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A Lysine Substitution in the ATP-Binding Site of Eucaryotic
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Eucaryotic initiation factor 4A (eIF-4A) is a member of a family of proteins believed to be involved in the
ATP-dependent melting of RNA secondary structure. These proteins contain a derivative of the consensus
ATP-binding site AXXGXGKT. To assess the importance of the consensus amino acid sequence in elF-4A for
ATP binding, we mutated the consensus amino-proximal glycine and lysine to isoleucine and asparagine,
respectively. The effect of the mutations was examined by UV-induced cross-linking of [a-*>P]JdATP to eIF-4A.
Mutation of the lysine residue (but not of the glycine residue) resulted in the loss of [a->>P]dATP cross-linking
to eIlF-4A, suggesting that the lysine is an important determinant in ATP binding to eIF-4A.

Eucaryotic initiation factor 4A (eIF-4A) is required for
ribosome binding to mRNA during translation initiation (1,
19). eIF-4A can exist in free form or as a subunit in the
cap-binding protein complex, eIF-4F. elF-4F consists of
three proteins: eIF-4E, eIF-4A, and p220. It was postulated
previously (2) and some evidence has been provided (13) that
elF-4A melts mRNA secondary structure in an ATP-depen-
dent manner. In addition, eIF-4A was shown to exhibit
ATPase activity (5). eIF-4A helicase activity is particularly
effective when eIF-4A is part of eIF-4F, and this activity
requires the participation of another initiation factor, eIF-4B
(F. Rozen, I. Edery, and N. Sonenberg, unpublished data).
The ability of ATP or dATP to covalently cross-link to
elF-4A upon UV irradiation is consistent with the presence
of ATPase and RNA helicase activities in eIF-4A (15).

A large family of at least seven proteins with homology to
elF-4A has recently been described (3, 6-9, 11, 12, 16).
Twelve percent of the amino acids are identical in all the
proteins of the family (8; J. Schnier, personal communica-
tion). On the basis of the reported mRNA helicase activity of
elF-4A (13), it was suggested that eIF-4A-like proteins are
involved in ATP-dependent melting or unwinding of double-
stranded regions in RNA or DNA. elF-4A-like proteins
contain an ATP-binding consensus sequence, GKT, that is
shared by all other ATP-binding proteins and is part of the
sequence GXXXXGKT present in many procaryotic and
eucaryotic ATP-hydrolyzing proteins, termed the A motif
(20). In the eIF-4A-like family of proteins, a related consen-
sus sequence, AXXGXGKT, is present (8). Although the
AXXGXGKT sequence in the eIF-4A-like family has been
assumed to participate in ATP binding, this has not been
directly demonstrated. Figure 1 shows the conservation of the
ATP-binding motif in eIF-4A-like proteins (an extended con-
sensus is indicated: AX3GSGKT).

To determine the importance of amino acids in the ATP
consensus sequence of elF-4A for its activity, we mutated
the invariable lysine (position 82 according to the full-length
protein [11]) to asparagine and the first glycine (position 79)
of the consensus sequence to isoleucine. For the studies
described in this paper, we used a murine eIF-4A partial
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cDNA clone that is truncated at its 5’ end (10), encoding a
protein which initiates at the second in-frame methionine
and which therefore lacks the 16 amino-terminal amino acids
(10, 11). This deletion had no measurable effect, compared
with that of intact rabbit reticulocyte eIF-4A, on the binding
of [a->?P]dATP to eIF-4A as determined by UV-light-in-
duced cross-linking. Mutations were performed in
M13mpl9, and the wild-type and mutant eIlF-4A species
were subcloned into a Bluescript vector downstream of a T7
promoter (Stratagene). An oligodeoxynucleotide containing
a Shine-Dalgarno sequence was inserted upstream of the
coding sequence of eIF-4A. The structure of the constructs
(termed pKS/eIF-4A) is shown in Fig. 2A. To express
elF-4A protein from pKS/elF-4A, Escherichia coli HB101
was transformed with these constructs, followed by infec-
tion with bacteriophage CE6 that expresses T7 RNA poly-
merase (17). This procedure resulted in a high production of
eIF-4A protein (~0.2 mg of eIF-4A in 5 X 10! E. coli cells).
The synthesized, truncated eIF-4A migrated faster than did
the eIF-4A purified from rabbit reticulocytes, as expected
(Fig. 2B). However, the E. coli-expressed eIF-4A was active
with respect to its ability to bind dATP (see below).

To determine the ability of E. coli-expressed elF-4A to
bind ATP, we used UV-light-induced cross-linking of [a-
32PJdATP to the protein. We partially purified the E. coli-
expressed elF-4A, since cross-linking was inefficient in a
crude extract. Fractions enriched in eIF-4A were obtained
by gel filtration on Sephadex G-100 in 50 mM Tris hydro-
chloride (pH 7.5)-100 mM KCI-0.2 mM EDTA-1 mM dithio-
threitol. This was followed by DEAE-cellulose chromatog-
raphy in the same buffer with the factor eluting between 230
and 260 mM KCl (data not shown). Figure 3A shows a
Western blot (immunoblot) of the partially purified wild-type
and mutant forms of eIF-4A. Mutations in eIF-4A had no
effect on the amounts of protein produced in E. coli, indi-
cating similar stabilities for mutant and wild-type eIF-4A.

Cross-linking reaction mixtures (25 wl) containing wild-
type or mutant eIlF-4A in 64 mM KCI-30 mM Tris hydro-
chloride (pH 7.5)-6% glycerol-0.2 mM EDTA-5 mM mag-
nesium acetate-30 wCi of [a->?P]dATP (3,000 Ci/mmol) were
irradiated with a 15-W General Electric G15T8 germicidal
lamp from a distance of 3 cm for 20 min at 4°C. Unlabeled
dATP was then added to a final concentration of 3 mM and
incubated with 2 ul of mouse ascites fluid containing eIF-4A
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elF4AI (mouse) al
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PL1O (mouse-spern.) A
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Uasa (drosophila) TGSGKTHA
nss116 (yeast-mitochondria) TGTGKTF
SrmB (E.coli) TGTGKTA
consensus: A ?G%GKT

elF4A(G~1) |
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FIG. 1. Conservation of the ATP-binding motif in elF-4A-like
proteins. Amino-acid sequences were from the work of Linder et al.
(8). The sequence of SrmB was modified from that originally
published (12; J. Schnier, personal communication). Eight elF-
4A-like proteins have been aligned to demonstrate the ATP-binding
domain common to all proteins. Positions of amino acids that form
the ATP-binding consensus sequence (see below) are boxed. The
two mutations are indicated below the consensus. Mutagenesis was
performed on a BamHI-Asp-718 elF-4A fragment (10) subcloned
into M13mp19. The mutagenic oligodeoxynucleotide primer used for
generating the Lys—>Asn mutation was S5'-GTAGCTGTTATC
CCAGTCC-3’, where the underlined nucleotide represents the
mismatch. The mutagenic oligodeoxynucleotide primer used for
generating the Gly—Ile mutation was 5'-GTTTTCCCAGTTATA
GACTGG-3'. Mutagenesis was performed as described by Zoller
and Smith (21), and the sequence of mutants was verified by dideoxy
sequencing (14).

monoclonal antibody at 4°C for 2 h. Immunoprecipitates
were collected by centrifugation, washed, and boiled for §
min in electrophoresis sample buffer. This was followed by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and autoradiography, as described by Sarkar et al. (15). By
this technique, eIF-4A from rabbit reticulocyte has been
shown to be specifically cross-linked to [a->2P]JATP or dATP
(15). Recent experiments have also demonstrated that dATP
is as efficient as ATP in serving as the energy source for the
unwinding of an RN A duplex by eIF-4A and eIF-4B (F. Rozen,
1. Edery, and N. Sonenberg, unpublished results).

Figure 3B shows the sodium dodecyl sulfate-polyacryla-
mide gel analysis of dATP cross-linking to wild-type eIF-4A
and the two mutants after immunoprecipitation with an
anti-eIF-4A monoclonal antibody. Two concentrations of
elF-4A were used to ensure that the extent of cross-linking
was proportional to eIF-4A concentration. The Coomassie
blue stain of the gel showed equal amounts of immunopre-
cipitated wild-type and mutant forms of eIF-4A (data not
shown). The substitution of asparagine for lysine vastly
reduced the extent of dATP cross-linking to eIF-4A (com-
pare Fig. 3B, lanes 3 and 4 with lanes 1 and 2). However,
mutation of the first glycine to isoleucine in the sequence
GXGKT had no effect on the cross-linking. We conclude
from these results that the lysine is a critical amino acid for
ATP binding but that glycine is not required.

The inability of the Lys—Asn mutant to bind dATP is
consistent with its conservation in most ATP-binding pro-
teins (19), suggesting that Lys-82 is a critical amino acid in
the ATP-binding domain. X-ray crystallography of adenylate
kinase demonstrated that the GXXXXGKT sequence inter-
acts with the phosphate groups of ATP and that, more
specifically, the lysine is in proximity to the a-phosphate of
ATP (4). The lack of effect of the Gly-79 mutation on dATP
binding suggests that this amino acid is not directly involved
in the binding of ATP, although it may be involved in its
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FIG. 2. Murine elF-4A expression in E. coli. (A) The 1.7-
kilobase BamHI-EcoRI DNA fragment of eIF-4A, beginning at the
second ATG in the reading frame and containing most of the 3’
noncoding region (10), was subcloned into the KS(+) form of the
Bluescript vector (Promega Biotec). To provide a bacterial ribo-
some-binding site, an 18-mer oligodeoxynucleotide containing the
Shine-Dalgarno sequence (underlined) was subcloned immediately
upstream of the initiator AUG. The resulting plasmid was termed
pKS/elF-4A. (B) High-level expression and partial purification of
elF-4A was achieved as described in the text. eIF-4A was precip-
itated with 70% ammonium sulfate, and a sample of this preparation
was analyzed on a sodium dodecyl sulfate-polyacrylamide gel (10%
polyacrylamide) and immunoblotted (18) with anti-eIF-4A monoclo-
nal antibody (2). Lane 1, Immunoblot of rabbit reticulocyte eIF-4A
(100 ng); lane 2, immunoblot of E. coli-expressed eIF-4A (equivalent
to 100 ng of eIF-4A as determined by immunoblotting).

hydrolysis. While glycine is not as strongly conserved as
lysine in other ATP-binding proteins, it is present in all eight
elF-4A-like proteins. Therefore, it might function in ATP
utilization in eIF-4A-like proteins. We could not measure
hydrolysis of ATP in our assay because contaminating
ATPases were present in the E. coli-expressed elF-4A
preparation.

The results presented here, although informative, do not
prove that Lys-82 is directly involved in ATP binding. The
possibility that an amino acid substitution can cause a
conformational change in the molecule, resulting in an
impaired ATP-binding activity, cannot be excluded. In any
event, the ability to inactivate ATP binding of eIF-4A by a
single amino acid substitution should prove useful in under-
standing the mechanism of function of eIF-4A and elF-
4A-like proteins. For example, it can be used as a dominant
mutation in which the mutated protein might interfere with
the function of the normal protein, resulting in a character-
istic phenotype. In addition, mutagenesis of the other con-
served domains found in the eIF-4A-like proteins should
help to elucidate their importance and function in mRNA
binding and unwinding.



VoL. 9, 1989

A $ 2 B

| ! 93-

= » >

= e o
68-
46—

CIF —4A —= wmmm e
37
1 2 3 >~

NOTES 4063

W.T Lys —Asn Gly —lle
S e S —— ciF - 4A
2 3 4 5 6

1

FIG. 3. Immunoblotting and UV-induced cross-linking of [a->2P}JdATP to wild-type and mutant forms of elF-4A. (A) High-level expression
and partial purification of eIF-4A was achieved as described in the legend to Fig. 2B. Wild-type and mutant forms of eIF-4A were analyzed
on a sodium dodecyl sulfate-polyacrylamide gel (10% polyacrylamide) and immunoblotted (18) with anti-eIF-4A monoclonal antibody (2).
Lane 1, 100 ng of wild-type elF-4A; lane 2, 100 ng of Lys—Asn mutant; lane 3, 100 ng of Gly—Ile mutant. (B) Reaction mixtures were UV
irradiated and immunoprecipitated as described in the text. Lanes 1 and 2, =0.5 and 1 pg, respectively, of wild-type elF-4A; lanes 3 and 4,
~0.5 and 1 pg of Lys—Asn mutant; lanes 5 and 6, =0.5 and 1 pg of Gly—Ile mutant.
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