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Abstract
Microarray gene expression data often contain missing values. Accurate estimation of the missing
values is important for down-stream data analyses that require complete data. Nonlinear
relationships between gene expression levels have not been well-utilized in missing value
imputation. We propose an imputation scheme based on nonlinear dependencies between genes.
By simulations based on real microarray data, we show that incorporating non-linear relationships
could improve the accuracy of missing value imputation, both in terms of normalized root mean
squared error and in terms of the preservation of the list of significant genes in statistical testing.
In addition, we studied the impact of artificial dependencies introduced by data normalization on
the simulation results. Our results suggest that methods relying on global correlation structures
may yield overly optimistic simulation results when the data has been subjected to row (gene) –
wise mean removal.

Index Terms
gene expression; statistical analysis; missing value

I. Introduction
Microarray and other high-throughput data often contain missing values that hamper the
application of many unsupervised and supervised learning techniques. A number of methods
were developed for the imputation of the missing values, some of which were reviewed and
compared by Brock et al [1]. Most imputation methods stem from the observation that the
relationship between gene expression levels can be approximated by linear models. There
are two broad classes of imputation methods. The first class utilizes local information, i.e.
neighbors of the gene of interest. A representative of this class is the widely used K-nearest
neighbor (KNN) method, which fills the missing value by the weighted average of the
expression of K neighboring genes in the same array [2]. The LSimpute method applies
linear regression between the gene with missing value and neighboring genes [3]. Robust
regression using the principal components of the neighbors was also proposed [4]. Local
least squares (LLS) imputation uses multiple regression of the gene with missing value
against the neighboring genes [5]. The method often achieves optimal performance with a
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very large number of neighbors, some times over 50% of the genes in the array [1, 5]. This
suggests the method partly takes advantage of the global correlation structures between
arrays. A multi-stage clustering method which incorporates missing value imputation was
also proposed [6]. The second class of imputation methods utilizes the global correlation
structure. The SVD method uses the dependency of the experiments on the first several
singular vectors of the data matrix to impute the missing values [2]. A more complex and
better performing variant, BPCA, uses probabilistic PCA and Bayesian estimation [7]. To go
beyond the linear relationship between experiments, the Support Vector Regression
imputation maps the samples to higher dimensional space with kernel functions [8].

In addition to using a single imputation scheme, the idea of ensemble learning has been
applied, in which imputed values from multiple methods were combined [9–11]. Another
way of improving imputation accuracy is to recruit external information. Examples include
the use of other microarray datasets from the same organism [12], functional annotation of
genes [13], knowledge of synchronization loss in time-series data [14], and epigenetic
information [15].

Dependencies between genes can be complex and far from linear [16, 17]. General
dependency has been shown to be effective for the inference of gene regulatory networks
[17–19]. These results suggest that non-linear relationships between genes are biologically
relevant, and may provide extra information in missing value imputation. A parametric non-
linear regression method has been proposed to utilize such information, which however still
preselects neighboring genes based on Euclidean distance [20]. Here we present a missing
value imputation scheme that follows the nearest neighbor principal. The definition of
“neighbors” is broadened to incorporate nonlinear dependency. The method is based on both
Pearson’s correlation coefficient and a new metric for detecting nonlinear relationships,
named similarity based on conditional ordered list (SCOL). For neighbors selected by
SCOL, the points corresponding to the expression levels may not be geometrically close to
each other. Consequently, the imputation is done using the principle of estimating non-linear
response curves by kernel smoother between the gene of interest and its neighbors.

II. METHODS
2.1. Similarity based on conditional ordered list (SCOL)

Here we present a similarity score between two vectors x and y, the purpose of which is to
measure the spread of the conditional distribution Y|X in a nonparametric manner. First,
each vector is standardized using normal score transformation. The m values of the vector
are compared to obtain the ranks R1, R2, …, Rm, and then each xi of the vector is replaced
by Φ−1(Ri/(m+1)), where Φ(.) is the cumulative normal distribution. Secondly, we sort the

data {(xi, yi)} by the X values: . Thirdly, the sum of absolute
differences between the adjacent Y values in the ordered list is obtained as the raw distance,

This is equivalent to summing the Manhattan distances between adjacent points in the list
ordered by X, up to a constant. Lastly, the raw distance is standardized such that it is
between zero and one. The theoretical minimum of the distance is
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which is obtained when the two vectors have the exact same rank order. When m is odd, the
theoretical maximum possible distance is

When m is even,

These maximum possible values are obtained when all the adjacent Y values in the ordered
list have opposite signs and the two end y values have the smallest absolute values. To
standardize the raw score such that it is between zero and one, we obtain the SCOL
similarity by

This SCOL similarity is asymmetric, as it focuses on the spread of Y|X (Fig. 1a & 1b). For

the purpose of missing value imputation, we use the asymmetric version  where Y is
the gene with missing value to be imputed and X is any other gene. To obtain a symmetric
version for measuring nonlinear relationship, we can take

2.2. Selecting informative genes
To impute the missing values of a gene, we utilize both non-linear dependency (measured by
SCOL) and linear dependency (measured by the absolute value of Pearson’s correlation
coefficient) to select informative genes. The reason for combining CC and SCOL in gene
selection is because CC is more responsive when a slight curvature exist, yet the relationship
is still monotone, while SCOL is more responsive when the curvature is large and/or the
relation is non-monotone.

First, we compute the absolute correlation matrix C and the SCOL matrix B, in which

. To compute the ith row in B, we re-order the columns of the expression
matrix Gn×m based on the rank order of the ith gene to generate . Then absolute
differences are taken between adjacent columns of the re-ordered matrix to generate the

difference matrix , j=1, …, m−1. When missing values exist in the ith gene,
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the corresponding column of the expression matrix is ignored. There are missing entries in
the F matrix caused by missing values in other genes. We then take the row-wise mean
values of the F matrix, ignoring missing entries, and multiply by the number of columns of
F. After transforming the raw distance values to SCOL scores, the vector is used for the ith

row of the B matrix.

Secondly, for every gene that has missing values, its top k neighbors as defined by absolute
CC and top k neighbors as defined by SCOL are found from the corresponding columns of
the C and B matrices. Combining these two sets of neighbors gives us the set of informative
genes. Overlaps may exist, which means the total number of informative genes may be
smaller than 2k. In practice, the optimal k can be selected by masking some observed values
and then evaluating the imputation accuracy using different k’s.

2.3. Imputing the missing value
Since nonlinear relations are involved, and each informative gene may show a different
response pattern with the gene of interest, we use a procedure based on kernel smoother in
conjunction with weighted averaging for the imputation. In steps (i) to (iv) below, we find
an imputed value from one informative gene. We use gx to denote the gene expression
profile with a missing value to be imputed, and let gx1 be missing. We use gi to denote the
expression profile of an informative gene. To simplify the discussion, we assume both
expression profiles are non-missing at positions 2, ...., p. Steps (i) to (iii) are simply steps of
fitting a kernel smoother. Because our interest is in the fit at the missing value location, only
a single point of the kernel smoother is calculated.

i. Find the difference between the non-missing values of the two expression profiles.

The purpose of using the difference, rather than gx itself, is to alleviate under-
estimation of extreme values when the relation is monotone.

ii. Find the weight based on the Gaussian density. Observations with gij closer to gi1
receive higher weights.

where σi is one half of the 1/3 quantile of |gij − gi1|, j = 2, …, p. This ensures that
1/3 of the samples are within 2σi and make major contribution to the imputation.

iii. Impute the missing value by weighted mean,

iv. Take the weighted variance of the d vector for a measure of confidence,

Yu et al. Page 4

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



v. Merge the imputed values from different informative genes by weighted averaging.
The weight has two components: (1) genes that have higher SCOL similarity with
the gene of interest receive higher weight, and (2) predictions with smaller
weighted variance receive higher weight. We assign the weight by

The reason the parameter value 6 was chosen for the exponential decay function was that we
observed empirically most top neighbors showed similarity scores between 0.5 and 0.9.
With the parameter 6, the weight increases roughly 10 fold from an SCOL score of 0.5 to an
SCOL score of 0.9. The final imputed value is the weighted average,

where n is the number of informative genes used.

2.4. Simulation study
Datasets—Six datasets were used in the simulation study. They included the B-cell
lymphoma profiling data [21], the dataset of yeast transcriptome/translatome comparison
[22], the NCI60 cell line gene expression data [23], and the GSE19119 dataset on Atlantic
salmon [24]. Two yeast cell cycle time series [25], the alpha factor dataset and the
elutriation dataset, were used to probe the effect of data normalization on simulation results
in imputation studies. The number of genes/conditions of each dataset is listed in Tables 1
and 2.

Methods compared—Four popular imputation methods were used for comparison. They
included the K-nearest neighbor (KNN) method [2], the Bayesian PCA (BPCA) method [7],
the local least square (LLS) method [5], and the SVD method [2]. The R implementations of
these methods were used, which involved packages “impute” and “pcaMethods” [27]. In the
results we refer to our method as “NL”. For NL and KNN, the data matrix (after masking
known expression values) was first row (gene)-standardized before the imputation, and the
values were transformed back after imputation.

Simulating missing patterns—Different percentages of missing (1%, 5%, 10%, 15%
and 20%) were simulated. To simulate data with realistic missing patterns, we used a
scheme to learn the missing patterns directly from the real data. For every dataset, we
divided the data into two parts – matrix A containing all the genes without any missing
value, and matrix B containing genes with missing values. The simulated data was generated
from matrix A. Assume matrix A had n rows and m columns, and we targeted to obtain a
simulated data matrix with p percent missing values. For every gene gx in matrix A, we first
took a random sample from the Poisson distribution with λ=mp/100 to assign the number of
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missing entries to the gene. Assume the assigned number of missing entries was l. We then
selected all the genes from matrix B that contained l missing entries, and randomly sampled
one gene from them, denoted g1. We then found the positions of the g1 vector that were
missing values, and assigned N/A to the same positions of the gx vector. By carrying out this
procedure for every gene in matrix A, we obtained a simulated matrix A* that contained p
percent missing values.

Parameter setting—A preliminary simulation study was conducted to select the best
parameter setting for each method. We tested different values of the tuning parameters at
every missing percentage, by repeating the mask-impute procedure three times. The
parameter values tested for the NL method were k=5, 10, 15, 20; the values for the KNN
method were k=5, 10, 15, 20; the values for LLS were k=5%, 10%, 20%, 30%, ……, 90%
of the number of genes of the dataset; the values for SVD were nPcs=2, 4, 6, 8, 10, 15, 20,
30, 40 (up to the number of arrays in the dataset). No parameter selection was done for the
BPCA method, because it’s been established that the recommended value for the nPcs
parameter, which is the number of samples minus 1, performs the best [7]. Other than the
major tuning parameters, we relied on the default of each method for other parameters.

To measure the success of imputation and compare the performance between different
parameter settings, we used the normalized root mean squared error (NRMSE),

It measures the deviation of the imputed values from the hidden true values. For each
method, the parameter setting that achieved the lowest average NRMSE in the preliminary
simulation study (Table 1 and Table 2) was selected for the larger scale simulation study, in
which we repeated the mask-impute procedure 50 times for every dataset at each of the five
missing percentage settings.

Comparing the performance—To compare the performance of the methods, we
employed two methods. The first was NRMSE. The second method measured the impact of
the imputation on the statistical testing results. The general idea was to measure how much
the imputation changed the list of significant genes in statistical testing, as compared to the
test results generated from the original data without missing values. First, testing was
conducted on the complete data, and the list of significant genes taken as the reference. Then
after each mask-impute process, the same testing procedure was applied and the list of
significant genes was compared with the reference list. The false-positive (FP) and false-
negative (FN) counts were analyzed to judge the success of the imputation. It should be
noted that the reference list from the original data was not the biological truth. Thus the
results measured only relative changes, and the FP and FN counts carried no direct
biological interpretation. The idea was that the imputation method should change the list of
significant genes as little as possible.

Different statistical tests were selected based on the characteristics of each dataset. All the
tests were done on a gene-by-gene basis. After testing, The p-values from all the genes were
transformed to false discovery rate (FDR) [28], and genes with FDR less than a threshold
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(detailed in the Results section) were considered significant. Different FDR cutoffs were
selected for different datasets, in order to reach a significant gene list of reasonable size for
the assessment of false positives (FP) and false negatives (FN) rates after imputation.

For the B-cell lymphoma profiling (Alizadeh) dataset [21], the main clinical interest was the
survival outcome. The accelerated failure time (AFT) model assuming the Weibull
distribution was fitted for each gene using the samples with survival information. For the
yeast transcriptome/translatome comparison (Halbeisen) dataset [22], we fitted a multiple
linear regression model for each gene, with RNA source (transcriptome/translatome) as one
predictor, stress treatments as another predictor, and the gene expression value as the
response. Because the main interest of the study was the contrast between transcriptome and
translatome, we focused on genes significantly associated with the RNA source predictor.
For the NCI60 cell line (Ross) dataset [23], a regression model was fitted for each gene,
with the tissue origin of the cancer cell lines as the predictor, and the gene expression value
as the response. The F-test p-value for the overall fit, which measured the association of the
gene expression with the tissue origin, was collected. For the yeast cell cycle time series
(Spellman) datasets [25], because the main interest was in genes showing periodic behavior,
the Fisher’s exact g test for periodicity [29] was used to identify periodically expressed
genes. The only dataset for which no test was performed was the GSE19119 (Tymchuk)
dataset [24], as no clear outcome could be used for testing.

III. RESULTS AND DISCUSSIONS
We illustrate the calculation of SCOL in Figure 1. The data points are normal score
transformed and ordered by the X values, and the absolute distance between adjacent Y
values in the list are summed up (Fig. 1, red bars). After further transformation as described
in the Methods section, the SCOL similarity measure is obtained. When the spread of Y|X is
small (Fig. 1a), the distances are small and the similarity is high. When the spread of Y|X is
large (Fig. 1b), the distances are big and the similarity is low. Clearly SCOL similarity score
is asymmetric as demonstrated by the two panels in Figure 1 (same data; role of X and Y
reversed). Because in missing value imputation, we only focus on the conditional variance
of the gene with a missing value given the value of the informative gene, the asymmetric
version of SCOL serves the purpose well. In the case of Figure 1(a), an observed value in X
will be helpful to predict the value of Y. Yet in the case of Figure 1(b), an observed value in
X will not be as helpful in predicting the value of Y.

Simulation results
By masking observed values at different percentages, we compared the performance of the
five methods by finding the NRMSE, and by examining the impact of the imputation on
statistical testing results. The results are summarized in Figure 2. With the Alizadeh, Ross
and Tymchuk datasets, NL showed an advantage over the other methods in terms of
NRMSE, while with the Halbeisen dataset, LLS and BPCA performed better (Fig. 2).

We further explored the impact of the imputation on the selection of significant genes. The
list of significant genes after imputation was compared to the reference list generated from
the original data. The “false positives” and “false negatives” in the subsequent discussion
are only relative to the reference list, not the unknown biological truth. We selected different
FDR cutoffs between 0.01 and 0.2 for different datasets in order to achieve a reasonable size
of the reference list to facilitate FP and FN analysis (Supporting Table 1). For the Alizadeh
dataset, the AFT model was used and the FDR cutoff of 0.2 (corresponding p-value cutoff
0.0025) was chosen, which yielded 65 (1.1%) significant genes. For the Halbeisen dataset,
multiple regression was used and the FDR cutoff of 0.01 (corresponding p-value cutoff
0.0016) was chosen, which yielded 1184 (15.9%) significant genes. For the Ross dataset,

Yu et al. Page 7

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ANOVA was used and the FDR cutoff of 0.01 (corresponding p-value cutoff 0.0022) was
chosen, which yielded 510 (22.5%) significant genes.

The simulation results showed that NL’s lead in NRMSE translated to a lead in FP+FN
counts, in both the Alizadeh dataset and the Ross dataset (Fig. 2, column 2). In addition,
KNN showed stronger performance in FP+FN counts, as compared to it’s own performance
in NRMSE. Interestingly, for the Halbeisen dataset, BPCA and LLS’s lead in NRMSE
didn’t translate to a clear lead in FP+FN counts. NL’s performance in FP+FN was extremely
close to LLS and BPCA up to 15% missing, while it showed lower average FP+FN counts at
20% missing. Pronounced differences were found between the methods in terms of FP/FN
ratio (Fig. 2, column 3). NL was almost always the most conservative in this aspect,
producing FP/FN ratios that were low. Using both the Halbeisen dataset and the Ross
dataset, NL was the only method producing FP/FN ratios close to 1 (dashed line in the plots,
zero in log scale). With high-throughput data, the key concern is controlling the FDR. Hence
an imputation method that doesn’t introduce too many false-positives is preferable. In this
aspect, NL clearly outperformed the other methods.

The impact of row-wise mean removal on the evaluation of imputation methods
The most common method of evaluating the performance of imputation methods is through
simulations using existing microarray datasets. However it should be noted that some pre-
processing of the datasets may cause artifacts in the evaluation. Particularly, overly
optimistic results may be obtained for imputation methods that use global correlation
structures, when the processing of the data introduces artificial dependency amongst the
columns (arrays) of the data matrix. This is the case because although some data points are
changed to “missing” in the simulation, their true values have played a role in the
normalization already, and the information needed to retrieve the true values is in fact buried
in other columns. In other words, with the row-wise normalization, each column of the
matrix becomes perfectly linearly dependent on other columns. If an imputation method
utilizes this dependency, it will recover the missing value almost perfectly when there’s only
one value missing in a row. However this perfect recovery only happens in simulations.
When a value is truly missing, it cannot have played a role in the normalization. With
random noise in microarray measurements, perfect linear dependency between columns
doesn’t exist in the raw data.

The Spellman’s cell cycle data was widely used in the evaluation and comparison of
imputation methods. It has been the dataset that showed the most dramatic differences
between methods. When downloaded in matrix form at the cell-cycle study website (http://
cellcycle-www.stanford.edu/), the data was already subjected to normalization including
row-wise mean removal within every time series experiment, i.e. every gene’s expression
levels were normalized to obtain mean zero within every time series. This is suggested in the
original publication [25] and evident by examining the data. The data was rounded to two
decimal places, hence the row means can deviate very slightly from zero. When we used the
two normalized Spellman time series datasets in the simulations, LLS and BPCA were
dramatically better in terms of NRMSE than the other three methods (Fig. 3, column 1),
which was consistent with previous studies [1, 5, 7].

In order to make a comparison, we downloaded the raw data (original log-ratios) from the
Stanford Microarray Database [30], and assembled the raw data matrix. When a gene was
represented by more than one probes on the array, the mean of log ratios was taken to obtain
a single reading. We then took the genes that were included in the simulation study with
normalized data. Due to small differences in missing patterns, the numbers of genes were
slightly different from the normalized data (Table 2). Using the non-normalized log ratios,
we conducted another simulation study (parameters listed in Table 2). The results showed

Yu et al. Page 8

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2013 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://cellcycle-www.stanford.edu/
http://cellcycle-www.stanford.edu/


that with non-normalized data, although LLS and BPCA still led in performance in NRMSE,
the difference between the methods was drastically smaller (Fig. 3, compare column 2 with
column 1). To prove the point from the other end, we conducted another simulation using
the NCI60 data. To introduce a dependency that is at similar level as the cell cycle data, we
partitioned the NCI60 data matrix into three equal-sized sub-matrices, by selecting three
groups of continuous columns – columns 1~20, 21~40, and 41~60. Within every sub-matrix,
we conducted row-wise mean removal. Then we subjected the whole matrix to the mask-
impute simulation procedure. The simulation yielded a dramatic decreases in the NRMSE
from LLS and BPCA (Fig 3, row 3). Comparatively, the SVD method, although utilizing
global dependency, did not make as much artificial gains when the data was row-
normalized. This is because although the last three eigen values were driven to zero by row-
normalization, the relative scale of the larger eigen values didn’t change much. The SVD
method largely relies on the first several singular vectors, which prevented it from taking
advantage of the perfect dependency created by row-wise mean removal. Based on these
results, we can see that the impact of row-wise mean removal on the NRMSE results could
be substantial. In addition to influencing the performance estimations in simulation studies,
normalization can also impact real data analysis, in which we often resort to cross-validation
using the complete portion of the data to select the method and parameter settings. The same
artifact as detailed above could influence the choice of method and parameter settings, if the
data is subjected to row-wise mean removal before the cross-validation.

Although LLS and BPCA didn’t show as much advantage using the original data, they still
led in the performance as judged by NRMSE. This is expected because the cell-cycle arrays
contain strong between-array dependencies [1]. We further explored whether the better
NRMSE results translated to better testing results. Here we used the Fisher’s exact g test to
find periodic behaviors in the genes, because the Spellman experiment was designed to find
cell cycle-related genes. The FDR cutoff of 0.2 was used, which yielded ~10% significant
genes in both datasets (Supporting Table 1). NL and KNN showed a clear lead in FP+FN
counts despite they trailed in NRMSE results. Again NL was the most conservative method
in terms of FP/FN ratio, though for the elutriation dataset all method yielded many more
false positives than false negatives (Fig. 3, column 4).

To better understand why NL tended to be more conservative in terms of FP/FN ratio, we
selected one of the scenarios, 10% missing in the Halbeisen dataset, for further examination.
We repeated the mask-impute process 16 times and recorded the test p-values for all the
genes. We then compared the test p-values after imputation against the complete-data p-
values. For the NL method, 46.2% of the test p-values after imputation were smaller than the
corresponding p-values from the complete data, while for all the other methods, over 50% of
the test p-values after imputation were smaller than the corresponding p-values from the
complete data (KNN: 52.6%, BPCA: 54.4%; LLS: 53.2%; SVD: 55.8%). Given that most of
the genes were insignificant in the complete data, the tendency of the methods to decrease
the p-values, even slightly, made a lot of false positives. NL was conservative in the sense
that on average it tends to decrease the significance of a gene, albeit slightly, when
imputation is done.

In summary, the non-linear imputation method based on SCOL and kernel smoother showed
strong performance in the imputation of missing data, especially when judged by the impact
on the statistical testing results. Aside from generating lower FP+FN counts, its property of
being conservative in terms of FP/FN ratio is desirable, as controlling false discovery rate is
a key concern when conducting tests using high-throughput data.
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Figure 1.
Illustration of the similarity based on conditional ordered list (SCOL). (a) An example
where Y and X have a non-linear relationship and the spread of Y|X is small. (b) The same
data as in (a) with the role of X and Y reversed, resulting in much lower similarity score
because the spread of Y|X is large. Red vertical line segments: distance between adjacent Y
values based on the list ordered by the value of X. Blue dotted horizontal line segments:
distance between adjacent X values.
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Figure 2.
Simulation results for four datasets based on 50 simulations. The datasets (labeled on the left
side) are in rows and the type of results (labeled on top) are in columns. Error bars represent
standard errors. No testing was performed for the Tymchuk data, because no clear outcome
can be used for testing.
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Figure 3.
Simulation results for three datasets before/after row-wise mean removal. The datasets
(labeled on the left side) are in rows and the type of results (labeled on top) are in columns.
Error bars represent standard errors. The testing results (columns 3 and 4) were generated
from the non-normalized data. The testing results for the Ross data are reported in Figure 2.
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