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Light is one of the most potent biologic forces fundamental 
to life on our planet. In the past decade, it has been shown that 
light is responsible for entraining or synchronizing normal 
circadian rhythms of physiology and metabolism in laboratory 
rodents, nonhuman primates, and humans primarily by means 
of intrinsically photoreceptive ganglion cells supplemented with 
input from rod and cone visual photoreceptors.1-3,5,6,10-15,29-31,

35-38,40-45,48,58,60-67,72,80-85,95 Changes in intensity, duration, and 
wavelength of environmental light at a given time of day can 
disrupt many chronobiologic rhythms.10,13-15,40,81,82 During the 
course of our previous investigations,7,19-22 we demonstrated 
that adherence to appropriate lighting and lighting protocols, 
as outlined in The Guide,46 is crucial to the health and wellbeing 
of laboratory animals and the outcomes of scientific investiga-
tions. We determined that a minimal light leak of as little as 0.2 lx 
(0.08 μW/cm2) intensity in animal rooms during an otherwise 
normal dark phase (12 h) was sufficient to disrupt circadian 
rhythms of plasma measures of endocrine physiology and 
metabolism in rats.19-21 These included disruptions in circadian 
patterns of plasma melatonin, total fatty acid, glucose, lactic 
acid, corticosterone, pO2, and CO2 levels. We further demon-
strated, by using a unique tissue-isolated human tumor model86 
and tumor perfusion technique,22 that light exposure at night 
suppresses the normal nighttime melatonin signal, thereby 

disrupting the circadian rhythm of the epidermal growth factor 
and insulin growth factor signaling pathways and leading to  
altered host metabolism and accelerated human cancer 
growth.7,8 These investigations furnished the first laboratory-
derived experimental evidence showing in humans that nocturnal 
light exposure, as occurs in the night-shift worker population, 
significantly increases the risk of breast cancer.24,39,90

Light detected by the retinal rod and cone photorecep-
tors of the eyes activates the neural pathway of the primary 
optic tract, leading to our sense of vision (that is, awareness 
of colors, brightness, shapes, and motion).11,37,60 Some of the 
most profound effects of light, however, function below the 
level of consciousness by means of the alternate neural path-
way of the retinohypothalamic tract.1,6,11,12,31,37,40,41,71 Subtle 
changes in light intensity, spectral transmittance, or wavelength 
(perceived as tint or color) and duration at a particular time 
of day can evoke marked chronobiologic rhythm alterations 
in all mammals.11,37,42,85 Common to all living organisms 
in their ability to respond to light is that all photobiologic 
responses, including circadian rhythms associated with me-
tabolism and physiology, are mediated by organic molecules 
(that is, chromophores), which absorb light quanta and then 
undergo physical–chemical changes in the process called 
‘phototransduction.’11,33 These photoactive molecules do not 
absorb energy equally across the electromagnetic spectrum but 
have their own unique patterns of wavelength sensitivity (that 
is, wavelength absorbance spectrum), which are dependent 
on the unique molecular structures within each photopigment 
complex. In the field of photobiology, one of the principal tools 
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Materials and Methods
Reagents. HPLC-grade chloroform, ethyl ether, methanol, 

glacial acetic acid, heptane, hexane, were purchased from Fisher 
Chemical (Pittsburgh, PA). Free fatty acid, cholesterol ester, 
triglyceride, phospholipid, rapeseed oil methyl ester standards 
and boron trifluoride–methanol, potassium chloride, sodium 
chloride, and perchloric and trichloroacetic acids were pur-
chased from Sigma Scientific (St Louis, MO). UltraPure water 
(catalog no. 400000) was purchased from Cayman Chemical 
(Ann Arbor, MI).

Animals, housing conditions, and diet. The female adult (age, 
3 to 4 wk), pigmented, homozygous, athymic, inbred nude rats 
(Hsd:RH-Foxn1rnu) used in this study were purchased from 
Harlan (Indianapolis, IN) and were certified by the vendor to 
be free of all known rodent bacterial, viral, and parasitic patho-
gens. Rats were maintained in an AAALAC-accredited facility 
in accordance with The Guide.46 All procedures for animal use 
were approved by the Tulane University IACUC.

Rats were maintained in cages containing hardwood maple 
bedding (catalog no. 7090, Sanichips, Harlan Teklad, Madison, 
WI; 2 bedding changes weekly). To ensure that all rats remained 
free from infection with bacterial and viral agents, serum sam-
ples from sentinel animals housed only on the combined soiled 
bedding from other study cages in the same housing unit were 
tested quarterly and during the course of this study by multiplex 
fluorescent immunoassays for rat coronavirus, Sendai virus, 
pneumonia virus of mice, sialodacryoadenitis virus, Kilham 
rat virus, Toolan H1 virus, reovirus type 3, Mycoplasma pulmoni, 
lymphocytic choriomeningitis virus, mouse adenoviruses 1 
and 2, Hantaan virus, Encephalitozoon cuniculi, cilia-associated 
respiratory bacillus, parvovirus NS1, rat parvoviruses, and 
rat murine virus, and rat theilovirus (IDEXX Research Animal 
Diagnostic Laboratory, Columbia, MO) as well as external 
and internal parasites. All blood samples analyzed during the 
course of this study tested negative for the listed bacterial and 
viral agents. Rats had free access to acidified water and food 
(Irradiated Laboratory Rodent Diet 5053, Purina, Richmond, 
IN), prepared in accordance with national standards.69 Quad-
ruplicate determinations of this diet contained (per 100 g) 4.1 g  
total fatty acid (TFA), composed of 0.03% myristic (C14:0), 
12.53% palmitic (C16:0), 0.22% palmitoleic (C16:1n7), 3.15% 
stearic (C18:0), 21.78% oleic (C18:1n9), 56.48% linoleic (C18:2n6), 
5.28% γ-linolenic, and 0.26% arachidonic (C20:4n6) acids. Minor 
amounts of other fatty acids comprised 0.27%. Conjugated 
linoleic acids and trans fatty acids were not present. More than 
90% of the TFA was in the form of triglycerides; more than 5% 
was in the form of free fatty acids.

Caging, lighting regimens, and spectral transmittance measure-
ments. After a 1-wk acclimation period, rats were randomized 
into 3 designated groups of 6 rats each (3 per cage) and placed in 
standard translucent laboratory rodent cages (10.5 in. × 19 in. × 8 
in.; wall thickness, 0.10 in.) that were either clear, amber, or blue 
in hue (Figure 1). Cages used in this study were purchased from 
Ancare (polycarbonate translucent clear: catalog no. R20PC; 
polysulfone translucent amber, catalog no. R20PLF; Bellmore, 
NY) or Lab Products (polycarbonate translucent blue: catalog 
no. 80778CC; Seaford, DE). Among the 3 cage types evaluated, 
the blue cages are in least common use today. Polycarbonate 
plastic is the most widely used laboratory animal caging 
material due to its temperature resistance, impact resistance, 
versatility, ease of cleaning, and low cost and is derived from 
rigid polymers of carbonate groups. Polysulfone plastic is used 
extensively in laboratory animal caging because of its versatility 
and ability to withstand higher temperatures in autoclaving 

for identifying the photopigment initiating these light-induced 
responses is the action spectrum, which is the relative response 
of an organism to different wavelengths of visible and nonvisible 
light.11,33 In humans and rodents, light quanta are detected by 
the short-wavelength–sensitive photopigment melanopsin that 
is contained within a small group of intrinsically photosensi-
tive retinal ganglion cells of the eye.6,40,41,57,76 This information 
then is transmitted via the retinohypothalamic tract to a central 
‘molecular clock’ residing in the suprachiasmatic nuclei (SCN) 
of the hypothalamus.65,84 The SCN, whose activity is entrained 
by the light:dark cycle,84 signals the pineal gland via a polys-
nynaptic pathway, which in turn drives a series of molecular 
events leading to the production of the pineal neurohormone 
melatonin (N-acetyl-5-methoxytryptamine) primarily at night-
time.81 The daily rhythmic melatonin signal contributes to the 
temporal coordination of many normal behavioral and physi-
ologic functions including the sleep–wake cycle,2,3,16,71 feeding 
behaviors,2,66,70,98 hormone levels,25,27,35,93 retinal physiology,5,6 
reproductive cycles,80,96 immune function,17,54,59 temperature 
regulation,2,16,60,95 electrolyte balance,77 protein synthesis,92 
redox states,77 and intermediary metabolism.50,99 The most pow-
erful wavelengths for circadian regulation of these responses in 
all mammals reside in the general spectral region between 450 
and 550 nm.13,14,74 However, longer wavelength light (above 
550 nm) of sufficiently high intensity and duration can acutely 
suppress melatonin and further phase-shift or entrain circadian 
rhythms.11,32,38,56,74,94

Prior research has illustrated that the spectral, irradiance, and 
illuminance characteristics of light can influence circadian, neu-
roendocrine, and neurobehavioral responses in different species 
of rodents housed in polycarbonate cages.10-12,14,15,19-22,37,66 These 
studies provided the basis for earlier recommendations for housing 
of animals in typical animal quarters (for example, those included 
in the 7th edition of The Guide47) as well as experimental animal 
facilities for spaceflight.18,68 Clearly, over the past 25 y, there have 
been significant advances in our understanding of light and its ef-
fects on mammals, particularly laboratory animals. Indeed, some of 
this earlier work11,37 led to the new recommendations for improved 
animal room lighting and lighting protocols in the more recent 8th 
edition of The Guide.46 The duration and wavelength of animal 
room lighting, key components of circadian regulation in all mam-
mals, have long been important considerations in animal facility 
lighting design. However, the effect of different standard labora-
tory animal cage colors (specifically, the principal wavelengths of 
visible and near-visible light they transmit to laboratory animals 
during the light phase) on the circadian regulation physiology and 
metabolism had not been examined previously.

The current study examined the hypothesis that the spec-
tral transmittance or quality (color) of light passing through 
standard laboratory rodent cages alters circadian melatonin 
production as well as the daily temporal coordination of normal 
metabolic and physiologic activities in female nude rats typi-
cally used in cancer research. Our basic approach was to house 
these rats in 1 of 3 types of standard rodent cages currently used 
in laboratory animal facilities worldwide. Caging differed in tint 
(that is, clear, amber, or blue), thereby exposing rats during the 
light-phase to different spectral transmittances of light, whereas 
intensity and duration of light exposure remained constant 
for all rats. We evaluated the rhythm of melatonin production 
as well as other chronobiologic rhythms of physiology and 
metabolism that are often altered in and may even underlie 
metabolic disorders such as glucose intolerance,52,55,99 insulin 
resistance,4,9,49,55,97 type II diabetes,52,55,99 and obesity78,79 as well 
as cardiovascular disease25,26,51 and cancer.7,8,19-21
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potential soap-film buildup and clouding; although the cages 
were not autoclaved, the procedure describe here resulted in 
thorough sanitation. Cages then were tested microbiologically 
by using a novaLUM luminometer (model no. 001, Charm 
Sciences, Lawrence, MA). All cages underwent 4 cleaning treat-
ments during the course of the study; the cleaning treatment 
did not introduce noticeable pitting, glazing, or cracking that 
might affect light transmittance. Cage light-intensity measure-
ments made daily over the 6-wk course of this study showed 
no variation as a result of the cleaning procedure.

Under current convention, during discussions of human 
and laboratory animal environments, the term ‘luminous flux’ 
(lux) is used to indicate the amount of light falling on a surface 
that stimulates the mammalian eye during daytime (that is, the 
perceived brightness to the eye; photometric values). Measures 
of lux are appropriate for human daytime vision but are inap-
propriate for quantifying light stimuli that regulates circadian, 
neuroendocrine, or neurobehavioral physiology in animals or 
humans.11,12,56 Consequently, we measured the radiometric 
values of irradiance (in μW/cm2) in the cages by using the same 
equipment and system as used in the animal quarters. Accord-
ing to these standards, the light stimuli in the investigation we 
report here are presented in terms of lux and μW/cm2 for ease 
of understanding.

Measures of spectral transmittance through cages were taken 
in a windowless room (17.5 ft × 13.5 ft) that was illuminated by 
3 lighting fixtures (2 ft × 4 ft) each containing 4 32-W, 48-in. T8, 
fluorescent lamps (color temperature, 3500 K; Osram Sylvania, 
Westfield, IN) behind clear, prismatic acrylic diffusers. The 
test room measured near-identical luminosity and irradiance 
lighting conditions to those of the animal room with identical 
cool-white fluorescent full-spectrum lighting and without rats 
in the cages at the time of testing. Correlated color temperature 
(in degrees Kelvin), a measure of the color appearance of light 
transmitted into the cages as it relates to temperature (in de-
grees Kelvin) and photon flux (photons/cm2/s), a measure of 
light photons landing on a given area (cm2),45 were measured 
by using a chromometer (model CL-200A, Konica-Minolta, 
Tokyo, Japan). Spectral transmittances were quantified by using 
a handheld spectroradiometer (FieldSpec, ASD, Boulder, CO). 
The 3 cage types (clear, amber, and blue) were held in place, 
upside-down, covering the cosine receptor foreoptic attachment 
used for irradiance measurements. The optical sensor on the 
meter was centered inside each cage and oriented in each of 4 
horizontal directions of the room while spectral power meas-
urements were recorded. In addition, the sensor was directed 
upward, directly toward the overhead fluorescent lamps light-
ing the room, at a distance of 1.4 m to the light source. Spectral 
power distributions were recorded when the meter was pointing 
directly at the overhead fluorescent lighting source, which was 
the most stable measurements among the 5taken for each cage 
and, therefore, was used for comparison between cages.

Pearson correlations were performed to determine similari-
ties and differences of the spectral power distributions between 
cages. By using irradiance measures, the correlation coefficient 
of the spectral power distributions from 380 to 760 nm was de-
termined. As a more detailed method of analysis, the spectral 
power distribution was divided into 100 bins (each bin equaled 
1 nm; that is, from 400 to 500 nm), and Pearson correlations were 
determined between cage conditions and then combined with 
initial measurements.

Arterial blood collection. After being exposed for 2 wk to 
the described lighting regimens, rats underwent a series of 
6 low-volume blood draws via cardiocentesis to collect left 

(above 131 °C), alkalies, and acids and is made from polymers 
of repeating polysulfone group (with aryl-SO2-aryl subunits).29 
All cages were maintained with identical stainless steel lids 
(catalog no. 10SS, Ancare) for cradling food and water and 
were covered by polysulfone translucent clear microfilter tops 
(catalog no. N10MBT, Ancare). The SPF rats were maintained in 
environmentally controlled rooms (25 °C; 50% to 55% humidity) 
with diurnal lighting on a 12:12-h light:dark cycle (lights on, 
0600). Animal rooms were lighted with a series of 3 overhead 
ballast–lamp systems each containing 4 cool-white fluorescent 
lamps (catalog no. F32T8TL741, Alto Collection, 32 W, Philips 
Somerset, NJ); animal rooms were completely devoid of light 
contamination during the dark phase.19-21 Daily during the 
course of the current experiment, the animal room was moni-
tored for normal light-phase lighting intensity (spectral power 
distribution) at 1 m above the floor in the center of the room (at 
rodent eye level) and outside, from within, and at the front of 
the animal cages by using a radiometer–photometer (model no. 
IL1400A) and radiance detector (model no. SEL033; using F filter 
no. 23104 and W diffuser no. 6849), all from International Light 
Technologies (Peabody, MA); these instruments were calibrated 
regularly during the course of this study. Each day and at the 
same time (0800), prior to light intensity measurements for that 
day, all cages on the rack shelf were rotated one position to the 
right (placed at an identical, premeasured distance apart) in the 
same horizontal plane; the cage at position 6 (last position at far 
right on the shelf) was moved to position 1 (first position at far 
left on the shelf). Although there were no significant differences 
in light intensity, as measured outside of and from within at the 
front of each cage at each of the 6 positions, the daily cage shift 
further ensured uniformity of intensity of ocular light exposure 
and accounted for the effects of any unforeseen subtle differ-
ences due to position on the rack shelf.

To minimize the potentially confounding effects of cage cloud-
ing or aging due to cage cleaning during the course of this study, 
only new cages were used. Cages were cleaned and sanitized 
by using a cage and rack washer–disinfector system (model no. 
GEW 112222, Getinge, Rochester, NY) with a high-detergency, 
low-alkaline compound (catalog no. 18030F, Pharmacal, Nauga-
tauk, CT) and a phosphoric acid washing detergent (catalog no. 
08430F, Pharmacal) followed by sufficient fresh-water rinsing 
at 82 °C (180 °F) for 3 min (total cycle time, 30 min) to reduce 

Figure 1. Photoimage showing the standard polycarbonate translu-
cent clear (left), polysulfone amber (center), and polycarbonate blue 
(right) rat cages. All animal cages had the same dimensions (19 in. × 
10.5 in. × 8 in.; wall thickness, 0.1 in.) and were autoclavable to 121 °C.
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(model no. 2380, Supelco, Bellefonte, PA) at 190 °C, with helium 
as the carrier gas (linear rate, 20 cm/s; split, 100:1). The injection 
port and detector were adjusted to 220 °C. All methyl esters were 
identified on the basis of their retention time, compared with 
that of known standards. The minimal detectable limit for the 
assay was 0.05 μg/mL.

ELISA of corticosterone, insulin, and leptin. Arterial plasma 
samples were prepared in duplicate for the measurement of 
corticosterone, insulin, and leptin levels by using corticosterone 
(catalog no. 55-CORMS-E01, mouse–rat, ALPCO, Salem, NH), 
insulin (catalog no. 80-INSRTH-E01, rat, high-range, ALPCO), 
and leptin (catalog no. 22-LEPMS-E01, mouse–rat, ALPCO) 
chemiluminescent ELISA diagnostic kits. Samples were meas-
ured at 450 nM on a microplate reader (VersaMax, Molecular 
Devices, Sunnyvale, CA). Detection sensitivity for corticoster-
one, insulin, and leptin plasma analyses were 4.5 ng/mL, 0.124 
ng/mL, and 10 pg/mL, respectively; lower limits of the assays 
were 15 ng/mL, 0.15 ng/mL, and 10 pg/mL, respectively; and 
coefficients of variation for all assays were less than 4.0%.

Statistical analysis. Unless otherwise noted, all data are pre-
sented as mean ± 1 SD (n = 6 per group) and were compared by 
using one-way ANOVA followed by the Bonferroni multiple-
comparison test to evaluate differences (Prism, GraphPad 
Software, La Jolla, CA). Differences among group means were 
considered statistically significant at a P level of less than 
0.05.

Results
Measurement of animal room illumination and spectral trans-

mittance through caging. Daytime animal room illumination 
(mean ± 1 SD; n = 90 measurements) at the center of the room 
and at 1 m above the floor (radiance detector facing upward to-
ward light ballasts) had relatively little variance and was 421.63 
± 4.17 lx (172.87 ± 1.71 μW/cm2). Measurements of photometric 
illuminance (lux) and radiometric irradiance (μW/cm2) from 
outside and inside the front of each cage type, made daily as 
cages were shifted left-to-right at the same level on the caging 
racks, showed little to no intercage variability, and the mean 
values were 131.59 ± 4.17 lx (53.95 ± 1.71 μW/cm2 outside and 
at the front of the cage and 91.98 ± 5.31 lx (37.71 ± 2.18 μW/cm2) 
inside at the front of the cage. Spectral power distributions of 
light measured through the wall of each cage type (Figure 2) 
were typical of this fluorescent lamp type, with signature peaks 
in the appropriate wavelengths. Differences in the amplitude 
of these peaks are apparent between cage types. Blue cages 
contained the highest peak amplitude (3% higher than clear 
and 16% higher than amber cages, respectively), and the amber 
cage displayed the lowest peak amplitude (8% lower than the 
clear cage) in the short-wavelength (400 to 550 nm) segments. 
As expected, in long-wavelength (550 to 700 nm) ranges, peak 
amplitude shifted, with clear and amber cages demonstrating 
larger peak amplitudes (10% and 14%, respectively) compared 
with that of blue cages in peaks over 550 nm. The Pearson cor-
relation coefficient between cage conditions did not demonstrate 
a significant difference based on linearity of the curves. Several 
significant (P < 0.05) differences in peak amplitude between cage 
types are apparent, with blue cages displaying larger peak am-
plitudes in the short-wavelength portions of the human visible 
spectrum (390 to 550 nm) and amber and clear cages displaying 
larger peak amplitudes in the long-wavelength areas (550 to 
700 nm), as expected.

Table 1 presents the measured interior radiometric and pho-
tometric values of the clear, blue, and amber cages used in this 
study. The measured correlated color temperature of the fluo-

ventricular arterial blood7,8,19-21,88 over a period of 30 d. Briefly, 
blood collections on all rats in each group (n = 6 per group) were 
designated at 4-h intervals (that is, at 0400, 0800, 1200, 1600, 
2000, and 2400) to cover the 24-h feeding period. For example, 
all rats in all 3 groups were tested at 0400; sampling for the 
next time point (that is, 0800) was 5 d later. Accordingly, each 
rat was tested only once every 5 d to eliminate the effects on 
feeding, stress and potential mortality, for a combined total of 
108 whole blood samples (that is, 6 rats per group × 3 groups 
× 6 time points per rat). Each rat was lightly anesthetized by 
using CO2 inhalation by placement for 10 to 15 s into an acrylic 
gas anesthetizing chamber (10 in. × 8 in. × 8 in.; catalog no. AB2, 
Braintree Scientific, Braintree, MA), through which CO2 and air 
were passed to approximate a 70% CO2:30% air environment. At 
the first sign of unconsciousness (that is, loss of righting reflex) 
and while spontaneously breathing, the rat was removed from 
the chamber in preparation for cardiocentesis and placed in 
supine position to breath room air unassisted; 1-mL samples 
(less than 5% total blood volume) were taken from the left 
ventricle by cardiocentesis via tuberculin syringe (25-gauge, 
3/8 in.; Becton-Dickinson, Franklin Lakes, NJ) moistened with 
sodium heparin (1000 U/mL; Elkin-Sinn, Cherry Hill, NJ).20,21 
Blood sampling during the dark-phase (that is, 2000, 2400, and 
0400) was performed under a safelight red lamp (120 V, 15 W, 
model B, catalog no. 152 1517, Kodak, Rochester, NY) to preserve 
the nocturnal melatonin surge.7,8,13,14,44,64 Exposure at the red 
lamp at rat eye level during the 45-s cardiocentesis procedure 
was no greater than 0.48 ± 0.01 lx (1.16 ± 0.04 μW/cm2). The 
investigators have more 35 y experience in using this institu-
tional IACUC-approved cardiocentesis technique. There were 
no complications (such as moribundity and morbidity) due to 
anesthesia or cardiocentesis during the course of the investiga-
tion, and rats were active immediately after the procedure.

Arterial blood glucose, lactate, and acid–gas measurements. At 
the time of each cardiocentesis time point sampling, a portion of 
the whole blood collected (95 µL) was taken for measurement of 
pH, pO2, pCO2, glucose, and lactate levels by using an iSTAT1 An-
alyzer and CG4+ and CG8+ cartridges (Abbott Laboratories, East  
Windsor, NJ). Minimal detection levels for pH, pO2, pCO2, 
glucose and lactate values were 0.01, 0.1 mm Hg, 0.1 mm Hg, 
0.2 mg/dL, and 0.01 mmol/L, respectively. After these meas-
urements, all remaining whole-blood samples were centrifuged 
at 12,000 × g for 10 min at 4 °C (model Micro17R, accuSpin 
centrifuge, Fisher Scientific, Fair Lawn, NJ) for plasma collec-
tion. Plasma samples were stored at −20 °C until assayed for 
melatonin, corticosterone, insulin, leptin, and total fatty acids.

Melatonin analysis. Arterial plasma melatonin levels were 
measured by using a 125I-melatonin rat radioimmunoassay 
kit (catalog no. BA 3500, Labor Diagnostika Nord, Nordham, 
Germany) and analyzed by using an automated gamma counter 
(model Cobra 5005, Hewlett Packard, Palo Alto, CA).20,21 The 
minimal detection level for the assay was 1 to 2 pg melatonin 
per milliliter of plasma.

Fatty acid extraction and analysis. Arterial plasma free fatty 
acids, triglycerides, phospholipids, and cholesterol esters were 
extracted from 0.1-mL samples, as previously described.8,9,19-23,88,89 
Prior to extraction, heptadecanoic acid (100 µg) that had been 
dissolved in chloroform (Fisher Scientific) was used as an in-
ternal standard. Methyl esters of fatty acids were analyzed by 
using a gas chromatograph (model 5890A, Hewlett Packard) fit-
ted with a flame ionization detector (model no. 7673A, Hewlett 
Packard), autoinjector (model no. 7673S, Hewlett Packard), and 
integrator (model no. 3396A, Hewlett Packard). All separations 
were completed by using a 0.25-mm × 30-m capillary column 
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(1600) were significantly (P < 0.001) less than those during the 
dark phase (0400) for all 3 groups, with peak values (at 0400) 
significantly (P < 0.05) different for groups in amber and blue 
cages compared with clear cages (that is, clear > amber > blue). 
In addition, calculated total TFA assessed over the 24-h day 
(Figure 4) were significantly (P < 0.05) different from one another 
at 29.1 mg/mL (clear cages), 26.7 mg/mL (amber cages), and 
25.1 mg/mL (blue cages).

Arterial blood glucose, lactate and acid-gas levels. Figure 5 
depicts daily rhythms in levels of arterial blood glucose, lactate, 
pO2, and pCO2 in female nude rats from all groups. Phase shifts 
were determined by comparing peak values (acrophases) of 
rats in amber and blue cages with those of rats in clear cages. A 
‘phase-advance’ was defined as a shift in a group peak level to an 
earlier time (that is, from 1200 to 0800) as compared with values 
from rats in clear cages, whereas a ‘phase-delay’ was defined 
as a shift in a group to a later time (that is, from 0400 to 0800). 
Daily rhythms for arterial glucose and lactate concentrations 
of rats in amber and clear cages (Figure 5 A and B) followed 
near-identical patterns and demonstrated 2 peaks, one occurring 
at the middle of the light phase (1200) and the other occurring 
early during the dark phase (2000). Major peaks in both blood 
glucose and lactate levels for rats in blue cages occurred at 
0800 and appeared to be phase-advanced by 4 h as compared 
with those for rats in clear cages, followed by a minor peak at 
2000, which was coincident with the second glucose and lactate 
peaks for rats in clear cages. Total calculated areas under the 
glucose curves over the 24-h day were lowest for group B, as 
compared with groups A and C (P < 0.05). Average mean blood 
glucose concentrations calculated over the 24-h day were 165.3 
± 1.7 mg/dL for rats in clear cages, 155.3 ± 2.2 mg/dL in amber 
cages, and 138.3 ± 1.9 mg/dL in blue cages. Calculated average 
mean daily arterial lactate assessed over the 24-h day was lowest  
(P < 0.05) for rats in blue cages (1.14 ± 0.04 mmol/L) compared 
with that in rats in amber (1.25 ± 0.05 mmol/L) or clear (1.25 ± 
0.03 mmol/L) cages.

Daily rhythms in arterial pO2 (Figure 5 C) were nearly identi-
cal for rats in amber and clear cages, with peak values occurring 
late in the light phase (1600) and lowest values at the middle 
of the dark phase (2400). Compared with those is clear cages, 
rats in blue cages showed an apparent 8-h phase-advance of 
the major peak at 0800, which was followed by a second mi-
nor pO2 peak at 2000 that seemed to be phase-delayed by 4-h 
compared with the 1600 peaks in the groups in amber and clear 
cages. Calculated average mean daily arterial pO2 values over 
the 24-h day (Figure 1 C) were not significantly different from 
one another (overall mean, 153.0 ± 1.7 mm Hg; n = 108 meas-
urements). Daily rhythms for arterial pCO2 (Figure 5 D) were 
nearly identical for rats in amber and clear cages, with a major 
peak value occurring during the light phase at 0800 followed 
by a minor peak at 2000. In contrast, rats in blue cages evinced a 
major peak at 1600 that appeared to be 8 h phase-delayed from 
that of those in amber cages and a secondary peak at 2400 that 
was 4 h phase-delayed relative to the secondary peak in those 
in clear cages. Total daily mean arterial pCO2 values were sig-

rescent lamps in the room was 3250 K; there were no significant 
differences between the correlated color temperatures for the 
room and those for the rats in each type of cage; in addition, 
cage group measurements were not significantly different from 
one another. The recorded irradiance (µW/cm2), illuminance 
(lux), and photon density values revealed minimal differences 
in light transmittance depending on the color of the cage. Four 
peak irradiance values correlating to the mercury and phosphor 
emissions that are typical to this type of fluorescent light source45 
were chosen for a comparison of peak amplitudes between cages 
(Table 2). Blue-tinted cages revealed maximal irradiance value 
differences nearer the blue portion of the visible spectrum (480 
nm) compared with those for amber (18.1%) and clear (–6.7%) 
cages; amber-tinted cages (A) showed maximal irradiance value 
differences nearer the yellow portion of the visible spectrum (532 
nm) compared with those for blue (9.6%) and clear (–3.0%) cages.

Food and water intakes and growth rates. There were no 
significant differences in food or water intake or body growth 
rate among the various caging groups during the course of 
this study. Daily food intake was 8.39 ± 0.86 g per 100 g body 
weight, daily water intake was 12.30 ± 2.01 mL per 100 g body 
weight daily, and daily weight gain was 2.20 ± 0.40 g (n = 33 
measurements per group).

Plasma melatonin values. Diurnal rhythms in concentrations 
of plasma melatonin for animals in groups A through C are 
shown in Figure 3. Daily rhythms in plasma melatonin were 
similar for all groups: low during daytime (< 10 pg/mL), sig-
nificantly (P < 0.001) higher during the dark-phase (with peak 
levels occurring between 2400 and 0400), and decreasing to a 
nadir between 1200 and 1600 h. Peak dark-phase melatonin 
levels for rats in blue cages were nearly 4-fold higher (P < 0.05) 
than those of rats in amber cages and nearly 7-fold higher (P < 
0.001) than those for rats in clear cages. The dark-phase peak 
melatonin levels of rats in amber cages were nearly 2-fold higher 
(P < 0.05) than those of rats in clear cages. There were no dif-
ferences in either the phase (for example, timing) or duration 
of the nocturnal melatonin signal among the 3 groups of rats. 
The integrated mean levels of melatonin over the 24-h period 
for rats in blue cages were nearly 3-fold higher (P < 0.05) than 
those of rats in amber cages and nearly 5-fold higher (P < 0.05) 
than those of rats in clear cages; integrated mean levels for rats 
in amber cages were 1.3-fold higher (P < 0.05) than those of rats 
in clear cages.

Arterial plasma TFA. The diurnal rhythms in concentrations 
of arterial blood plasma TFA with free access to food were 
measured in the female nude rats (Figure 4). The plasma lipid 
levels followed that of the normal feeding pattern, as reported 
earlier.21,87,88 Plasma TFA measured during the light phase 

Figure 2. Measurements of spectral transmittance through standard 
polycarbonate translucent clear, polysulfone amber, and polycar-
bonate blue animal cages.

Table 1. Radiometric and photometric values inside the translucent 
clear, amber, and blue cages

Clear Amber Blue

Irradiance (µW/cm2) 84 80 74

Photon flux (×1015 photons/cm2/s) 1.20 1.12 1.17

Illuminance (lx) 238 238 216
Correlated color temperature (K) 3250 3142 3484
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in amber cages, and 455.5 ± 5.0 ng/mL (1321.0 ±14.5 nmol/L) for 
those in blue cages.

Plasma concentrations of insulin (Figure 6 B) showed clear 
differences among groups with regard to daily rhythms and 
integrative levels. Values for arterial plasma insulin in rats in 
clear cages increased to highest levels 2 h after onset of the light-
phase (0800), with a secondary minor peak prior to onset of the 
dark phase (1600) and lowest levels throughout the late light 
and early dark phases (1600 to 2400). Rats in amber and blue 
cages showed steadily increasing insulin levels from the onset of 
the dark phase, with an 8-h phase-advanced peak level at 2400 
in amber cages and a 4-h phase-advanced peak at 0400 in blue 
cages. The duration of peak insulin levels was greater in rats in 
blue than clear cages. Insulin levels rapidly declined over a 4-h 
interval from their peak at 0800 to their lowest levels at 1200 in 
rats in clear cages, whereas rats in amber cages experienced a 
gradual decline in insulin levels over 20 h from their peak at 2400 
to their lowest levels, at 2000. Integrated mean plasma insulin 
concentrations calculated over the 24-h day were significantly 
(P < 0.05) different from one another at 9.13 ± 0.06 ng/mL for 
rats in clear cages, 10.70 ± 0.08 ng/mL for those in amber cages, 
and 11.96 ± 0.09 ng/mL for those in blue cages.

Like insulin, plasma concentrations of leptin (Figure 6 C) 
revealed clear differences among groups with regard to diurnal 
rhythms and integrative levels. Arterial plasma leptin levels 
peaked sharply at middark phase (2400) in rats in both blue 

nificantly (P < 0.05) lower in rats in blue compared with amber 
and clear cages. Calculated average mean daily arterial pCO2 
assessed over the 24-h day (Figure 5 D) were not significantly 
different from one another (overall mean, 30.9 ± 0.1 mm Hg; 
n = 108 measurements).

Arterial blood pH, O2 saturation, and hematocrit were rela-
tively constant for all groups over the 24-h day at 7.425 ± 0.071, 
99.1 ± 0.01%, and 45.11 ± 0.05 (n = 108 each), respectively. These 
values are consistent with carotid arterial values for blood acid–
gases determined during previous cardiocentesis investigations 
at this time of day.20,21

Arterial plasma corticosterone, insulin, and leptin concentra-
tions. Plasma corticosterone levels revealed clear differences 
among all groups of rats with regard to integrative concentrations 
(Figure 6). Values for arterial plasma corticosterone in all groups 
increased (P < 0.05) at the end of the light-phase with peak levels 
occurring at 1600 (blue > amber > clear; P < 0.05) that eventually 
decreased to a nadir at middark phase (2400). A second, but lower-
amplitude, peak occurred near the end of the dark phase (0400) 
in rats in both amber and blue cages (clear > amber > blue; 
P < 0.05), decreasing to a nadir at 0800 (P < 0.05), whereas a 
second, higher-amplitude, peak occurred at 0400 in rats in clear 
cages. Integrated mean plasma corticosterone concentrations 
calculated over the 24-h day were significantly (P < 0.05) different 
from one another at 344.0 ± 2.0 ng/mL (997.6 ± 5.8 nmol/L) for 
rats in clear cages, 422.1 ± 2.0 ng/mL (1224.1 nmol/L) for those 

Table 2. Irradiance (μW/m2) and differences (%) between peak wavelengths.

Peaks Cage color 424 nm 480 nm (blue) 532 nm (amber) 605 nm

Irradiance Clear 0.0171 0.0166 0.0649 0.0691
Blue 0.0181 0.0177 0.0669 0.0633
Amber 0.0131 0.0145 0.0605 0.0667

Difference between peaks Clear vs blue −5.9 −6.7 −3.0 8.4
Clear vs amber 23.0 12.6 6.9 3.4
Blue vs amber 27.3 18.1 9.6 −5.4

Figure 3. Diurnal plasma melatonin levels (pg/mL; mean ± 1 SD) of 
female nude rats (n = 6 per group) maintained for 6 wk in a controlled 
12:12-h light:dark cycle (300 lx; 123 µW/cm2; lights on, 0600) in either 
standard polycarbonate translucent clear (black circles), polysulfone 
amber (amber squares), or polycarbonate blue (blue triangles) rodent 
cages. Rats were exposed to dark-phase lighting cycles from 1800 to 
0600 h (dark bars). Data from 2 replicate experiments are shown. *, 
Value is significantly (P < 0.05) different from nonmarked values of 
the same group.

Figure 4. Diurnal changes in the blood plasma lipid concentrations 
in the arterial blood of adult female nude rats fed normal chow ad 
libitum and maintained in standard polycarbonate translucent clear 
(black circles), polysulfone amber (amber squares), or polycarbonate 
blue (blue triangles) rodent cages. Rats were exposed to dark-phase 
lighting cycles from 1800 to 0600 (dark bars). The plasma total fatty 
acid value (µg/mL; mean ± 1 SD; n = 6 per group) at each time point 
was the sum of myristic, palmitic, palmitoleic, stearic, oleic, linoleic, 
and arachidonic acids. Data from 2 replicate experiments are shown. 
*, Value is significantly (P < 0.05) different from nonmarked values of 
the same group.
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in extreme disorganization of overall whole-body physiology 
and metabolism. As outlined in The Guide,46 appropriate light 
and lighting cycles are essential for maintaining the health and 
wellbeing of laboratory animals used in scientific investigations, 
and the results of animal experiments often are extrapolated to 
the realm of human biology to explain mechanisms of physiol-
ogy and disease. Therefore, elucidating and understanding the 
effects of the spectral transmittance of light through standard 
but differently colored laboratory cages on the physiology and 
metabolism in laboratory animals is crucial.

The radiometric and photometric data that we provide here 
illustrate that the photic environments within the 3 cage types 
investigated were significantly different from one another 
only in spectral transmittance of light (color) passing into the 
cage. Irradiance, photon flux, illuminance, and correlated color 
temperature values were similar among the 3 cage groups. Rats 
housed in either polycarbonate clear, polysulfone amber-tinted, 
or polycarbonate blue-tinted standard laboratory cages were 
maintained in an environment where both the intensity and 
duration of lighting remained constant during the light-phase. 
We tested the hypothesis that daily rhythms of arterial blood 
melatonin, TFAs, glucose, lactic acid, acid–gases, corticosterone, 
insulin, and leptin concentrations are differentially altered in 

and clear cages, whereas rats in amber cages showed a much 
lower peak at this same time point. Nadirs in blood leptin 
concentrations occurred at 0400 in clear cages and at 0800 in 
amber and blue cages. Rats in blue cages had second similar, 
albeit broader, peak amplitude in leptin levels 12 h later, at the 
midlight phase (1200), whereas a higher amplitude secondary 
peak occurred at this time point in rats in amber cages. The 
secondary peak was significantly (P < 0.05) higher in rats in 
blue cages compared with amber and clear. Integrated mean 
plasma leptin concentrations calculated over the 24-h day were 
significantly (P < 0.05) different, at 2.89 ± 0.46 ng/mL for rats 
in clear cages, 2.25 ± 0.26 ng/mL for those in amber cages, and 
3.60 ± 0.40 ng/mL for those in blue cages.

Discussion
The profound effects of light on mammalian circadian 

behavioral, physiologic, and metabolic processes are well 
established.7,11,20,28,36 Indeed, in all vertebrates, these processes 
are under control of the SCN, the master biologic clock, which 
itself is entrained by regular alterations in light–dark cycles and 
the daily melatonin signal. In the absence of signals from the 
SCN, circadian rhythms of cellular physiology and metabolism in 
peripheral tissues become disrupted or decoupled, culminating 

Figure 5. Diurnal changes in arterial (A) blood glucose (mg/dL; mean ± 1 SD), (B) lactate (mmol/L; mean ± 1 SD), (C) pO2 (mm Hg; mean ± 1 SD), 
and (D) pCO2 (mm Hg; mean ± 1 SD) of female nude rats (n = 6 per group) maintained in either standard polycarbonate translucent clear (black 
circles), polysulfone amber (amber squares), or polycarbonate blue (blue triangles) rodent cages, fed normal chow ad libitum, and exposed to 
dark-phase lighting cycles from 1800 to 0600 (dark bars). Data from 2 replicate experiments are shown. *, Value is significantly (P < 0.05) different 
from nonmarked values of the same group.
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pigmented nude rats exposed to either light in cages that trans-
mit more amber-appearing (550 to 580 nm) or blue-appearing 
(450 to 480 nm) light as compared with those of rats that received 
the broad spectrum of visible light (390 to 550 nm) transmitted 
through clear cages during the light phase. With the exception 
of the circadian rhythm in blood TFA levels, all physiologic 
and metabolic rhythms were significantly changed in response 
to exposures of altered spectral transmittances of light (for 
example, amber and blue) that differed from the transmittance 
of broad-spectrum light during the light-phase of a 12:12-h 
light:dark cycle. Depending on the circulating factor measured, 
these alterations included changes in rhythm amplitude, phas-
ing (for example, timing), or duration or combinations of these 
rhythm characteristics. These altered rhythms, however, appear 
to be independent from the SCN-generated rhythms in dietary 
intake of TFA (discussed later).

In the case of melatonin, there were no alterations in either the 
timing or duration of the nocturnal circadian plasma melatonin 
signal among rats housed in the 3 different cage types. How-
ever, amplitudes in the melatonin signal varied markedly; the 
amplitude of nocturnal plasma melatonin in rats housed in blue-
tinted cages was nearly 7-fold higher than for rats housed in 
clear cages, which we used in previous studies.7,8,19-23,87-89 To our 
knowledge, this current study is the first in which exposure of 
a rodent species to a spectral transmittance of light enhanced in 
the 450- to 480-nm range during the light phase has been shown 
to markedly augment the amplitude of the melatonin signal 
during the subsequent dark phase. A similar finding has been 
reported for pineal levels of melatonin in male rats: melatonin 
production during the dark phase was higher in rats exposed 
to natural bright sunlight during the day (for example, 13 h) as 
compared with the light emitted by cool white fluorescent lamps 
in a windowless room for the same day length.53 In addition to 
the much greater irradiance provided by natural sunlight, we 
speculate that the predominance of blue wavelengths in natural 
sunlight contributed to enhancement of nocturnal melatonin 
production. The physiology by which either the wavelength or 
intensity (or both) of light during the light phase induced more 
robust melatonin production during the subsequent dark phase 
of a 24-h day is unknown.

Although a very slight attenuation in the nocturnal amplitude 
of the plasma TFA rhythm occurred at the end of the dark phase 
(0400) in rats in amber and blue cages compared with clear 
cages in the current study, the overall pattern of this circadian 
rhythm, which is dependent on the SCN-driven feeding activ-
ity, was virtually identical among these 3 groups in previous 
studies.20,21,87-89 In the present study, dietary and water intake 
appear to be in good agreement with that determined for 
healthy, young female Hsd:RH-Foxn1rnu nude rats in previous 
studies.7,20,21

The phasing, amplitudes, and durations of the daily oscil-
lations in arterial plasma glucose and lactate concentrations 
(Figure 5) and arterial pO2 and pCO2 in rats housed in polysul-
fone amber-tinted cages closely matched those in observed in 
animals maintained in polycarbonate clear cages. In the rats 
housed in polycarbonate blue-tinted cages, both the glucose 
and lactate rhythms were phased-advanced by 4 h as compared 
with that in clear cages. In addition, the overall 24-h integrated 
levels of glucose and lactate levels were lower in blue cages, as 
compared with amber and clear cages.

Increased corticosterone levels have long been associated with 
a number of stressors, including anxiety, fear, pain, hemorrhage, 
infections, low blood glucose, and starvation.25,34,35,50,70,93 This 
potent glucocorticoid acts on important metabolic tissues such 

Figure 6. Diurnal changes in plasma (A) corticosterone (ng/mL), (B) 
insulin (ng/mL), and (C) leptin (pg/mL; mean ± 1 SD; n = 6 per group) 
in the arterial blood of female nude rats maintained in either stand-
ard polycarbonate translucent clear (black circles), polysulfone amber 
(amber squares), or polycarbonate blue (blue triangles) rodent cages. 
Rats were exposed to dark-phase lighting cycles from 1800 to 0600 
(dark bars). Data from 2 replicate experiments are shown. *, Value is 
significantly (P < 0.05) different from nonmarked values of the same 
group.
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evoke the biologic changes found in the current study. Our 
study provides compelling evidence that animals maintained in 
standard laboratory cages differing only in the spectral transmit-
tance or quality of light (color) passing through the cage to the 
animal, compared with animals maintained in translucent clear 
cages exposed to the broad visual spectrum of light, develop 
chronobiologic disruptions in plasma measures of endocrine 
metabolism and physiology. Certainly an important consid-
eration for researchers in the development of future protocols 
and scientific publications, as well as subsequent editions of 
The Guide, may well be the basic laboratory animal cage type. 
We believe that the findings presented here make an important 
contribution to our understanding regarding the influence of 
the spectral quality of light during scientific investigations on 
mammalian circadian rhythms of metabolism and physiology 
and may encourage improved future laboratory animal facility 
and cage design.
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