 s at 95°C, primer annealing at 53°C for 30 s, and extension at 72°C for
1 min. The final extension step was performed for 5 min at 72°C. For the
PPolF and PPolR primers, the annealing temperature was set to 50°C, with
the rest of the protocol unaltered. In the PCR amplifying the 4b core
protein sequence the amplification was extended to 45 cycles and con-
sisted of 1 min of denaturation at 95°C, 1 min of annealing at 60°C, and 1
min of extension at 72°C.

After amplification, 5 l of each reaction mixture was subjected to
electrophoresis in 1% agarose gel, and the amplified gene products were
visualized under UV light after ethidium bromide staining. PCR products
were isolated from agarose gel (QIAquick gel extraction kit; Qiagen), and
direct cycle sequencing was performed with the primers used for amplifi-
cation on an ABI 373A or an ABI Prism 3100 automated DNA sequencer
(Applied Biosystems, Foster City, CA).

Phylogenetic methods. Nucleic acid databases were searched using
BLASTN (33). Multiple alignments of the obtained DNA sequences were
performed with CLUSTAL W in the DAMBE software package (34) using
the translated amino acid sequence alignment as a template for the precise
alignment of the DNA sequences. Alignments were edited and shaded
with BioEdit software (35). The concatenated alignment containing the
sections of both 4b core protein and DNA polymerase gene sequences was
also produced in DAMBE.
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Phylogenies were generated separately for the 4b gene and DNA poly-
merase gene sequences and for the concatenated sequences of these two
genes. Trees were constructed using three methods: neighbor joining
(NJ), maximum likelihood (ML), and a Bayesian approach. To determine
the most likely model of evolution, jModelTest (36, 37) was performed.
Based on Akaike’s information criterion, the most likely model for the
DNA polymerase gene and the concatenated sequences was a general time
reversible model with a gamma distribution (GTR+G), while for the 4b
gene, it was the transitional model TIM1+G. The gamma rates for the
three gene sequences were as follows: concatenated = 0.2590, 4b =
0.3260, and polymerase = 0.2670. The model and parameter estimates for
the closest matching model (see below) was entered using NJ in MEGA 5.0
(38, 39), ML analyses in PAUP* 4.0b (40), and Bayesian analysis in Mr-
Bayes 3.1 (41, 42). The LogDet model (43) with the estimated gamma rate
was used for NJ analysis bootstrapped for 1,000 replicates. ML analyses
utilized the PAUP block from jModelTest for each gene region in a heu-
ristic search with tree bisection and reconnection (TBR) branch swap-
ping, bootstrapped for 100 replicates. Bayesian analyses were run for 1 to
2.5 million generations, with sampling at every 100th generation, until
model convergence was achieved. Four chains and a 25% burn-in that was
then discarded for all analyses were used. A 50% majority rule consensus
tree was built from the resulting trees. Initial phylogenies were generated
with Molluscum contagiosum (NC001731) as the outgroup, according to
the method of Jarmin et al. (25). Tree topologies within the avian poxvi-
ruses were unchanged when the following outgroups were used (Deerpox
virus AY689437, Tanapox virus EF420157, and Yaba-like disease virus
AJ293568) (44). Subsequent trees excluded these outgroup taxa, and the
isolates clustered in the most basal group were used as an outgroup. The
use of orthopoxviruses for outgroup(s) did not affect the tree topologies
(data not shown).

The average evolutionary divergence between sequences was esti-
mated with the MEGA 5.0 software (39) both between and within Avi-
poxvirus clades, subclades and Orthopoxvirus clades. Analyses were con-
ducted using the Tamura-Nei model with standard error estimated
through 1,000 bootstrap replicates. The rate variation among sites was
modeled with a gamma distribution (shape parameter = 1) using all
codon positions. Between group and within group analyses were per-
formed on the partial (555 bp) alignment of avipoxvirus DNA polymerase
sequences complemented with Orthopoxvirus type sequences available
from GenBank (Old World clade: X94355, Coxpox virus; M35027, Vac-
cinia virus; L22579, Variola virus; AY009089, Camelpox virus; DQ437594,
Taterapox virus; DQ792504, Horsepox virus; AY484669, Rabbitpox virus;
HM172544, Monkeypox virus; and AF012825, Ectromelia virus; North
American clade: FJ807738, Volepox virus; DQ066529, Skunkpox virus;
DQO066531, Raccoonpox virus) (n = 121), while additional within group
analyses were also conducted on concatenated (981 bp) avipoxvirus DNA
polymerase and 4b core protein sequences (n = 109). Potential recombi-
nant sequences were excluded from the analysis.

A recombination analysis was performed on the concatenated se-
quence alignment using the RDP 3 software (45) in order to detect poten-
tial recombination events resulting in incongruent topology of the two
single gene trees. The analysis focused on identifying events involving
large sequence segments, or indeed the whole of the partial 4b core and
DNA polymerase sequences (426 and 555 bp, respectively). The default
selection of detection methods (RDP, GeneConv, and MaxChi) and gen-
eral settings were used to perform the analyses but sequences were treated
as linear, the power of detection was set to 0.01, the number of permuta-
tions to 100 with the shuffle column option.

The relationship between the phylogeny of avian hosts and avipoxvi-
rus isolates were analyzed based on the most basic fowlpox virus (clade A)
and canarypox virus (clade B) groupings. First, an alignment of cyto-
chrome b sequences was generated for all available avipoxvirus hosts from
GenBank; this gene contained the largest number of comparable and phy-
logenetically informative sequences across these species. When a sequence
was not available for the specific host, the taxonomically closest available
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species was chosen. The taxa in the analyses were pared down to a single
representative for each host species to avoid bias due to highly sampled
taxa with the same poxvirus genotype. The final data set contained 61
sequences; 29 from canarypox virus hosts and 32 from fowlpox virus hosts
(Table 2). Sequences were trimmed to 589 bp shared among all of the taxa
in Sequencher 4.10 (Gene Codes, Ann Arbor, MI). A maximum-likeli-
hood phylogeny of the hosts was generated to visualize the distribution of
different poxvirus groupings. Evolutionary divergence was estimated be-
tween and within the canarypox virus and fowlpox virus group. In order
to estimate the evolutionary divergence between sequences, pairwise ge-
netic distances, a measure of the genetic similarity between two groups
based on shared nucleotides, were calculated with the MEGA 5.0 software
(39). Both analyses estimated differences over sequence pairs using a max-
imum composite likelihood model with standard error estimated through
100 bootstrap replicates.

RESULTS

Molecular phylogeny of the avipoxvirus sequences. The primers
PPolF and PPolR for DNA polymerase gene were successfully used
to amplify sequences from all tested isolates which encompassed
all previously known clades. These primers yielded products of
~900 bp. However, only a 555-bp length part was included in the
phylogenetic analysis since older samples were examined only
with the PoPr1/2 primers, which produced a smaller PCR prod-
uct. A 426-bp long sequence of the 4b core protein gene was used
to prepare an additional alignment. Thus, the concatenated se-
quences of both genes were 981 bp long.

Partial sequences of both DNA polymerase and 4b core protein
genes were amplified successfully from 111 avian pox lesion sam-
ples and virus isolates. The topologies of the phylogenetic trees
created with different methods (neighbor joining [NJ], maximum
likelihood [ML], and Bayesian) from the concatenated (Fig. 1), 4b
core protein gene (Fig. 2), and DNA polymerase gene (Fig. 3)
sequence alignments were very similar. Based on the posterior
probability values and most consistent tree topology, the Bayesian
trees were considered the most reliable, followed by the NJ analy-
sis, while the ML trees had the lowest bootstrap values and poorest
resolution. Based on these results we primarily used the topology
of the concatenated Bayesian tree through our analysis. Avipoxvi-
ruses form two major clades (A and B) with strong support (Fig.
1), while the placement of the third major clade (C) is less certain.

Clade A represents seven subclades (Al to A7). Subclade Al
comprises viruses isolated from birds of the order Galliformes
(domestic fowl, blue-eared pheasant) with a wide geographic dis-
tribution. A poxvirus isolated from a superb parrot originating
from Chile also clustered in subclade A1l. Subclade A2 consists of
viruses originating from birds of the order Columbiformes (rock
doves, oriental turtle doves) from North America, Europe, and the
Republic of Korea, with additional samples from a peacock, rap-
tors, red-legged partridges, and great bustards from Europe. Sub-
clade A3 formerly consisted of only an albatross virus and a falcon
virus, but it has been expanded by isolates from other seabirds
(southern giant petrel, pelagic cormorant, common murre, Lay-
san albatross, Magellanic penguin) from the coasts of the Pacific
and Atlantic Ocean and Eurasian eagle-owls from Korea. Subclade
A4 still forms an outlier and contains viruses from peregrine fal-
con and red-footed falcon from Hungary and a United Arab Emir-
ates falcon isolate. A new subclade, A5, sharing a common ances-
tor with subclade Al, comprises isolates from Anseriformes
(trumpeter swans, mottled duck, blue-winged teal, redhead duck,
wood duck, mallard duck) originating from the United States.
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TABLE 2 List of cytochrome b sequences for avipoxvirus hosts from GenBank

Avipoxvirus Phylogenetics

Pox type Host (English name) Host (Latin name) Alternate host sequence GenBank no.

Canarypox Yellow-crowned amazon Amazona ochrocephala AY194411.1
Golden eagle Aquila chrysaetos EU345512.1
Canada goose Branta canadensis NC_007011.1
Woodpecker finch Cactospiza pallida AF108793.1
Black-hooded siskin Carduelis atrata L76385.1
House finch Carpodacus mexicanus AF447364.1
Swainson’s thrush Catharus ustulatus EU619788.1
Elepaio Chasiempis sandwichensis Eiao monarch Pomarea iphis fluxa AY262704.1
Northern (hen) harrier Circus cyaneus Western marsh-harrier Circus aeruginosus AY987305.1
Northern (masked) bobwhite Colinus virginianus EU372675.1
American crow Corvus brachyrhynchos AY509619.1
Common raven Corvus corax AY527266.1
Medium Ground finch Geospiza fortis AF108773.1
Common hill myna Gracula religiosa Common myna Sturnus tristis NC_015195.1
Mississippi sandhill crane Grus canadensis FJ769855.1
Hawai’i amakihi Hemignathus virens AF015755.1
Apapane Himatione sanguinea AF015754.1
Dark-eyed junco Junco hyemalis hyemalis AF290161.1
Gray-crowned rosy finch Leucosticte tephrocotis AY156380.1
Galapagos mockingbird Mimus parvulus Le Conte’s thrasher Toxostoma lecontei AY329478.1
Great tit Parus major EU167009.1
Black-billed magpie Pica hudsonia AY030114.1
Common bullfinch Pyrrhula pyrrhula HQ284613.1
Boat-tailed grackle Quiscalus major AF089055.2
Common grackle Quiscalus quiscula AF089058.2
Canary Serinus canaria AY914127.1
Humboldt penguin Spheniscus humboldti DQ137220.1
European starling Sturnus vulgaris AF285790.1
American robin Turdus migratorius EU619827.1

Fowlpox Northern goshawk Accipiter gentilis NC_011818.1
Wood duck Aix sponsa EU585605.1
Red-legged partridge Alectoris rufa AM850840.1
Blue-winged teal Anas discors EU914146.1
Mottled duck Anas fulvigula Mallard duck Anas platyrhynchos, alt. haplotype EU755252.1
Mallard duck Anas platyrhynchos EU755253.1
Eastern imperial eagle Aquila heliaca 773465.1
Redhead duck Aythya americana NC_000877.1
Canada goose Branta canadensis NC_007011.1
Eurasian eagle owl Bubo bubo AJ003961.1
Common buzzard Buteo buteo NC_003128.3
Red tailed hawk Buteo jamaicensis GQ264785.1
Rock dove Columba livia NC_013978.1
Blue-eared pheasant Crossoptilon auritum AF534552.1
Trumpeter swan Cygnus buccinator Tundra swan Cygnus columbianus DQO083161.1
Peregrine falcon Falco peregrinus EU233100.1
Red-footed falcon Falco vespertinus EU233132.1
Domestic fowl Gallus domesticus Red junglefowl Gallus gallus NC_007236.1
Bald eagle Haliaeetus leucocephalus GQ264818.1
Booted eagle Hieraaetus pennatus Y15760.1
Southern giant petrel Macronectes giganteus AF076060.1
Domestic turkey Meleagris gallopavo NC_010195.2
Red kite Milvus milvus AY987312.1
Great bustard Otis tarda NC_014046.1
Indian peafowl Pavo cristatus DQO010648.1
Pelagic cormorant Phalacrocorax pelagicus EU167011.1
Laysan albatross Phoebastria immutabilis AB276050.1
Superb parrot Polytelis swainsonii Red-winged parrot Aprosmictus erythropterus AB177959.1
Magellanic penguin Spheniscus magellanicus DQ137218.1
Oriental turtle-dove Streptopelia orientalis Spotted dove Streptopelia chinensis AF483341.1
Common murre Uria aalge DQ485892.1
Mourning dove Zenaida macroura Eared dove Zenaida auriculata NC_015203.1
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FIG 1 Bayesian phylogeny of concatenated DNA sequences from genes encoding 4b core and DNA polymerase proteins of avipoxviruses. Posterior probability
values of the Bayesian trees (1,000 replicates) and neighbor-joining and maximum likelihood bootstrap values (1,000 replicates) of >70 are indicated (MB/N]/
ML). Symbols: <, lower than 70; &, branch does not exist with that method. Avipoxvirus clades A to C, subclades, and clusters are labeled according to the
nomenclature of Jarmin et al. (25) and Jarvi et al. (46). Novel subgroups described in the present study are highlighted by gray. Isolate origins are given either as
U.S. state abbreviations or using the following location codes: Antarctica (ANT), Argentina (ARG), Belgium (BEL), Chile (CHI), Ecuador (ECU), Germany
(GER), Hungary (HU), Italy (ITA), Netherlands (NL), Norway (NOR), Portugal (POR), Spain (ES), South Korea (ROK), United Arab Emirates (UAE), and
United Kingdom (UK). Avian poxviruses which were isolated from captive birds (aviaries, zoos, etc.) are highlighted by gray, isolates containing potential
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recombinations are set in a box. The scale represents the number of substitutions per site.
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FIG 2 Bayesian phylogram of DNA sequences from genes encoding 4b core proteins of avipoxviruses. Posterior probability values of >70 are shown. Avipoxvirus clades
A to C, subclades, and clusters are labeled according to the nomenclature of Jarmin et al. (25) and Jarvi et al. (46). Novel subgroups described in the present study are
highlighted by gray. Isolate origins are given either as U.S. state abbreviations or using the following location codes: Antarctica (ANT), Argentina (ARG), Belgium (BEL),
Chile (CHI), Ecuador (ECU), Germany (GER), Hungary (HU), Italy (ITA), Netherlands (NL), Norway (NOR), Portugal (POR), Spain (ES), South Korea (ROK),
United Arab Emirates (UAE), and United Kingdom (UK). Avian poxviruses that were isolated from captive birds (aviaries, zoos, etc.) are highlighted by gray. The scale
represents the number of substitutions per site. Due to the large number of avian poxvirus isolates in the 4b gene analyses (1 = 226), we abbreviated the names for isolates
with identical sequences from GenBank accessions as follows: (i) P1 genotype, AB292647, AF198100, AJ005164, AJ581527, AM050377, AM050378, AM050379,
AMO050380, AY453171, AY453172, AY530302, AY530304, AY530307, DQ873808, EF568377, EF634347, EF634348, M25781, GU108500, GU108501, GU108502,
GU108503, GU108504, GU108505, GU108506, GU108507, GQ221269, GQ180212, GQ180207, GQ180201, GU108509, and GU108508; (ii) P6 genotype, AM050385,
AMO050387, AM050388, AY530303, AY530305, DQ873809, DQ873810, DQ873811, EF016108, GQ180210, GQ180208, and GQ180204; (iii) P55 genotype, EF568379,
EF568384, EF568386, EF568387, EF568388, EF568389, EF568391, EF568399, and EF568400; (iv) P77 genotype, AM050381, AM050389, AY530308, GQ487567,
GU108510, GQ180202, GQ180203, GQ180205, and GQ180209; (v) P92 genotype, AY530310, AY318871, AY453174, AY453175, EF568380, EF568392, EF568394,
EF568395, EF634349, EF634350, and GQ180213; and (vi) P109 genotype, DQ131895, DQ131897, DQ131900, and DQ131901.

May 2013 Volume 87 Number 9 jviasm.org 4945


http://jvi.asm.org

Gyuranecz et al.

- P27 Laysan albatross HI
P26 Common murre WA, P22
971 P19 Rockdove HI, P7, P8, P9, P10, P11
71 100|* P12 Pigeon HU
&'.AEPB Oriental turtle dove ROK, P14, P15 A2&3
L—P16 Peacock HU, P17, P18, P19, P20, P21
I P23 Pelagic cormorant AK
- P24 Eurasian eagle-owl ROK, P25
] L P28 Magellanic penguin ARG
100 P37 Wood duck WI A1
P1 Domestic fowl HU, P2, P3, P5, AF198100, AJ581527, M31638, AJ223385
100 A P4 Superb Parrot CHI
P44 Bald eagle FL
_— P45 Bald eagle FL, P46, P47, P48
100] P49 Northern goshawk HU, P50 A7
100| P52 Bald eagle AK, P53, P54
91 P51 Red kite ES
gor P41 Mourning dove WI, P38, P39, P40
A &[L P42 Rockdove CA A6
P43 Canada goose WI
P31 Trumpeter swan WI, P32, P33, P34, P35, P36 I A5
P29 Peregrine falcon HU, P30 1A4
P55 Canary HI, P56, P57, P58, P59, P60, P61, P62, =}
P63, P64, P65, P66, P67, P68, P69, P70, P71 g_
87+ P72 American crow DC o
811L P73 House finch HI N
P74 Medium ground finch ECU
[} P87 Common bullfinch BEL
P86 Northern harrier ES
P100 Apapane HI, P92, P93, P94, P95, P96, P97,
100r P77 American crow MA, P78 P98, P9
H - P79 Black-hooded siskin NL B1
| 79| _P102 Common grackle TX, fo
P76 Northern bobwhite AZ P103 &
I P89 Mississippi sandhill crane MS e
P90 Swainson's thrush WI, P91 =
P80 Common raven CA, P81, P82, P83
% AY318871 Canarypoxvirus
100 P84 Woodpecker finch ECU
P75 Galapagos mockingbird ECU
89 - P88 Great tit HU
— P85 American crow PA
76 — P101 Canary CHI
B '— P108 Common hill myna HU
100 100 P104 European starling MD, P105, P106 I B2
100 P107 Great bustard HU
P109 American robin TX IB3
C P110 Yellow-crowned amazon NY, P111
0.06

FIG 3 Bayesian phylogeny of DNA sequences from gene encoding DNA polymerase protein of avipoxviruses. Posterior probability values of >70 are shown.
Avipoxvirus clades A to C, subclades, and clusters are labeled according to the nomenclature of Jarmin et al. (25) and Jarvi et al. (46). Novel subgroups described
in the present study are highlighted by gray. Isolate origins are given either as U.S. state abbreviations or using the following location codes: Antarctica (ANT),
Argentina (ARG), Belgium (BEL), Chile (CHI), Ecuador (ECU), Germany (GER), Hungary (HU), Italy (ITA), Netherlands (NL), Norway (NOR), Portugal
(POR), Spain (ES), South Korea (ROK), United Arab Emirates (UAE), and United Kingdom (UK). Avian poxviruses which were isolated from captive birds
(aviaries, zoos, etc.) are highlighted by gray. The scale represents the number of substitutions per site.

New subclades A6 and A7 share a ancestor with subclades A2 and
A3. Subclade A6 comprises viruses from Columbiformes (mourn-
ing doves, rock doves) and a Canada goose from North America.
Isolates from Accipitriformes (bald eagles, red tailed hawk, com-
mon buzzard, northern goshawk, red kite) from the United States
and Europe and a mallard duck group under subclade A7.

Clade B is comprised of three subclades (B1 to B3). Previously
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reported subclade B1 comprises viruses isolated from a wide range
of passerine species (Passeriformes) of worldwide distribution,
although several nonpasserine hosts (e.g., northern harrier, Mis-
sissippi sandhill crane, Humboldt penguin, etc.) are represented
as well. This subclade further diversifies into three outliers and a
main branch consisting of two clusters. Nine house finch isolates
from our study and further two from a previous work (46) with a
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TABLE 3 Estimates of average evolutionary divergence of sequence pairs between and within avipoxvirus subclades and orthopox virus clades”

Avg evolutionary divergence (SE)

Avipox Orthopox Distance (SE)
Clade Al A2 A3 A4 A5 A6 A7 Bl B2 B3 C ow NA 1 2
Avipox Al (0.016) (0.016) (0.024) (0.021) (0.019) (0.016) (0.043) (0.046) (0.048) (0.050) (0.097) (0.102) 0.001 (0.000) 0.000 (0.000)
Avipox A2 0.107 (0.004) (0.024) (0.021) (0.016) (0.013) (0.042) (0.049) (0.049) (0.047) (0.104) (0.111) 0.016 (0.004) 0.014 (0.003)
Avipox A3 0.098 0.020 (0.024) (0.020) (0.014) (0.013) (0.042) (0.050) (0.048) (0.046) (0.105) (0.110) 0.005 (0.002) 0.006 (0.001)
Avipox A4 0.169 0.165 0.158 (0.027) (0.022) (0.024) (0.044) (0.043) (0.051) (0.054) (0.099) (0.104) 0.000 (0.000) 0.000 (0.000)
Avipox A5 0.151 0.142  0.132  0.190 (0.022) (0.024) (0.051) (0.054) (0.050) (0.060) (0.087) (0.094) 0.000 (0.000) 0.000 (0.003)
Avipox A6 0.120 0.099  0.078  0.149  0.140 (0.016) (0.039) (0.049) (0.044) (0.052) (0.088) (0.089) 0.005 (0.002) 0.003 (0.001)
Avipox A7 0.104 0.086 0.079  0.161 0.171 0.103 (0.038) (0.052) (0.051) (0.043) (0.105) (0.110) 0.010 (0.003) 0.007 (0.003)
Avipox Bl 0354 0356 0359 0345 0386 0312 0327 (0.026) (0.034) (0.048) (0.120) (0.124) 0.017 (0.003) 0.024 (0.003)
Avipox B2 0.391 0392 0.402 0335 0419 0390 0436  0.206 (0.033) (0.054) (0.115) (0.131) 0.050 (0.008) 0.036 (0.006)
Avipox B3 0.385 0.401 0.400 0.378 0.391 0.369  0.426  0.262 0.226 (0.059) (0.114) (0.116) n/c n/c
Avipox C 0.421 0.406  0.401  0.435 0477  0.423 0366  0.409  0.45 0.481 (0.107) (0.119) 0.000 (0.000) 0.000 (0.000)
Orthopox OW  0.778 0.827 0.83 0.775 0.751 0.745 0.819  0.942 0.917 0907  0.871 (0.019) 0.013 (0.003) 0.016 (0.003)
Orthopox NA  0.804 0.864 0.854  0.823 0.789  0.758 0.849  0.975 0.973 0.882 0.933 0.148 0.076 (0.011)

@ Estimates of average evolutionary divergence of sequence pairs between and within avipoxvirus subclades (A1 to A7, B1 to B3, and C) and orthopoxvirus clades (Old World [OW]
and North American [NA]). The number of base substitutions per site from averaging over all sequence pairs between (matrix) and within (columns) groups is shown. Standard
error estimates are shown in parentheses. The results of within-group analyses are presented in the last two columns: the within-group analysis for column 1 was performed on a
partial DNA polymerase sequence (555 bp) alignment (n = 121), while the within-group analysis for column 2 was conducted on concatenated (981-bp) DNA polymerase and 4b
core protein sequences (n = 109). Potential recombinants were excluded from the analysis. Evolutionary analyses were conducted in MEGAS5 (39). n/c, not calculated.

diverse range of isolation dates and geographic origins were ana-
lyzed and found to group within cluster 2 of subclade B1. The
three outliers were formed by two strains from grackles, a virus
from a Chilean canary and a strain described from Berthelot’s
pipit (Fig. 2). Previously reported subclade B2 consisted of isolates
from starlings and mynahs. It was found that starlings in Europe
and North America host the same virus strain. Viruses isolated
from a great bustard in Hungary and a rock and wood pigeon from
Europe also clustered into subclade B2. Isolates from a wide range
of different bird species presented to a wildlife center in Virginia in
2003 and 2004 form a new subclade, B3 (Fig. 2). From our sam-
ples, only a 2003 American robin isolate from Texas clustered into
this subclade. Clade C consists exclusively of isolates from psitta-
cine species. The location of this clade is ambiguous. It formed
either a separate clade, or it was a weakly supported member of
clade B.

The within-group mean genetic distances of the concatenated
avian poxvirus sequences were 0.087 = 0.007 standard error (SE)
in clade A and 0.059 = 0.005 SE in clade B, while the sequences
were identical (genetic distance = 0.000) in clade C. Mean genetic
distances of the concatenated sequences within avipoxvirus sub-
clades ranged from 0.000 to 0.035 (Table 3). The results of the
partial DNA polymerase sequence analysis allowing a comparison
with orthopoxviruses (Old World and North American clade) are
summarized in Table 3.

Possible recombination between 4b and DNA polymerase
loci. Apparent recombination breakpoints were located and con-
firmed with multiple analysis methods available in the RDP 3 soft-
ware in five of the concatenated sequences at the junction of the 4b
core protein and DNA polymerase (nucleotide [nt] 426). Isolates
P52, P53, and P54 (from two bald eagles and a mallard) were
identified by the RDP method (P = 8.719 X 10~%) as apparent
interlocus recombinants of isolate P41 (mourning dove) as minor
parent (4b core protein sequence) and P51 (red kite) as major
parent (DNA polymerase sequence). It should be noted that in the
concatenated sequence tree (Fig. 1), the apparent recombinants
(P52, P53, and P54) are basal to the apparent parents P51 and P41.
It is therefore possible that the apparent recombinant carries the
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ancestral sequences, whereas the apparent parents carry recom-
bined loci. However, the topology of the three trees (shown in Fig.
1, 2, and 3) is ambiguous for these isolates, so it would be prema-
ture to speculate on the actual nature of the event.

Isolate P37 (from a wood duck) was also identified (P = 1.613 X
10™"?) as an apparent interlocus recombinant, with P32 (mottled
duck) as minor parent (4b core protein sequence) and P2 (domes-
tic turkey) as major parent (DNA polymerase sequence).

A fifth apparent recombination event, in this case intralocus,
affecting only a part of the DNA polymerase gene, was detected in
a common hill mynah isolate P108 (P = 9.469 X 10~ '?) with one
breakpoint identified at the sequence junction (nt 426) and an
additional ending breakpoint at nt 763 of the alignment. The mi-
nor parent was identified as the dark-eyed junco isolate P94 (DNA
polymerase gene sequence), while the major parent was a Euro-
pean starling isolate P104. All of the above apparent recombina-
tion events were confirmed with similarly significant P values by
the GeneConv, BootScan, MaxChi, Chimaera, SiScan, and 3Seq
methods.

Concordance of host and virus phylogeny. When assessing
genetic diversity between the avian hosts, the mean between-
group genetic distance for the hosts of canarypox viruses (clade B)
and fowlpox viruses (clade A) was 0.209 = 0.011 SE. The mean
within-group genetic distances were 0.175 % 0.009 SE for hosts of
clade B viruses and 0.186 = 0.107 SE for hosts of clade A viruses.
Within-group distances were not significantly different based on
the overlap of the 95% confidence intervals with the means. Over-
all, there was significantly greater between- than within-group
genetic diversity, indicating two distinct groups of hosts. None-
theless, although the phylogenetic distribution of hosts shows
overall grouping congruent with the clade of virus, it has been
possible to isolate clade A and B viruses from some closely related
hosts (Fig. 4).

DISCUSSION

The phylogenetics and epidemiology of avian poxviruses is only
partially understood. This study contributed to our understand-
ing of this group of viruses by studying a broad range of isolates
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FIG 4 Maximum-likelihood phylogeny of the hosts generated from the cytochrome b sequences from GenBank. Hosts of fowlpox viruses are highlighted by gray,
and canarypox viruses are without highlight. Bootstrap values of >70 are shown. The scale represents the number of substitutions per site.
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collected from around the world. Until now, the highly conserved
4b core protein gene was used as the sole pan-genus marker both
in diagnostics and phylogeography (21, 24-27, 47). We show that
the DNA polymerase gene is useful as another pan-genus marker,
and the results of phylogenetic analyses are comparable to those
based on the 4b core protein gene while the use of this additional
gene provided the first opportunity to study the potential role of
recombination in the evolution of avipoxviruses.

The updated classification of avian poxviruses, based on our
concatenated Bayesian phylogeny and described below, primarily
follows the nomenclature of Jarmin et al. (25). Three main clades
(A to C) are differentiated within avipoxviruses (Fig. 1). Clade A
appears to be the fowlpox clade, clade B the canarypox clade, and
clade C the Psittacinepox virus clade. Clade A further differentiates
into seven subclades. Subclades Al to A4 were previously de-
scribed (25). Subclade Al is formed by Fowlpox virus in the nar-
rowest sense. Subclade A2 was identified as Turkeypox virus, but it
now appears to be more representative of a subset of pigeonpox
viruses, as a large number of geographically diverse viruses iso-
lated from the order Columbiformes are grouped here. When ini-
tially described by Jarmin et al. (25), subclades A3 and A4 con-
tained only two and one sequences, respectively. Our study
contributed a large number of novel sequences to these groups. It
is now apparent that subclade A3 represents poxviruses of marine
birds and subclade A4 those of falcons. Novel subclades A5 to A7
were identified in the present study. Subclade A5 appears to rep-
resent poxviruses of waterfowl, subclade A6 as a second, distinct
group of pigeonpox viruses, and subclade A7 as poxviruses of
raptors. Clade B was found to have three subclades as described
earlier (25). Subclade Bl comprises the strict canarypox viruses.
Mpynahpox and Starlingpox viruses grouped together in subclade
B2 and thus the use of the term “Sturnidaepox virus” is proposed.
Considering that the isolates of subclade B3 originate from a nar-
row temporal and geographic range, we suggest it should be
known as “Virginian epidemic avipoxvirus.” The finding of Jarvi
et al. (46) establishing that subclade B1 has two main clusters was
confirmed by our study. The outlier containing the Berthelot’s
pipit isolate from Macronesia was described earlier (4), but two
further outliers, including one from grackles, were identified here.

The mean genetic distance within clades A and B of avian pox-
viruses appears to be similar to that of the North American clade
of orthopoxviruses, but it is about four to five times the mean
distance between Old World orthopoxviruses. However, since the
average divergence values within Avipoxvirus subclades are gen-
erally quite similar to those calculated for orthopoxvirus clades,
we may equally consider the option that the current subclades
could eventually be viewed as equivalent taxonomical units. This
relatively large genetic divergence among avian poxviruses, as well
as the topology of the phylogenetic trees, indicates that the Avi-
poxvirus genus is one of the more widely diverged genera of the
Chordopoxvirinae subfamily.

There is some evidence in our data for recombination events in
the evolutionary history of the studied avipoxviruses. Although
the limited number of loci (n = 2) examined, their length, and
their genomic separation (103 kbp in fowlpox virus AF198100)
constrains the possible conclusions, it seems likely that the de-
tected events occurred in relatively well defined ecological and
phylogenetic frameworks. These events primarily involved viruses
(within subclades A5, A6, or A7) circulating in closely interacting
hosts, providing a natural interface for potential virus exchange
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and coinfection (e.g., between and within Accipitriformes,
Columbiformes, and Anseriformes), while the case involving
Sturnidae (subclade B2) additionally highlights the potential of
virus diversification and adaptation linked to extensive, primarily
anthropogenic changes in the geographic distribution and con-
comitant “unnatural” contacts between species (in zoo collections
or between alien, invasive, and native resident species in the wild).
The confirmation of the nature of these events and elucidation of
their role in the evolution and function (e.g., pathogenicity, adap-
tation, etc.) of avian poxviruses would, however, require the study
of complete genomic sequences.

The range of hosts infected by fowlpox viruses (clade A), as
estimated by within-group genetic diversity, was not significantly
greater than that for those infected by canarypox viruses (clade B),
indicating that each clade infects a similarly diverse range of bird
hosts. One caveat is that the effect of sampling bias on the phylo-
genetic results is unknown. Sampling for avipoxviruses is not sys-
tematic across hosts and some taxa, e.g., poultry and songbirds are
more intensively sampled than other groups. Several isolates orig-
inated from quarantine facilities, aviaries, or zoos where unusual
transmissions may occur (particularly between already stressed or
diseased birds), resulting in lesions but probably representing
“dead-end” events that would rarely occur in the wild and would
not lead to sustained epornitics. Such phenomena could have oc-
curred, for example, in the cases of the fowlpox virus-infected
superb parrot in subclade A1, the canarypox virus-infected Hum-
boldt penguin in cluster 1 of subclade B1, or the isolates of sub-
clade B3, which were isolated from a wide range of different bird
species within a short time range during hospitalization in a wild-
life center in Virginia.

In general, avian poxviruses tend to be host family or order
specific, but ecological niche, habitat, and geography may modu-
late this pattern. A clear example of host family/order specificity is
the European starling, which harbors the same virus strain both in
Europe and North America and is a close relative of mynahs, in-
fected with a closely related virus. The viruses isolated from and
largely specific to falcons and raptors are other good examples.

The circulation of certain poxviruses within a prey-predator
system can be recognized in several subclades (e.g., subclades A2
and B1). For example, we hypothesize that eastern imperial eagles
may acquire pox infection from their dove prey (subclade A2) and
northern harriers from a passerine species (subclade B1).

Another example of the role of the ecological niche and/or
habitat lies with the poxviruses of marine birds (subclade A3),
where evolutionarily distinct avian species with similar lifestyles
harbor related viruses. In this case, although the isolates showed
wide spatial separation, the effect of geography could not be ex-
cluded completely since these hosts migrate widely and share
breeding sites where poxvirus infections could be transmitted and
sustained. Except for this situation, geography seems to have only
a minor effect on the avipoxvirus phylogeny, but it should not be
dismissed, as in the case of the “Virginian epidemic avipoxvirus,”
where the hospitalized birds infected each other.

An interesting phenomenon can be observed in cluster 2 of
subclade B1. Viruses of this cluster infect different passerines, in-
cluding all of the analyzed house finch isolates, with diverse re-
trieval dates and geographic origins. The timeline of sample col-
lection indicates that the ancestor of cluster 2 might have been a
house finch virus (see samples P64 to P71 and P73 in Fig. 1 to 3),
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the variants of which were subsequently dispersed around the
Western Hemisphere and infected other bird species.

The data presented here provide novel insights into the com-
plex relationship between avian poxviruses and their hosts. Gen-
eration of a significant number of whole-genome sequences of
viruses from key points in the tree presented here would help to
solve emerging problems in the conservation of endemic bird spe-
cies and decrease pox-related economic losses in the poultry in-
dustry.
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