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Abstract
In the present study we investigate computationally the steady-state motion of an elastic capsule
along the centerline of a square microfluidic channel and compare it with that in a cylindrical tube.
In particular, we consider a slightly over-inflated elastic capsule made of a strain-hardening
membrane with comparable shearing and area-dilatation resistance. Under the conditions studied
in this paper (i.e. small, moderate and large capsules at low and moderate flow rates), the capsule
motion in a square channel is similar to, and thus governed by the same scaling laws with the
capsule motion in a cylindrical tube, even though in the channel the cross-section in the upstream
portion of large capsules is non-axisymmetric (i.e. square-like with rounded corners). When the
hydrodynamic forces on the membrane increase, the capsule develops a pointed downstream edge
and a flattened rear (possibly with a negative curvature) so that the restoring tension forces are
increased as also happens with droplets. Membrane tensions increase significantly with the
capsule size while the area near the downstream tip is the most probable to rupture when a capsule
flows in a microchannel. Because the membrane tensions increase with the interfacial
deformation, a suitable Landau-Levich-Derjaguin-Bretherton analysis reveals that the lubrication
film thickness h for large capsules depends on both the capillary number Ca and the capsule size a;
our computations determine the latter dependence to be (in dimensionless form) h ~ a−2 for the
large capsules studied in this work. For small and moderate capsule sizes a, the capsule velocity
Ux and additional pressure drop ΔP+ are governed by the same scaling laws as for high-viscosity
droplets. The velocity and additional pressure drop of large thick capsules also follow the
dynamics of high-viscosity droplets, and are affected by the lubrication film thickness. The motion

of our large thick capsules is characterized by a  approach to the undisturbed average
duct velocity and an additional pressure drop ΔP+ ~ a3/h ~ a5. By combining basic physical
principles and geometric properties, we develop a theoretical analysis that explains the power laws
we found for large capsules.

1. INTRODUCTION
The study of the interfacial dynamics of artificial or physiological capsules (i.e. membrane-
enclosed fluid volumes) in Stokes flows has seen an increased interest during the last few
decades due to their numerous engineering and biomedical applications. Artificial capsules
have wide applications in the pharmaceutical, food and cosmetic industries [1]. In
pharmaceutical processes, for example, capsules are commonly used for the transport of
medical agents. In addition, the motion of red blood cells through vascular microvessels has
long been recognized as a fundamental problem in physiology and biomechanics, since the
main function of these cells, to exchange oxygen and carbon dioxide with the tissues, occurs
in capillaries [2].

*Electronic address: dimitrak@umd.edu.

NIH Public Access
Author Manuscript
Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 April 12.

Published in final edited form as:
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 July ; 84(1 0 1): 011906.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In the area of interest of the present paper, the study of the motion and deformation of
capsules and biological cells in microfluidic channels is motivated by a wide range of
applications including drug delivery, cell sorting and cell characterization devices [3−6],
fabrication of microcapsules with desirable properties [7, 8], determination of membrane
properties [9, 10], micro-reactors with better mixing properties [11, 12], and of course its
similarity to blood flow in vascular capillaries [1, 2].

The motion of elastic capsules in cylindrical tubes have been studied both experimentally
and computationally. Quéguiner and Barthès-Biesel [13] studied computationally the
axisymmetric motion of small and large capsules in a cylindrical tube with a hyperbolic
entrance. The study included strain-softening neo-Hookean spherical capsules and discoidal
area-incompressible hard-straining capsules, both with no osmotic over-inflation. Risso,
Collé-Pailot and Zagzoule [14] investigated experimentally the motion of bioartificial
capsules in cylindrical tubes. The work includes a detailed study of capsules with diameter
smaller than the tube diameter and several geometric properties, including capsule lengths
and ends curvatures. Owing to osmotic effects, the bioartificial capsules were slightly over-
inflated (or prestressed). It is of interest to note that the authors found that there is no mass
transfer through the membrane during the experiments and thus the capsule volume
remained constant.

The experimental findings of Risso et al. [14] motivated the computational study of
prestressed capsules in a cylindrical tube by Lefebvre and Barthès-Biesel [15] who mainly
considered hard-straining capsules with similar sizes as the earlier experimental work
subject to small and moderate flow rates. The authors identified the effects of varying
prestress on the capsule dynamics and its shape. The computational results for strain-
hardening and strain-softening capsules were also compared with the experimental findings
[14] and found that the bioartificial capsules were pre-inflated by about 3% while their
membrane was best modeled by the strain-hardening Skalak et al. law [16].

Recent studies have also focused on capsule dynamics in non-cylindrical solid ducts. Doddi
and Bagchi studied the lateral migration of a small neo-Hookean capsule in a plane
Poiseuille flow in a channel [17]. The same authors also studied the dynamics of a
semidense suspension of capsules in a microchannel and focused on the development of the
capsule-free layer near the walls and the Fahraeus-Lindqvist effect [18]. Fiddes and
coworkers [19] investigated experimentally the flow of microgel capsules through
topographically patterned microchannels. Lefebvre et al. [9] proposed a method to
characterize the membrane mechanical properties of microcapsules by flowing them into a
cylindrical or square microchannel of comparable dimensions, and deducing the membrane's
elastic modulus by comparing the capsule steady-state deformation with computational
results.

We emphasize that rather limited information currently exists for the steady-state motion of
artificial capsules in non-cylindrical solid ducts, such as a square microfluidic channel that is
the interest of the current paper, despite the wide range of applications for capsule motion in
non-axisymmetric solid ducts as mentioned earlier. More generally, very limited information
is currently known for the scaling-law behavior of capsules flowing in solid ducts, either
tubes or channels. This contrasts to the current knowledge for droplet motion in solid ducts
which has been studied rather extensively in the last four decades, e.g. [12, 20–22].

The aforementioned constitute the goals of the current study where we consider the motion
of an elastic capsule along the centerline of a square microfluidic channel. In particular, we
study the dynamics of a slightly over-inflated capsule made of a strain-hardening membrane
following the Skalak et al. constitutive law [16] (and thus called Skalak capsule in this
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paper) with comparable shearing and area-dilatation resistance. This capsule description
may represent bioartificial capsules such as the capsules made of covalently linked human
serum albumin (HSA) and alginate used in the recent experimental study of Risso, Collé-
Pailot and Zagzoule [14]. As reported in the earlier study, calcium-alginate gel beads coated
with HSA-alginate membranes were originally designed for medical applications such as
hepatocyte encapsulation for bioartificial liver or encapsulation of genetically modified cells
for AIDS treatment.

After the mathematical formulation and the description of our membrane spectral boundary
element algorithm for wall-bounded flows in section 2, we study the effects of the flow rate
on the steady-state motion of moderate capsules in a square microfluidic channel in section
3. In addition, in section 4 we study the effects of the capsule size for a fixed flow rate by
considering a wide range of small, moderate and large capsules (with respect to the channel
height). In both sections, the channel motion is compared with our results for capsule motion
in a cylindrical tube, and useful conclusions are derived for the effects of the non-
axisymmetric solid geometry on the capsule's shape and dynamics. In section 5, using our
findings for capsule motion in square channels and cylindrical tubes, we derive scaling laws
for several geometric and physical properties including capsule velocity and excess pressure
difference. In addition, using basic physical principles and geometric properties, we develop
a theoretical analysis that explains the power laws we found in this work for moderate and
large capsules. A summary of our results is included in section 6.

2. MATHEMATICAL FORMULATION AND COMPUTATIONAL ALGORITHM
A. Fluid and Membrane Dynamics

We consider a three-dimensional capsule (with a spherical undisturbed shape and an elastic
interface) flowing along the centerline of a straight microchannel with a (constant) square
cross-section as illustrated in figure 1. The capsule's interior (fluid 1) and exterior (fluid 2)
are Newtonian fluids, with viscosities λμ and μ, and the same density. The capsule size is
specified by its volume V or equivalently by the radius a of a sphere of volume 4πa3/3 = V.
The channel's half-length is ℓx. while the half-lengths of its square cross-section are ℓy = ℓz.

Far from the capsule, the flow approaches the undisturbed flow in a channel 
which is given in pages 309−312 in Ref.[23], i.e.

(1)

where

(2)

while p is the dynamic pressure. By integrating over the channel's cross-section, we can
easily show that the volumetric flow rate Q is given by

(3)

The average velocity far from the capsule is  while the maximum undisturbed
velocity at the centerline of the square channel is . In our computations, we
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truncated the infinite (convergent) series associated with the channel's undisturbed flow
when m = 40.

Assuming low-Reynolds-number flows, the governing equations in fluid 2 are the Stokes
equations and continuity,

(4)

where σ is the stress tensor and u the fluid velocity. Inside the capsule, the same equations
apply with the viscosity replaced by λμ. It is of interest to note that in small length-scale
systems, such as microfluidic channels, low-Reynolds-number flows are easily achievable
[11, 12]. (For example, in a microfluidic channel with size ℓy = 100 μm, the Reynolds
number remains Re = O(10−3) even for velocities up to  when we consider the
density and viscosity of water.)

For the current problem, the system surface SB consists of the capsule interface Sc, the
channel's solid surface Ss, and the fluid surface Sf of the channel's inlet and outlet far from
the capsule. At the capsule's interface, the velocity is continuous and we define the surface
stress vector (or hydrostatic traction) Δf from the stress tensor σ and the surface unit normal
n, i.e.

(5)

Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively, while n is
the unit normal which we choose to point into fluid 2. The boundary conditions on the rest
surfaces are

(6)

(7)

where f∞ is the force associated with the undisturbed channel flow u∞ far from the capsule.

Based on standard boundary integral formulation, the velocity at a point x0 on the system
surface SB may be expressed as a surface integral of the force vector f = n · σ and the
velocity u over all points x on the boundary SB,

(8)

where the coefficient Ω takes values 4πμ(1 + λ) and 4πμ for points x0 on the surfaces Sc
and Ss ∪ Sf respectively. The tensors S and T are the fundamental solutions for the velocity
and stress for the three-dimensional Stokes equations, i.e. known functions of the system
surface SB [1, 24, 25].

Owing to the no-slip condition at the interface, the time evolution of the material points of
the membrane may be determined via the kinematic condition at the interface

(9)
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To produce a closed system of equations, the surface stress Δf on the capsule interface is
determined by the membrane dynamics. Our membrane description is based on the well-
established continuum approach and the theory of thin shells as described in detail in section
2.2 of our earlier publication [25]. We emphasize that the thin-shell theory has proved to be
an excellent description of the membrane for a wide range of artificial capsules and for red
blood cells, where the membrane thickness is several orders of magnitude smaller than the
size of the capsule/cell [1, 25, 26].

For a membrane with shearing and area-dilation resistance considered in this work, the
surface stress is determined by the in-plane stresses, i.e. Δf = −▽s ·τ which in contravariant
form gives

(10)

where the Greek indices range over 1 and 2, while Einstein notation is employed for (every
two) repeated indices. In this equation, the ταβ|α notation denotes covariant differentiation,
tβ = ∂x/∂θβ are the tangent vectors on the capsule surface described with arbitrary
curvilinear coordinates θβ, and bαβ is the surface curvature tensor [1, 25, 26]. The in-plane
stress tensor τ is described by constitutive laws that depend on the material composition of
the membrane. In this work, we employ the Skalak et al. law [16] which relates τ's

eigenvalues (or principal elastic tensions , β = 1, 2) with the principal stretch ratios λβ by

(11)

(To calculate , reverse the λβ subscripts.) In the equation above, Gs is the membrane's
shearing modulus while the dimensionless parameter C is associated with the area-dilatation
modulus K of the membrane (scaled with its shearing modulus). It is of interest to note that
the Skalak et al. law is a general constitutive equation able to describe strain-hardening
membranes with any area-dilatation resistance, e.g. [1, 25, 26].

We further consider that the capsule is subjected to a positive osmotic pressure difference
between the interior and exterior fluids, i.e. the capsule is (slightly) over-inflated and thus
prestressed. Such consideration is motivated by the fact that, owing to osmotic effects during
their fabrication, artificial capsules are often slightly over-inflated as the bioartificial
capsules used in the experimental investigation of Risso, Collé-Pailot and Zagzoule [14]. In
addition, incorporation of prestress into our elastic membrane model removes the buckling
instability observed in axisymmetric-like flows. (See section 6 in Ref.[26].)

Following Lefebvre and Barthès-Biesel [15], we define the prestress parameter αp such that
all lengths in the undeformed capsule would be scaled by (1 + αp), relative to the reference
shape. Note that this is mathematically equivalent to scaling the stretch ratios λβ, appearing
in the constitutive law describing the membrane, by (1 + αp). Since the capsule is initially

spherical, its membrane is initially prestressed by an isotropic elastic tension  (t = 0)
which depends on the employed constitutive law and its parameters but not on the capsule
size. For example, for a Skalak capsule with C = 1 and αp = 0.05, the undisturbed capsule
size a is 5% higher than that of the reference shape and the initial membrane tension owing
to prestress is τ0/Gs ≈ 0.3401.

B. Definition of Geometric and Physical Variables
To describe the capsule deformation, we consider several geometric properties including the
capsule's dimensions and profile curvatures; most of them have been used in previous
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studies for capsule motion in cylindrical tubes, e.g. [14, 15]. In particular, we determine the
capsule projection lengths along the three axes, Lx, Ly and Lz (where Ly = Lz for this
problem owing to symmetry) as the maximum distance in the x, y and z coordinates of the
capsule surface. The projection length along the x-axis, Lx, is divided into two parts with

respect to the capsule's volume centroid xc, i.e. the downstream projection length  and the
upstream length . Further we calculate the minimum distance (gap) h between the capsule
surface and the solid walls. Note that we employ a Newton method to solve these
optimization problems.

In addition, we calculate the curvature at the downstream and upstream edges of the capsule
(i.e. its intersections with the x-axis). The curvatures are determined along the capsule's y =
0 profile (i.e. the cross-section of the capsule surface with the y = 0 plane) by employing our
spectral discretization at the middle point of the downstream and upstream spectral
elements. We also determine the maximum curvature along the capsule's y = 0 profile; to do
this, from the actual spectral grid we interpolate spectrally to a dense grid with NB = 15
basis points and find the higher value of the curvature among these spectral discretization
points along the desired capsule's y = 0 profile.

In this study, we assume that the flow rate Q (or the average undisturbed velocity ) inside
the channel is fixed. Thus we apply velocity boundary conditions at the channel's inlet and
outlet (see Eq.(5)) and we solve for the fluid force at the channel ends. The fluid pressure at
the channel's inlet and outlet, Pin and Pout, is determined as the surface-average of the
normal force on these two surfaces

(12)

(Note that although we have chosen this way to determine the pressure at the channel ends,
our computational results show that the fluid normal force, or pressure, at each channel end
is constant to at least 4 significant digits among the spectral discretization points.) The
pressure difference at the channel ends is ΔP = Pin − Pout and we also calculate the
additional pressure difference owing to the presence of the capsule in the channel,

(13)

where ΔPnc is the pressure difference at the channel ends when no capsule is present in the
channel. As the capsule moves in the channel, its volume-average velocity is determine from
surface properties, i.e.

(14)

Our membrane description involves two moduli, one for shearing and one for area dilatation.
The parameter C that stands for area dilatation is already dimensionless. The shearing
modulus Gs introduces the (elastic) capillary number (i.e. a ratio of viscous flow forces to
resistive elastic forces on the membrane) defined in this paper as

(15)

It is of interest to note that the capillary number, as defined by Eq.(15), does not contain any
length scale, and thus it may be considered as a dimensionless flow rate. For a fixed capsule
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size a, varying the capillary number Ca can easily be achieved in an experimental system by
keeping the exterior-fluid viscosity fixed and varying the flow rate, or average velocity .
For a fixed capillary number Ca, varying the capsule size a can be achieved by using
different volumes of capsules from the same membrane (and with the same prestress level).

In this study, if no scale is present, the channel's half-height ℓz is used as the length scale, the
velocity is scaled with the average undisturbed velocity , and thus time is scaled with .

In addition, the pressure is scaled with  and the membrane tensions with Gs.

C. Membrane Spectral Boundary Element Algorithm
The numerical solution of the boundary integral equation, (8), is achieved through our
spectral boundary element method for membranes [25]. Briefly, each boundary is divided
into a moderate number NE of surface elements which are parameterized by two variables ξ
and η on the square interval [−1, 1]2. The geometry and physical variables are discretized
using Lagrangian interpolation in terms of these parametric variables. The NB basis points
(ξi, ηi) for the interpolation are chosen as the zeros of orthogonal polynomials of Gauss-
type. This is equivalent to an orthogonal polynomial expansion and yields the spectral
convergence associated with such expansions.

The boundary integral equation (8) admits two different types of points. The collocation
points x0 where the equation is required to hold and the basis points x where the physical
variables u and f are specified or determined. Our spectral boundary element method
employs collocation points x0 of Legendre–Gauss quadrature, i.e. in the interior of the
elements. As a result the boundary integral equation holds even for singular elements, i.e.
the elements which contain the corners of the channel geometry. (Similar approach has been
utilized in our earlier papers for droplets attached to solid surfaces, and vascular endothelial
cells or leukocytes adhering to the surface of blood vessels, e.g. [24, 27, 28].) In addition,
we use basis points x of Legendre–Gauss–Lobatto quadrature and thus the physical variables
are determined in the interior and on the edges of the spectral elements. For the time
integration, we employed the 2nd-order Runge-Kutta scheme with a typical time step Δt =
0.5 × 10−3. Further details on our spectral boundary element algorithms are given in our
earlier publications, i.e. [25, 29, 30].

Three-dimensional views of the problem geometry are shown in figure 2. In the present
paper, the majority of computations were performed with a discretization employing NE =
36 elements. The capsule surface, by being projected onto a cube, is divided into a total of 6
elements as shown in figure 2 (a). The spectral element discretization of the channel surface
follows the capsule's center of mass. The channel surface in the capsule vicinity is divided
into a row of one spectral element per channel side (i.e. a total of four elements) with half-
size equal to ℓz. The (rest) upstream and downstream channel surface is divided into three
rows of four elements each; the length of each row progressively increases with the distance
from the capsule as seen in figure 2 (b,c). In our computations, the channel surface (which
formally should extend to infinity) has a half-length ℓx equal to 20 times the cross-section's
half-length ℓz; this channel length is sufficient to produce negligible error in all cases. Finally
the channel's inlet and outlet are discretized into one element each as shown in figure 2 (b).

We note that our spectral boundary element algorithm has the ability to utilize more
complicated surface element divisions, i.e. to use more elements on the capsule interface and
more than one elements per row for each channel side. Such discretizations are not needed
for the current problem since our convergence runs have shown that our employed element
discretization produces a sufficient accuracy even in the most challenging cases studied
here.
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In our work we mostly utilized NB = 12–14 basis points i.e. a total number of spectral points

for the entire geometry N = NE . To verify the accuracy of our results, we
performed convergence runs covering the entire interfacial evolution (i.e. well past steady
state) with NB = 10–16 basis points for all moderate and high capsule sizes we studied (i.e.
0.8 ≤ a ≤ 1.3) and for several smaller capsule sizes (i.e. 0.1 ≤ a ≤ 0.7). Our convergence runs
showed that our results for the interfacial shape are accurate to at least 3 significant digits
except for the most challenging cases studied in this work (i.e. largest capsules) where the
interfacial shape was determined with an accuracy of at least 2 significant digits. In
particular, in section 3, where we investigate moderate capsules (a = 0.6, 0.7, 0.8) for
capillary number Ca = 0.1–0.5, the interfacial shape was determined with an accuracy of at
least 3 significant digits in all cases. In section 4, where we investigate small and large
capsules for a fixed capillary number (Ca = 0.1), the interfacial shape was determined with
an accuracy of at least 3 significant digits for sizes a ≤ 1.25, while the interfacial shape of
the largest capsule studied (a = 1.3) was determined with a maximum relative error of 3 ×
10−3. The capsule velocity Ux and the additional pressure difference ΔP+ are always
accurate to at least 3 significant digits.

In addition, we have compared our results with published results for capsule motion in
cylindrical tubes [15]. To do this, we used our three-dimensional membrane algorithm and
determine the capsule motion along the centerline of a cylindrical tube. (The spectral
element discretization of the tube surface is shown in figure 2 (d)). All comparisons have
shown that our results are in very good agreement with earlier results from axisymmetric
methodologies. For example, in tube flow and for a Skalak capsule with size a = 0.8,
prestress αp = 0.025 and capillary number Ca = 0.2, we found Lx = 1.68 and Lz = 1.52,
while for a = 0.9, αp = 0.1 and Ca = 0.24 we found Lx = 2.03 and Lz = 1.60; both results are
in very good agreement with the results of Lefebvre and Barthès-Biesel [15] shown in their
figures 4 and 7. The capsule profiles were also in very good agreement as we verified via
figure superposition. Lefebvre and Barthès-Biesel also reported in their table 1 that, for
prestress αp = 0.05 and capsule size a = 0.8, the rear curvature changes sign when Ca = 0.1;
we also found the same as shown in our figure 6.

The problem studied in this paper admits three independent symmetry planes, y = 0, z = 0
and y = z. Exploiting these symmetries reduces the memory requirements for the storage of
the system matrices by a factor of 82, the computational time for calculating the system
matrices by a factor of 8 and the solution time of the linear systems via direct solvers by a
factor of 83. Most of our computations were performed on quad-core computers utilizing the
existing parallelization of our spectral boundary element algorithm via OpenMP directives
for the calculation of the system matrices, and highly optimized, parallelized routines from
the LAPACK library for the solution of the dense system matrices.

3. EFFECTS OF THE CAPILLARY NUMBER ON THE STEADY-STATE
PROPERTIES OF MODERATE-SIZE CAPSULES

In this section we collect our steady-state results on the geometric and physical variables of
interest, described earlier in section 2 B, as a function of the flow rate for moderatesize
capsules. In particular, we consider Skalak capsules with prestress αp = 0.05 and size a =
0.6, 0.7, 0.8 (i.e. smaller than the channel size ℓz) and capillary number Ca in the range [0,
0.5] (i.e. small and moderate flow rates). To obtain these steady-state results we initiate our
computations from a spherical capsule at the channel centerline using viscosity ratio λ = 1
and compute the capsule dynamics until times t = 10–20, i.e. well-past steady state which
usually is achieved around time t = 2–4. Although the transient evolution is affected by the
viscosity ratio, at steady state there is no flow inside the capsule and thus the steady-state
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capsule properties are independent of the inner viscosity. For the same reason, the
membrane viscosity (if any), which is not accounted in our computations, does not affect the
capsule's steady-state properties.

Figure 3(a) shows the effects of the capillary number on the steady-state capsule dimensions
for the three capsule sizes studied in this section. The capsule length Lx/(2a) first decreases
with the flow rate and then increases. For the three capsules studied here, only the largest
capsule with a = 0.8 achieves eventually a length greater than its undisturbed size. On the
other hand, the behavior of the capsule height Lz depends on the capsule size. The two
smaller capsules with a = 0.6, 0.7 increase slightly their height Lz/(2a) as the flow rate
increases, however for a = 0.8 the capsule height Lz/(2a) is decreased with the flow rate.
This behavior can be attributed to the non-monotonic behavior of the capsule length Lx
owing to the preservation of the capsule volume.

Dividing the capsule length Lx into its downstream and upstream parts (based on the capsule

centroid), figure 3(b) shows that the capsule's downstream length  shows a monotonic
increase with the flow rate and the capsule size. In addition, the capsule upstream length

 first decreases with the flow rate and then increases. Therefore, figure 3(b) suggests
that the capsule's flow dynamics can be divided into two parts: the downstream dynamics
where a monotonic dependence (e.g. length increase) is found with the flow rate, and the
upstream part which is characterized by a more complicated flow dynamics and which may
a ect the entire capsule shape.

The effects of the capillary number on the downstream and upstream lengths of the capsule,

 and , can also be seen in the y = 0 profiles of a capsule with size a = 0.8 presented in
figure 4(a) since all these profiles have the same centroid xc = 0. The monotonic increase of

 with the flow rate results from the relatively extension of the downstream tip of the
capsule. On the other hand, the late flow-rate increase of the upstream length  results
form the development of a pointed tail at the capsule rear close to the solid walls. Looking at
the capsule x = 0 profiles (i.e. perpendicular to the flow direction) presented in figure 4(b),
we observe that even for the largest capsule (size a = 0.8) and at the highest flow rate (Ca =
0.5) studied in this section, the capsule remains almost axisymmetric.

For a better view of the three-dimensional capsule shape, in figure 5 we present the steady-
state capsule shape for size a = 0.8 and for capillary number Ca = 0.1, 0.5. For each case, we
plot the shape perpendicular to the flow direction inside the channel and askew from the
flow direction. Note that the three-dimensional views of the capsule shape presented in this
paper were derived from the actual spectral grid by spectrally interpolating to NB = 25 and
using orthographic projection in plotting.

Figure 6 shows the effects of the flow rate Ca on the steady-state curvatures along the
capsule's y = 0 profile. As the flow rate increases, the capsule downstream edge becomes
more pointed while the scaled curvature there increases slightly with the capsule size. At the
same time, the capsule tends to decrease the curvature at its upstream edge from a concave
shape at small Ca towards a flat edge and then a convex edge (with negative curvature) as
the flow rate increases. (Both effects are also shown in the capsule y = 0 profiles presented
in figure 4.) For the three capsule sizes studied here, the transition to a convex edge occurs
around 0.1 ≤ Ca ≤ 0.2 and happens at a smaller flow rate as the capsule size increases. After
a slow increase at very small flow rates, the maximum curvature along the capsule's y = 0
profile increases linearly with the capillary number as seen in figure 6(b). The scaled
maximum curvature also increases with the capsule size. Thus the capsule develops very
pointed tails at its upstream section characterized by a local length scale (or radius of
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curvature) which is of O(10) (or more) smaller than the capsule size for the maximum flow
rate, Ca = 0.5, studied here.

Considering the variation of the capsule surface area Sc with the flow rate (which can be
regarded as an index of the entire capsule deformation), figure 7(a) shows that after an initial
slow increase at small flow rates, the steady-state surface area Sc increases linearly with the
capillary number while capsules with larger size a show a higher surface area increase. The

same pattern is valid for the maximum principal tension  on the membrane as seen in

figure 7(b). It is interesting to note that the maximum tension  at steady state is always
located at the downstream element of the capsule, along the y = 0 (or z = 0) profile and
between the capsule downstream tip and the element end. Therefore this location is the most
probable to rupture when a capsule flows in a microchannel.

Figure 8 shows the steady-state variation (with the flow rate) of the volume-average capsule
velocity Ux and the additional pressure difference ΔP+ as well as the minimum distance h
between the capsule surface and the channel's walls. All these variables are not affected
much by the capillary number for each of the three capsule sizes included in this figure. As
the capsule size a increases, the smaller distance h between the capsule surface and the walls
results in a slower capsule motion and in higher pressure drop.

A. Comparison with flow in a cylindrical tube
Owing to their nearly axisymmetric cross-section in the flow direction shown in figure 4(b),
small and moderate capsules in square channels should show dynamics similar to that in
cylindrical tubes. In particular, similar (qualitative) behavior for the capsule's length Lx,
height Lz, and downstream and upstream curvatures were found in earlier experimental and
computational studies, e.g. [13–15]. For example, see figure 4 in the work by Lefebvre and
Barthès-Biesel [15] who considered the steady-state properties of capsules with prestress αp
= 0, 0.025, 0.1 and size a/R = 0.8 (where R is the tube radius). We note that figure 11 of the
earlier study shows that in cylindrical tubes the pressure drop increases (almost) linearly
with the capillary number Ca; this appears to contrast with our results presented in figure
8(b). This difference results from the different scales used for the pressure; in particular, the
earlier study scaled the pressure based on membrane properties (i.e. Gs/R) while we scale
the pressure based on flow properties (i.e. ). Scaling the pressure as in our study, the
results of Lefebvre and Barthès-Biesel [15] presented in their figure 11 show that the
pressure drop is rather insensitive to the capillary number for moderate-size capsules as also
found in our study.

The similarity of the channel and tube dynamics at moderate capsule sizes motivated us to
make detailed comparisons of the two cases to identify clearly their similarities and
differences. Since the earlier computational studies which considered capsule dynamics in
cylindrical tubes [13, 15] did not report results for the prestress level used in this paper, we
studied this problem for prestress αp = 0.05, capsule size a = 0.8 and several flow rates using
our (three-dimensional) membrane algorithm. The spectral boundary element discretization
of the tube wall was identical to that for the channel (i.e. we defined rows of four elements)
while the tube's inlet and outlet were discretized into five elements each as shown in figure 2
(d). For this system, the tube radius R is used as the length scale while all rest parameters are
defined as for the channel problem reported in section 2 B. Considering the dynamics of a
capsule in both solid ducts at a given capillary number Ca means that we apply the same
average duct velocity  as seen in Eq.(15).

Figure 9 shows the variation of the capsule lengths in channel and tube flow. In the channel,
the capsule is less deformed (i.e. it is less extended along the flow direction and more
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extended laterally), for the same capillary number Ca, than in the tube. The smaller
interfacial deformation in the channel results from the existence of the corners area which
permits flow of the surrounding fluid and thus causes less deformation on the capsule. In a

similar manner, the capsule in the tube shows larger downstream and upstream lengths, 
and , than in the channel. Excluding small capillary numbers (e.g. Ca ≤ 0.1), figure 9
shows that a capsule in a channel at a given capillary number has the same dimensions as in
a tube flow but at a much lower capillary number. For example, the capsule lengths in the

flow direction, Lx,  and , are very similar for channel flow with Ca = 0.35 and tube flow
with Ca = 0.2. The capsule height Lz in a channel with Ca = 0.35 corresponds to near Ca =
0.13 in a tube.

In contrast to the different interfacial deformation in channels and tubes, the capsule
curvatures are very similar in these two system, as seen in figure 6. Thus, for capsules
flowing in these two solid geometries, the interfacial curvatures are mostly determined by
the capsule size and the capillary number, and not by the details of the cross-section of the
solid geometry. It is of interest to note that, excluding small capillary numbers, our results
show that the curvature at the downstream and upstream edges are rather insensitive to the
capillary number for both solid systems (i.e. they are practically constant at moderate flow
rates). On the other hand, the maximum profile curvature which occurs at the capsule rear
end and close to the walls, increases fast with the capillary number as seen in figure 6(b).

The higher interfacial deformation in the tube flow results in a higher surface-area increase
for the capsule and higher membrane tensions as seen in figure 7. However, now the
correspondence in Ca for the two solid geometries are not as different as for the capsule
lengths; for instance, very similar maximum principal tensions are obtained for Ca = 0.35 in
the channel and Ca = 0.3 in the tube. The higher interfacial deformation in the tube flow also
results in a higher gap between the capsule and the walls as shown in figure 8(c). However,
the existence of the corners area in the channel means that in this system the capsule blocks
less the flow of the surrounding fluid. Thus in a tube the same capsule causes a much higher
pressure drop and travels with a smaller velocity than in a channel as seen in figure 8(a, b).

4. EFFECTS OF THE CAPSULE SIZE ON THE STEADY-STATE PROPERTIES
In this section we collect our steady-state results on the geometric and physical variables of
interest, described earlier in section 2 B, as a function of the capsule size a for channel flow
with capillary number Ca = 0.1. In particular, we consider Skalak capsules with prestress αp
= 0.05 and size a = 0.1, 0.2, …, 1.3, i.e. both smaller and larger than the channel height ℓz.
To obtain these steady-state results, for capsules with size a < 1 we initiated our
computations from a spherical capsule at the channel centerline and computed the capsule
dynamics for viscosity ratio λ = 1 until times t = 10–20, i.e. well-past steady state. For
capsules with size a ≥ 1, we did the same but we initiated our computations from an
ellipsoidal capsule with width near 0.95 and appropriate length (greater than unity) to
account for the specific capsule volume.

To facilitate the comparison of the channel flow with that in a cylindrical tube, we include
our results for tube motion in several figures in this section. However our discussion on
these comparisons are presented at this end of this section. It is of interest to note that as the
capsule size a increases, negative tensions appear near steady state and cause numerical
instability, i.e. the specific prestress used in our study (αp = 0.05) is not adequate to enforce
positive membrane tensions at sufficiently large capsules. (The buckling instability for
axisymmetric-like flows is discussed in section 6 in Ref.[26].) Thus for this prestress we are
unable to determine stable steady-state shapes for size a ≥ 1.4 for channel flow and a ≥ 1.2
for tube flow.
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Figure 10(a) shows the effects of the capsule size a on the steady-state capsule dimensions.
Note that we prefer not to scale the capsule lengths with the capsule size a since for large
capsules such scaling is not appropriate for properties associated with the capsule height.
The capsule length Lx shows a monotonic increase with a while its height Lz, after an initial
fast increase, slows down as it reaches the channel height. It is of interest to note that both
dimensions increase identically until size a ≈ 0.9 and then their behavior diverges. For
higher capsule sizes, as the capsule height Lz is restricted by the channel height, the capsule
length Lx increases faster to accommodate the capsule's larger volume. Considering the
downstream and upstream parts of the capsule length in figure 10(b), we see that after an
initial common increase, the upstream length  increases slower for sizes ,

and then shows a fast increase similar to that of the downstream length .

To explain the behavior of the upstream length , it is beneficial to see the steady-state y =
0 profiles of small and large capsules plotted in figure 11(a, c). For small capsule sizes

, the hydrodynamic forces associated with the flow rate Ca = 0.1 are weak and cause
minimal deformation; thus the capsule is nearly spherical. For moderate capsule sizes

, the length Lx and the height Lz are practically equal to their undisturbed value
2a. However, now the hydrodynamic forces are stronger owing to the smaller gap between
the capsule interface and the solid walls, and cause the capsule to deform into a shape with a
pointed downstream edge and a flattened rear. Because of this interfacial deformation, the
capsule centroid is shifted to the back, i.e. its upstream length  decreases with respect to

its downstream length . For size a ≈ 0.9, the capsule height Lz has reached the channel's
height and further increase is limited owing to the strong hydrodynamic forces in the narrow
gap between the capsule surface and the wall. The capsule obtains a bullet-like shape and
further increase in its size results mainly in a length increase, and thus increase of both
downstream and upstream parts of the capsule length.

Looking at the x = 0 profile of the different capsules included in figure 11(b, d), we observe
that the capsule remains axisymmetric until a ≈ 0.8. At higher sizes, the capsule's x = 0
profile becomes a square with rounded corners, especially for the larger capsules, as seen in
figure 11(d). Thus, the capsule interface becomes parallel to the channels walls and rounded
at the channel's corners. This development clearly suggests that for capillary number Ca =
0.1, the capsule shape becomes non-axisymmetric (i.e. fully three-dimensional) for capsule
sizes a ≥ 0.9.

It is of interest to note that this non-axisymmetric interfacial deformation is associated
mainly with the capsule's upstream portion (i.e. from its centroid to its rear end), and not
with its downstream portion which remains axisymmetric. To show this, in figure 11(e) we
plot the capsule's interface intersection with different x-planes (with respect to the capsule
centroid). The profiles at x = 1, 1.5 are circular and thus the downstream portion of the
capsule is like a cylinder with an end spherical cap.

Looking at the capsule's x = 0 profiles shown in figure 11 as well as in figure 4 from the
previous section, we note that when the hydrodynamic forces on the capsule are increased
(i.e. by increasing the flow rate for a given capsule or by increasing the capsule size for a
given flow rate), the capsule develops a pointed downstream edge and a flattened rear
(possibly with a negative curvature). This is similar to the deformation of droplets which try
to increase the downstream curvature and decrease the upstream curvature so that they
increase the restoring (surface) tension force [3, 12]. Therefore this capsule deformation
results from the curvature term in the membrane traction, Eq.(10), as we identified for the
high-curvature tips of elastic capsules in strong planar extensional flows in our earlier
studies [25, 31]. We emphasize that in the present study, the membrane tensions at steady
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state are always positive owing to prestress and thus negative curvature or dimples on the
capsule interface cannot result from local negative tensions.

The three-dimensional shapes of two large capsules with size a = 1.1, 1.3 are shown in
figure 12. Beyond the dimple with negative curvature which occurs at the capsule's rear end,
we also observe the development of dimples at the capsule lateral surface and near its rear,
at each side of the channel. This lateral dimple is also shown in the capsule profiles in figure
11(d). Similar lateral dimples can be seen in the experimental photos (i.e. capsule profiles)
of large capsules moving in square microfluidic channels in the recent work of Lefebvre et
al. [9]. (See figures 10 and 11 in the earlier study.) In addition, lateral dimples have also
been found on large capsules moving in cylindrical tubes, in experimental and
computational studies, although in this case the dimple is, obviously, axisymmetric [13, 14].

Figure 13(a) shows the effects of the capsule size on the steady-state scaled curvature at the
downstream and upstream edges of the capsule (i.e. its intersections with the x-axis). Note
that the curvatures are scaled with the curvature of the undisturbed spherical shape, and thus
this figure is more suited for the capsules with size smaller than the channel's height. This
plot shows that even at small sizes a ≤ 0.4, the capsule downstream edge becomes more
pointed while the opposite happens at its upstream edge. (Note that these curvature
variations cannot be easily observed in the capsule profiles shown in figure 11(a).) For
moderate capsule sizes 0.4 ≤ a ≤ 0.9, the significant capsule deformation shown earlier in
figure 11(a) is associated with a faster increase of the curvature at the downstream edge and
a faster decrease of the curvature at the upstream edge. Thus the downstream edge becomes
more pointed (relatively to the undisturbed spherical shape) while the upstream edge flattens
as seen in the profiles of figure 11(a). Note that a dimple with negative curvature has been
developed at the rear end of the capsule with size a = 0.9.

In figure 13(b) we present the variation with the capsule size of the (unscaled) curvature at
the downstream and upstream edges of the capsule. Thus this figure is more suited for the
larger capsules where the capsule covers almost the entire channel height. This plot shows
that for large capsules, e.g. a ≥ 0.9, the curvature at the downstream edge decreases slightly
only with the capsule size (i.e. it is practically independent of the size a). Similar is the
variation of the curvature at the upstream edge which becomes slightly more negative with
the capsule size.

Figure 13(c) shows the maximum curvature along the capsule's y = 0 profile (scaled with the
curvature of the undisturbed spherical shape). This figure shows that the variation of the
maximum profile curvature with the capsule size is divided into three distinct areas owing to
the corresponding types of capsule profiles shown earlier in figure 11. In particular, for
small sizes, , the maximum curvature occurs at the downstream edge of the nearly
spherical capsules. For moderate sizes, , the maximum curvature increases fast
with the size owing to the development of the tail at the capsule rear and close to the walls.
Finally, for large sizes, , a further increase of the maximum curvature occurs owing to
the development of the lateral dimple near the capsule rear. Thus, large capsules develop at
their rear tail and close to the walls, pointed local areas characterized by a local length scale
(or radius of curvature) which is of O(10) smaller than the capsule size, as we also found for
moderate-size capsules at high flow rates in section 3.

We now turn our attention to properties associated with the entire capsule deformation, and
in figure 14 we present the variation with the size a of the capsule's surface area Sc and the

maximum principal tension  on the membrane. After an initial slow increase at small
capsule sizes, both properties increase fast with the capsule size for large capsules. Even for

the large capsules studied in this section, the maximum tension  at steady state is always
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located at the downstream element of the capsule, along the y = 0 (or z = 0) profile and
between the capsule downstream tip and the element end. Therefore this location is the most
probable to rupture when a capsule flows in a microchannel.

Figure 15 shows the steady-state variation with the capsule size a of the volume-average
capsule velocity Ux and the additional pressure difference ΔP+ as well as the minimum
distance h between the capsule surface and the channel's walls. In contrast to the
insensitivity of these variables with the flow rate Ca found in section 3, now we observe that
the capsule velocity Ux decreases and the pressure drop ΔP+ increases significantly as the
capsule size increases owing to the smaller gap h between the capsule surface and the walls.
It is of interest to note that capsules, larger than the channel height, move with a velocity just
higher than the channel's undisturbed average velocity  and cause a very significant
pressure drop in the channel.

A. Comparison with flow in a cylindrical tube
Comparison between channel and tube flow with respect to capsule size reveals similar
results to those with respect to flow rate presented in section 3 A. As shown in figure 10, the
behavior of the capsule lengths in tube flow for increasing capsule size is similar to that in
the channel. In the latter geometry, large capsules are less deformed, and thus less extended
in the flow direction and more extended laterally, owing to the existence of the corners area
which permits flow of the surrounding flow and thus causes less deformation on the capsule.

Figure 13(a, b) shows that the curvature at the downstream edge is practically the same for
both solid systems. The same is true for the curvature at the upstream edge until sizes near a
= 0.8; for higher capsule sizes, the upstream curvature is practically constant in tube flow
but decreases into higher negative values in channel flow. This behavior in the tube is
consistent with the results of Lefebvre and Barthès-Biesel [15] who showed at their table 1
that for capsule sizes a = 0.8, 0.9, 1 the upstream curvature is practically zero for a fixed
capillary number and not very small prestress. (In particular for Ca = 0.1 when αp = 0.05
and Ca = 0.2 when αp = 0.1.)

The identical curvature evolution at the downstream edge in both solid systems can be
understood since in both systems the downstream portion of the capsule remains
axisymmetric as we show for the channel flow in figure 11(e). On the other hand, the
different upstream curvature in the tube and channel at high enough capsule sizes can be
attributed to the development of the (non-axisymmetric) rounded square cross-section of the
upstream portion of the capsule for sizes a ≥ 0.9 as shown in figure 11(d). For the same
reason, a large capsule in a tube flow does not show as high maximum profile curvature as
in a channel (figure 13(c)).

The higher interfacial deformation in the tube flow for large capsules results in a higher
surface-area increase and higher membrane tensions as seen in figure 14. Figure 15(a) shows
that a capsule in a tube has always lower velocity than in a channel while this difference
decreases at large capsule sizes. We note that in this figure the velocity is scaled with the
average fluid velocity  which is an appropriate scale mainly for large capsules. (As shown
in this figure, small-size capsules travel with the maximum fluid velocity while large
capsules travel with a velocity closer to the average fluid velocity.) Even when we scale our
velocity findings with the maximum fluid velocity in each solid system (not shown), we
observe that small- and moderate-size capsules travel slower in the tube. Owing to the
existence of the corners area, a capsule in a channel causes less fluid blocking, and thus a
smaller pressure drop compared to that in a tube, as shown in figure 15(b).
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5. ANALYSIS AND SCALING LAWS
In this section, using our computational results for capsule motion in square channels and
cylindrical tubes for capillary number Ca = 0.1 presented in section 4, we derive scaling
laws with respect to the capsule size a for the geometric and physical variables we consider
in our work. We note that most capsule's geometric and physical properties are also affected
by the flow rate Ca as seen in section 3. Exceptions are the capsule velocity Ux and
additional pressure difference ΔP+ for small and moderate-size capsules which are
practically independent of the capillary number for the small and moderate flow rates
studied in this work. In addition, based on basic physical principles and geometric
properties, we develop a theoretical analysis that explains the power laws we found in this
work.

It is of interest to note that very limited information is currently known with respect to the
scaling-law behavior of capsules flowing in solid ducts. In particular, it appears that the only
available information is two power laws for the additional pressure difference and capsule
velocity as a function of the capillary number from the work of Quéguiner and Barthès-
Biesel [13]. Using their axisymmetric results for a strain-softening neo-Hookean capsule in a
cylindrical tube, the authors determined, via least-square fitting, the coefficients for ΔP+ =
k1 Ca−n1 and  that match best a given capsule size, for capsule sizes a/R = 0.8,
0.9, 1, 1.2, 1.4. We note that the four coefficients in these two power laws were found to
vary with the capsule size, while a power-law behavior with respect to the capsule size was
not identified.

The limited information on the scaling-law behavior of capsule motion in solid ducts is in
contrast to the current knowledge from the corresponding problem of droplet motion in wall-
bounded Stokes flows which has been studied rather extensively in the last four decades, e.g.
[12, 20–22]. The viscosity ratio does affect the steady-state behavior of droplets, and
different dynamics have been identified for low- and high-viscosity droplets. We note that
capsule motion corresponds better to the dynamics of high-viscosity droplets since at steady
state both a capsule and a high-viscosity droplet translate in the duct flow as a solid with
zero inner velocity.

Table 1 presents the power laws (with respect to the capsule size a) we found for several
steady-state geometric and physical properties of capsules flowing in square channels and
cylindrical tubes. The corresponding figures that show these laws and the range of validity
in capsule size are given in the paper's appendix. For both channel and tube flows, the table's
column “small size a” represents small and moderate capsule sizes while the table's column
“large size a” represents moderate and large capsule sizes up to the maximum capsule size
studied in this work, i.e. a = 1.1 for tube flow and a = 1.3 for channel flow. Note that in the
latter case, the associated scaling laws may also be valid for larger capsule sizes as
supported by our analysis below.

Several conclusions can be drawn from table 1. For any capsule size, the scaling laws for
channel flow are identical to those in tube flow except for the multiplication coefficient,
even though in the channel the cross-section in the upstream portion of large capsules is
non-axisymmetric, i.e. square-like with rounded corners, as shown in figures 11 and 12. The
different multiplication coefficients in these two types of solid geometries are to be expected
since for a given flow rate Ca, the same capsule in the channel is less deformed than in the
tube owing to the existence of the corners area (gutters) which permits flow of the
surrounding flow and thus causes less deformation on the capsule. Therefore in the tube the
capsule shows a higher length Lx and smaller height Lz as well as a higher downstream
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curvature, surface area increase and membrane tensions. In addition, the corners gutters
reduce significantly the excess pressure difference in the channel flow.

Furthermore, the existence of identical power laws for large capsules in channel and tube
flows show that the parameter space studied in the present work does not represent
squeezing capsule motion (i.e. large capsules at sufficient low flow rates so that the capsules
travel very tightly inside the solid ducts) since in such case the channel flow should be
governed by different laws (with respect to the tube flow) owing to the significant fluid flow
at the corners gutters as found for droplet motion [12].

For small and moderate sizes, the capsule velocity Ux and additional pressure drop ΔP+ in
tube flow are governed by exactly the same scaling laws as for high-viscosity droplets, i.e.
the predictions of Hetsroni et al. [20] and Brenner [21]. In particular, Hetsroni et al. [20]
determined analytically the velocity of a very small droplet moving along the centerline of a
cylindrical capillary; their results for high viscosity ratio (i.e. λ → ∞) give

(16)

Brenner [21] provided the additional pressure drop for the same system; his results for high-
viscosity droplets are

(17)

The identical scaling-law behavior of capsules and high-viscosity droplets in a tube flow
supports clearly our earlier conclusion that the capsule steady-state motion in solid ducts
corresponds better to the motion of high-viscosity (i.e. λ → ∞) droplets. It is interesting to
note that the predictions of Hetsroni et al. [20] and Brenner [21] show that, for small and
moderate droplet sizes, the velocity Ux and additional pressure difference ΔP+ are
independent of the capillary number Ca, as we also found for small and moderate capsules
in section 3.

For the large capsules studied in this work, the additional pressure difference ΔP+ follows
the same scaling-law behavior as for small and moderate capsules. Furthermore, the velocity

of large capsules approaches the average undisturbed duct velocity as  as shown in
table 1. As the capsule size increases, the maximum membrane tensions increase their

dependence on the capsule size from  at small and moderate sizes, to 
for large capsules.

By combining basic physical principles and geometric properties, we present now an
analysis that explains the power laws we found for large capsules. Since for our study we
found the same scaling laws for both tube and channel flows, our analysis is based mostly on
the (simpler) tube flow. In our analysis, at first we accept as given the dependence of the
lubrication film thickness h on the capsule size a from our computations, i.e. h/R = 0.15 (a/
R)−2 for tube flow, and by employing this relationship, we derive the scaling laws we found
for the additional pressure difference and the capsule velocity. Afterwards we propose a
scaling analysis to justify the dependence of h on the capsule size a. To facilitate the
notation, in some in-line equations the variables scales are omitted and thus the default
scales are assumed as happens in our entire study (see end of section 2 B). For tube flow, the

length scale Ls is the tube radius R and the pressure scale is .

Kuriakose and Dimitrakopoulos Page 16

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To justify the power law for the capsule velocity  found in our work for large
capsules, we utilize the velocity at high-viscosity ratio (i.e. λ → ∞) of a long cylindrical
droplet in a tube flow given by Eq.(4.5) in the paper by Lac and Sherwood [22], i.e.

(18)

where δ is the dimensionless half-width of the capsule, i.e. δR = Lz/2. This finding is based
on the laminar annular flow of two concentric fluids in a cylindrical tube and thus it is valid
for both slender and thick droplets. Lac and Sherwood used this relationship for slender
droplets (i.e. for δ ⪡ 1); here we apply it for thick capsules with δ → 1. Simple algebra
reveals that

(19)

while using the scaling law h/R = 0.15 (a/R)−2 from table 1 we obtain the correct scaling
behavior for the capsule velocity as well as good agreement for the numerical coefficient,
i.e.

(20)

To derive the pressure difference associated with the capsule motion, observe that as shown
in figure 12, our large capsules resemble a cylinder with length Lf along with a semi-
spherical cap of radius δR = Lz/2, and thus Lf = Lx − δR. The pressure difference ΔP
between the upstream and the downstream end of the capsule is thus the sum of the pressure
difference in the cylindrical part ΔPcyl and that in the semi-spherical cap ΔPcap. However,
ΔPcap is expected to be much smaller than ΔPcyl as found for droplet motion in duct flows
[12, 22], and thus

(21)

The pressure gradient dP/dx can be derived from the corresponding finding of the laminar
annular flow of two concentric fluids in a cylindrical tube, i.e. Eq.(4.3) in the paper by Lac
and Sherwood [22], for the case of high-viscosity ratio (i.e. λ → ∞)

(22)

and therefore for large thick capsules with δ = 1 − h/R → 1, we get

(23)

where  is the pressure scale.

To derive the scaling for the length Lf of capsule's cylindrical part, we note that the volume
of the cylindrical part along with the volume of the semi-spherical cap is equal to the
capsule volume, i.e.
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(24)

For large thick capsules with small lubrication gaps (i.e. a/R ≫ 1 and δ → 1) this equation
leads to

(25)

in (quantitative) agreement with the scaling law for Lf found in our computations presented
in table 1.

Since the pressure gradient in the tube flow in the absence of the capsule is (dP/dx)nc = −8Π/
R, using Eqs.(21), (23) and (25), the additional pressure difference owing to the capsule
presence is

(26)

and thus

(27)

for large thick capsules with small lubrication gaps (i.e. h/R ⪡ 1). (Observe that in essence,
ΔP+ ≈ ΔP since the pressure difference in the capsule absence is very small.) Using the
scaling law h/R = 0.15 (a/R)−2 from table 1 we obtain the correct scaling behavior for the
additional pressure difference as well as good agreement for the numerical coefficient, i.e.

(28)

This derivation also explains the reason that the large capsules considered in this work show
the same scaling law for the additional pressure difference as for small capsules, i.e. for our
large capsules ΔP+ ~ a3/h while h ~ a−2, and thus ΔP+ ~ a5 as found for small capsules.

To complete our analysis, we need to explain the dependence, on the capsule size a, of the
thickness h of the lubrication film between the capsule surface and the solid walls, i.e. h ~
a−2. In agreement with the droplet motion in solid ducts, the film thickness should follow the
Landau-Levich-Derjaguin-Bretherton (LLDB) prediction [32–34]

(29)

We emphasize that the LLDB relationship is based on a local force balance between the
deforming hydrodynamic lubrication forces and the restoring (surface) tension forces in the
interfacial area where the downstream semi-spherical-like part meets the cylindrical-like
part of the deformable object (i.e. a droplet) [33, 34]. In addition, while originally Bretherton
[32] derived this relationship for inviscid bubbles (i.e. λ ⪡ 1), it has been found to be valid
for any viscosity ratio [33].
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For droplets with constant surface tension γ, the effective capillary number in Eq.(29) is

identical to the (droplet) capillary number, , and thus in this case the film
thickness h depends only on the capillary number Ca [32, 33].

For capsules, where the tensions increase with the interfacial deformation, the effective
capillary number needs to include this tensions increase, and thus in this case the LLDB
prediction becomes

(30)

where the dimensionless tension τ accounts for the tensions increase owing to the interfacial
deformation (which is a function of both the capsule size a and the flow rate Ca), and can be
expressed as

(31)

It is of interest to note that, owing to the non-linear dependence of the membrane tensions on
the interfacial deformation, the coefficients c1 and c2 cannot be determined analytically, and
thus their determination requires usage of our computational findings. Base on the above, for
thick capsule motion the LLDB prediction becomes

(32)

which reveals that for capsules the film thickness h depends on both the capillary number Ca
and the capsule size a owing to the variable membrane tensions.

In our computations for large capsules presented in this paper we considered a specific (low)
capillary number, Ca = 0.1, and thus we cannot identify the exact dependence of h on the
capillary number Ca, i.e. the constant c2. (This will be investigated in a future work of ours.)
In the present study, we can focus on the effects of the capsule size a; using our
computational results for the film thickness, h ~ a−2, we derive that c1 = 3. Since the

maximum principal tension for large capsules increases as  while its location is
near the downstream capsule's tip, we believe that it is not unrealistic to request that the
characteristic tension scales as τ ~ a3 in the LLDB interfacial area. (Note that the LLDB area
lies on the capsule's front between the location of the maximum principal tension and the
solid walls.) In addition, we emphasize that the usage of the LLDB prediction in our scaling
analysis is in agreement with our conclusion presented in sections 3 and 4, that the capsule's
pointed downstream edge results from the curvature term in the membrane traction, Eq.(10).

As seen in table 1, the pressure drop ΔP+ in the channel flow is significantly lower than that
in the tube flow. As discussed earlier this results from the corners gutters in the channel
which permit flow of the surrounding fluid and thus lower the pressure drop due to the

capsule presence. Utilizing simple analysis based on the average film thickness  in the
channel, we can explain why the numerical coefficient of the pressure power law is nearly
40% lower in the channel than in the tube. The average film thickness has been used by
Lefebvre et al. [9] to associate the capillary number in a square channel with that in a
cylindrical tube so that the capsule has the same deformation in both duct flows. Here we
want to explain the difference in the excess pressure drop for the same capillary number and
capsule size in these solid ducts.
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For the large capsules studied in this paper, the pressure difference ΔP ≈ τP+ is mainly
balanced by the viscous dissipation in the thin lubrication film between the capsule interface
and the solid walls [9, 12], and thus

(33)

where Af = π (δR)2 is the capsule's frontal area along the tube flow, Al = 2 π δRLf the
capsule's lateral surface area where the lubrication dynamics occurs, and  the shear
stress in the lubrication film. (Observe that large capsules with small lubrication gaps travel
with a velocity close to the average undisturbed velocity, i.e. .) For both tube and
channel flows with R = ℓz, Eq.(33) is valid but for the channel the film thickness is now the

average film thickness  which is related to the minimum thickness in the channel hsq via

(34)

for small film thickness. Taking the ratio of the force balance, Eq.(33), for channel and tube
flows and noting that δsq ≈ δcyl, we get

(35)

where we used our results from table 1 for the lubrication length Lf and the minimum
thickness h for channel and tube flows. Using a/R = 1 as a representative capsule size and
the actual pressure drop in the tube we obtain

(36)

where the numerical coefficient of the power law is close to that found in our computations.

6. CONCLUSIONS
In this paper we have investigated computationally the steady-state motion of an elastic
capsule along the centerline of a square microfluidic channel and compared it with that in a
cylindrical tube. In particular, we have considered a slightly over-inflated elastic capsule
made of a strain-hardening membrane (following the Skalak et al. constitutive law) with
comparable shearing and area-dilatation resistance. This study is motivated by a wide range
of applications including drug delivery, cell sorting and cell characterization devices,
microcapsule fabrication, determination of membrane properties, micro-reactors with better
mixing properties, and of course its similarity to blood flow in vascular capillaries.

To our knowledge, this is the first work which studies systematically the steady-state motion
of an elastic capsule in a square microfluidic channel, as well as the first study to derive
power laws and theoretical analysis for this problem. Our investigation complements earlier
axisymmetric studies on capsule motion in cylindrical tubes, e.g. [13–15], and has revealed a
number of new physical results and insight for the dynamics of elastic capsule in square
channels and cylindrical tubes. Furthermore, our results on capsule's bulk properties may be
used to infer the same properties on any rectangular channel at high enough capillary
numbers (where the interfacial shape is axisymmetric) as recent findings on air finger
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dynamics in rectangular channels suggest [35]. We summarize briefly some of the more
important conclusions.

(i) Under the conditions studied in this paper, i.e. small, moderate and large
capsules at low and moderate flow rates, the capsule motion in a square channel
is similar to, and thus governed by the same scaling laws with the capsule
motion in a cylindrical tube, even though in the channel the cross-section in the
upstream portion of large capsules is non-axisymmetric (i.e. square-like with
rounded corners). Therefore the present work does not represent squeezing
capsule motion in a square channel.

(ii) Nevertheless, for the same capillary number Ca, a capsule in a square channel is
less deformed than in a cylindrical tube owing to the existence of the corners
area (gutters) which permits flow of the surrounding fluid. In addition, the
corners gutters reduce significantly the excess pressure difference in the channel
flow. The correspondence between channel and tube flow is non-trivial, and
depends strongly on the geometric or physical property of consideration.

(iii) When the hydrodynamic forces on the membrane increase (i.e. by increasing the
flow rate for a given capsule or increasing the capsule size for a given flow rate),
the capsule develops a pointed downstream edge and a flattened rear (possibly
with a negative curvature) so that the restoring tension forces are increased.
Similarly to droplets, this deformation results from the curvature term in the
membrane traction, Eq.(10) as we identified for the high-curvature tips of elastic
capsules in strong planar extensional flows [25, 31]. We emphasize that in the
present study, the membrane tensions at steady state are always positive owing
to prestress and thus dimples with negative curvature on the capsule interface
cannot result from local negative tensions.

(iv) Capsule motion in duct flows corresponds better to the dynamics of high-
viscosity droplets since at steady state both a capsule and a high-viscosity
droplet translate in the duct flow as a solid with zero inner velocity. It is of
interest to mention that in planar extensional flows (where there is also no flow
inside the capsule at steady state), the capsule dynamics corresponds better to
the dynamics of low-viscosity drops, and very pointed edges are developed on
both deformable objects at high flow rates as our earlier studies have revealed
[25, 31].

(v) The maximum membrane tensions increase significantly with the capsule size

from  at small and moderate sizes, to  for our large capsules. The
area near the downstream tip is the most probable to rupture when a capsule
flows in a microchannel. Because the membrane tensions increase with the
interfacial deformation, a suitable Landau-Levich-Derjaguin-Bretherton analysis
reveals that the lubrication film thickness h for large capsules depends on both
the capillary number Ca and the capsule size a; our computations determine the
latter dependence to be h ~ a−2 for the large capsules studied in this work.

(vi) For small and moderate sizes, the capsule velocity Ux and additional pressure
drop ΔP+ are governed by the same scaling laws as for high-viscosity (i.e. λ →
∞) droplets, i.e. the predictions of Hetsroni et al. [20] and Brenner [21]. The
velocity and additional pressure drop of large thick capsules also follow the
dynamics of high-viscosity droplets, and are affected by the lubrication film
thickness. The motion of our large thick capsules is characterized by a

 approach to the undisturbed average duct velocity and an additional
pressure drop ΔP+ ~ a3/h ~ a5.
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(vii) By combining basic physical principles and geometric properties, we developed
a theoretical analysis that explains the power laws we found.

Finally, we note that our analysis for large thick capsules can be used to analyze the duct
motion of other artificial capsules and of erythrocytes as long as their shape in
axisymmetric-like narrow capillaries resembles the one found in this study for large strain-
hardening capsules.
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APPENDIX
In this appendix, we present the figures that show the scaling laws (with respect to the
capsule size a) for several steady-state capsule properties for channel and tube flows
included in table 1 in section 5. To derive these laws, we tried to find the multiplication and
power-law coefficients that optically match best our computational results. In the figures
below we present our computational results as thick solid lines and the proposed scaling
laws as dashed or dot-dashed straight lines. The very good match of the scaling laws with
our computational results in the associated plots suggests at least a near three significant-
digit accuracy in determining the power laws owing to the fact that we use thin lines for
plotting.

Figure 16 shows the power-law behavior of several geometric properties of a capsule
flowing in a square channel, including the capsule's length, film thickness, surface area and
edges curvatures. For the capsule length Lx − Lz/2, we are able to identify a power-law
behavior at small and moderate capsule sizes (i.e. 0.1 ≤ a ≤ 0.8) as well as a power-law at
larger capsule sizes. The power-law behavior of the minimum distance h between the
capsule surface and the solid walls at moderate and large capsule sizes (i.e. 0.6 ≤ a ≤ 1.3) is
shown in figure 16(b). As seen in figure 16(c, d), our results for the capsule surface area Sc
and the capsule curvatures (i.e. downstream, upstream and maximum profile curvatures)
show a power-law behavior for small and moderate capsule sizes while the downstream
curvature also appears to follow a power-law at large capsule sizes.

Figure 17 shows the power-law behavior of several physical properties of a capsule flowing
in a square channel, including the capsule velocity Ux (with respect to the maximum or the
average undisturbed velocity), the additional pressure drop ΔP+ and the maximum principal

tension . It is of interest to note that the velocity difference  is more appropriate
for small capsules which flow with a velocity Ux smaller but close to the maximum
undisturbed velocity . On the other hand, the velocity difference  is more
appropriate for moderate and large thick capsules a (i.e. for small gaps h), where the capsule
flows with a velocity Ux greater but close to the average undisturbed velocity . Figure 17(c)
shows that the additional pressure drop follows only one scaling law, i.e. ΔP+ ~ a5, for all
capsule sizes studied.

We also found similar scaling laws (with identical power-law coefficients but different
multiplication coefficients) for all geometric and physical properties of interest for capsule
motion in cylindrical tubes. Figure 18 shows the power-laws for the capsule physical
properties, i.e. capsule velocity, additional pressure drop and maximum principal tension.
We emphasize that this figure shows clearly that for small and moderate sizes, the capsule
velocity Ux and additional pressure drop ΔP+ are governed by exactly the same scaling laws
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as for high-viscosity droplets, i.e. the predictions of Hetsroni et al. [20] and Brenner [21] as
we discuss in section 5.
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FIG. 1.
An elastic capsule flowing at the centerline of a square microchannel.
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FIG. 2.
Spectral boundary element discretization of system surface: (a) capsule surface, (b) solid
surface of a square channel along with the fluid surface at the channel end, (c) top view of
the entire geometry after removing the channel's top side, and (d) solid surface of a
cylindrical tube along with the fluid surface at the channel end. Each figure illustrates
Lobatto distribution of nodal lines for the corresponding geometry with basis points NB =
14.
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FIG. 3.
Steady-state capsule lengths as a function of the capillary number Ca for a Skalak capsule
with C = 1 and αp = 0.05 in a square microchannel. (a) Capsule lengths Lx/(2a) and Lz/(2a).

(b) Capsule lengths  and . Capsules sizes a: ◇, 0.6; ∘, 0.7; ◻, 0.8.
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FIG. 4.
Steady-state capsule profile as a function of the capillary number Ca for a Skalak capsule
with C = 1, αp = 0.05 and size a = 0.8 in a square microchannel. (a) Capsule y = 0 profile
(i.e. interface intersection with the plane x = 0) for Ca = 0, 0.1, 0.2, 0.3, 0.4, 0.5. (b) Capsule
x = 0 profile for Ca = 0, 0.1, 0.5. All profiles are shown with centroid xc = 0.
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FIG. 5.
Steady-state shape of a Skalak capsule with C = 1, αp = 0.05 and size a = 0.8 in a square
microchannel. Capillary number: (a) Ca = 0.1, and (b) Ca = 0.5.
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FIG. 6.
Steady-state capsule curvatures as a function of the capillary number Ca for a Skalak
capsule with C = 1 and αp = 0.05 in a square microchannel. (a) Curvature at the downstream
and upstream edges of the capsule (i.e. its intersections with the x-axis). The curvatures are
determined along capsule's y = 0 profile (i.e. the cross-section of the capsule surface with
the y = 0 plane). (b) Maximum curvature along the capsule's y = 0 profile. All curvatures are
scaled with the curvature of the undisturbed spherical shape. Capsules sizes a: ⋄, 0.6; ∘, 0.7;
◻, 0.8. Also included are the corresponding results for a capsule with size a = 0.8 in a
cylindrical tube (– – –).
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FIG. 7.
Steady-state capsule properties as a function of the capillary number Ca for a Skalak capsule
with C = 1, αp = 0.05 and size a = 0.6, 0.7, 0.8 in a square microchannel. (a) Surface area of

the capsule Sc at steady state (scaled with the surface area  of the undisturbed spherical

shape). (b) Maximum principal tension  among the spectral discretization points on the
membrane. Also included are the corresponding results for a capsule with size a = 0.8 in a
cylindrical tube (– – –).
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FIG. 8.
Steady-state capsule properties as a function of the capillary number Ca for a Skalak capsule
with C = 1, αp = 0.05 and size a = 0.6, 0.7, 0.8 in a square microchannel. (a) Capsule
velocity Ux. (b) Additional pressure difference ΔP+. (c) Minimum distance h between the
capsule surface and the channel's walls. Also included are the corresponding results for a
capsule with size a = 0.8 in a cylindrical tube (– – –).
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FIG. 9.
Steady-state capsule lengths as a function of the capillary number Ca for a Skalak capsule
with C = 1, αp = 0.05 and size a = 0.8, in a square channel ( ) and a cylindrical

tube (– – –). (a) Capsule lengths Lx/(2a) and Lz/(2a). (b) Capsule lengths  and .

Kuriakose and Dimitrakopoulos Page 33

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 10.
Steady-state capsule lengths as a function of the capsule's size a for a Skalak capsule with C
= 1, αp = 0.05 and capillary number Ca = 0.1, in a square channel ( ) and a

cylindrical tube (– – –). (a) Capsule lengths Lx/2 and Lz/2. (b) Capsule lengths  and .
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FIG. 11.
Steady-state profile of a Skalak capsule with C = 1, αp = 0.05 and capillary number Ca = 0.1
in a square channel. (a) Capsule y = 0 profile (i.e. interface intersection with the plane x = 0)
for size a = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. (b) As in (a) but for x = 0 profile. (c) Capsule y = 0
profile for size a = 0.9, 1, 1.1, 1.2, 1.3. (d As in (c) but for x = 0 profile. (e) Interface
intersection with the planes x = −1, −0.5, 0, 0.5, 1, 1.5 for size a = 1.3. All profiles are
shown with centroid xc = 0.
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FIG. 12.
Steady-state shape of a Skalak capsule with C = 1, αp = 0.05 and capillary number Ca = 0.1
in a square channel. Capsule's size: (a) a = 1.1, and (b) a = 1.3.
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FIG. 13.
Steady-state capsule curvatures as a function of the capsule's size a for a Skalak capsule with
C = 1, αp = 0.05 and capillary number Ca = 0.1, in a square channel ( ) and a
cylindrical tube (– – –). (a) Scaled curvature at the downstream and upstream edges of the
capsule (i.e. its intersections with the x-axis). The curvatures are determined along capsule's
y = 0 profile (i.e. the cross-section of the capsule surface with the y = 0 plane). (b) As in (a)
but for unscaled curvatures. (c) Maximum scaled curvature along the capsule's y = 0 profile.
In (a) and (c) the curvatures are scaled with the curvature of the undisturbed spherical shape.
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FIG. 14.
Steady-state capsule properties as a function of the capsule's size a for a Skalak capsule with
C = 1, αp = 0.05 and capillary number Ca = 0.1, in a square channel ( ) and a
cylindrical tube (– – –). (a) Surface area of the capsule at steady state Sc (scaled with the

surface area  of the undisturbed spherical shape). (b) Maximum principal tension 
among the spectral discretization points on the membrane.
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FIG. 15.
Steady-state capsule properties as a function of the capsule's size a for a Skalak capsule with
C = 1, αp = 0.05 and capillary number Ca = 0.1, in a square channel ( ) and a
cylindrical tube (– – –). (a) Capsule velocity Ux. (b) Additional pressure drop ΔP+. (c)
Minimum distance h between the capsule surface and the channel's walls.
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FIG. 16.
Scaling laws for a Skalak capsule with C = 1, αp = 0.05 and capillary number Ca = 0.1 in a
square channel at steady state. (a) Capsule length Lx − Lz/2. (b) Minimum distance h
between the capsule surface and the solid walls. (c) Capsule surface area Sc (scaled with the

surface area  undisturbed spherical shape). (d) Curvature at the downstream and upstream
edges of the capsule (scaled with the curvature of the undisturbed spherical shape).
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FIG. 17.
Scaling laws for a Skalak capsule with C = 1, αp = 0.05 and capillary number Ca = 0.1 in a
square channel at steady state. (a) Capsule velocity . (b) Capsule velocity .

(c) Additional pressure drop ΔP+. (d) Maximum principal tension  among the spectral
discretization points on the membrane.
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FIG. 18.
Scaling laws for a Skalak capsule with C = 1, αp = 0.05 and capillary number Ca = 0.1 in a
cylindrical tube at steady state. (a) Minimum distance h between the capsule surface and the
solid walls. (b) Capsule velocity . (c) Capsule velocity . (d) Additional

pressure drop ΔP+. (e) Maximum principal tension  among the spectral discretization
points on the membrane.
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TABLE 1

Scaling laws with respect to capsule size a for a Skalak capsule with C = 1, αp = 0.05 and capillary number Ca
= 0.1 in a square channel and a cylindrical tube at steady state. SDC is the curvature at the downstream edge
scaled with the curvature a−1 of the undisturbed spherical shape. (Similar scaling for small capsule sizes we
also found for the scaled downstream and maximum curvatures.) The length scale Ls is the channel's half-

height ℓz or the tube radius R and the pressure scale is .

Square Channel Cylindrical Tube

Property Small size a Large size a Small size a Large size a

Lx − Lz/2 a 1.25 a3 a 1.50 a3

Lz/2 = 1 − h a a

h 0.13 a−2 0.15 a−2

0.015 a4 0.019 a4

SDC − 1 0.73 a2 0.47 a3/4 0.80 a2 0.50 a3/4

(3.5/3) a2 (4.0/3) a2

0.27 a−2 0.20 a−2

ΔP+/Π 9.5 a5 ≈ 9.5 a5 16 a5 ≈ 16 a5

0.42 a2 0.95 a4 0.50 a2 1.30 a4
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