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ABSTRACT

Summary: Many high-throughput sequencing experiments produce

paired DNA reads. Paired-end DNA reads provide extra positional in-

formation that is useful in reliable mapping of short reads to a refer-

ence genome, as well as in downstream analyses of structural

variations. Given the importance of paired-end alignments, it is sur-

prising that there have been no previous publications focusing on this

topic. In this article, we present a new probabilistic framework to pre-

dict the alignment of paired-end reads to a reference genome. Using

both simulated and real data, we compare the performance of our

method with six other read-mapping tools that provide a paired-end

option. We show that our method provides a good combination of

accuracy, error rate and computation time, especially in more challen-

ging and practical cases, such as when the reference genome is in-

complete or unavailable for the sample, or when there are large

variations between the reference genome and the source of the

reads. An open-source implementation of our method is available as

part of Last, a multi-purpose alignment program freely available at

http://last.cbrc.jp.

Contact: martin@cbrc.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Many high-throughput sequencers provide a paired-end option,

in which each of the two opposite strands of a DNA fragment is
read from the edge to the interior in the 50–30 direction, generat-

ing a pair of reads. Paired-end reads can be obtained by a simple

modification to the standard single-end workflow; yet, they pro-

vide several benefits over single-end reads. They contain extra
positional information that aids in accurate mapping of reads to

a reference, for instance, by disambiguating alignments when one

of the ends aligns to a repetitive region. They are also extremely

useful in downstream analyses of structural variations, such as

detection of indels or rearrangements. In this article, we focus on
the former: the task of mapping a set of paired-end reads to a

reference genome, which is often the first and fundamental step

in inferring biological phenomena from high-throughput sequen-

cing data. To motivate our work, we compare in Figure 1 the
results of mapping 1 million pairs of simulated human reads to

the human reference using various alignment tools in their

paired-end and single-end modes. For nearly all the aligners,

the use of pairing information significantly improves mapping
accuracy.
Various read mapping tools support paired-end data, although

not all provide adequate statistical treatment. Mappers such as

Bowtie2 (Langmead and Salzberg, 2012), SOAP2 (Li et al., 2009)
and GSNAP (Wu and Nacu, 2010) require the user to input the

expected value and standard deviation of the genomic distance
between the two ends. Based on this information, they flag a pair

of mapped reads as being either ‘concordant’ or ‘discordant’, for

possible use in analyses of structural variations. However, the
user may not know before-hand the expected genomic distance,

especially when relying on third-party datasets—some provide
reliable information about the fragment size distribution, but

not all do. BWA (Li and Durbin, 2009) does not rely on

user-provided fragment size thresholds and estimates the frag-
ment size distribution from uniquely mapped pairs. Another fea-

ture of the paired-end strategy of BWA is that if only one end is
reliably mapped, it attempts to ‘rescue’ the other end by aligning

it using the Smith–Waterman algorithm in the area implied by

the inferred fragment size. Like BWA, STAMPY (Lunter and
Goodson, 2011) learns the fragment size distribution from the

input data and also attempts to rescue mates for pairs whose
ends do not map uniquely and at sufficiently close distance to

each other. Additionally, it uses an elaborate probabilistic model

that incorporates pairing information to compute for a pair of
alignments of a read pair, the posterior probability of having

predicted an incorrect alignment. Novoalign (www.novocraft.
com) computes a similar mapping quality for each paired align-

ment, but it relies on the user to provide the fragment size

distribution.
We propose a new approach to apply pairing information for

mapping paired-end reads. We first align each read independ-
ently to obtain candidate alignments. For each candidate, we

apply our new probabilistic model to estimate the posterior prob-
ability that this alignment is incorrect by considering other can-

didate alignments of the read, those of its mate and the fragment

size distribution. To allow for the possibility that paired reads
may actually come from disjoint locations in the reference, our

model includes a prior probability on the occurrence of such an
event. One major departure from previous methods is that we

calculate marginal posterior probabilities for each candidate

alignment of a read (as opposed to associating this value to a
read pair). Our method also benefits from using Last (Kielbasa

et al., 2011) in the alignment phase. Last, like BLAST, computes*To whom correspondence should be addressed.
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local alignments based on a seed-and-extend technique, but it is

fast because of the use of adaptive seeds—thus allowing the ap-

plication of classic sequence alignment techniques to the problem

of mapping giga-scale sized sets of reads generated by

high-throughput sequencers. We describe our method in detail

in Section 2.
We compare the performance of our method with six other

mapping tools in Section 3. For each mapping tool, the tech-

nique used to align individual reads hugely influences the final

outcome, and as it is not feasible to isolate the pairing algorithm,

we are comparing to some extent the performance of the align-

ment algorithms as well. Many articles that introduce new read

mapping tools or survey them provide benchmarking tests that

tend to be not very informative—only ideal or easy cases are

tested—or even misleading—performance is measured by count-

ing the number of reads mapped, with complete disregard to the

correctness of mapping. In this article, we conduct more rigorous

tests that cover various practical scenarios.

2 PROPOSED METHOD

Our method comprises the following steps.

2.1 Outline

(1) Perform local alignment between the genome and each

read individually, and keep alignments that have score

higher than a threshold.

(2) Using these alignments, estimate the distribution of frag-

ment lengths.

(a) For each read pair, get all pairs of alignments to op-

posite strands of the same chromosome. For every such

alignment pair, infer the fragment length. If the read

pair has exactly one distinct fragment length, record it.

Note that we do not impose any bound on the size of

the inferred fragment.

(b) Find the sample median and quartiles of the fragment

lengths.

(c) Assume the fragment lengths are normally distributed,

with mean¼ sample median and standard devi-

ation¼ interquartile range/1.34898. We use this

method of estimation as it is robust to outliers.

(1.34898 is the interquartile range of a normal distribu-

tion with standard deviation of 1).

(3) Estimate the probability that each alignment represents the

genomic source of the read, using a probabilistic model.

2.2 Probabilistic model

We shall now describe Step 3 in detail. Consider a pair � and � of

reads obtained from sequencing two ends of a DNA fragment,

and let a, b be a pair of predicted alignments of � and �, respect-
ively, to the reference. Let d be the prior probability that a read

pair comes from disjoint genomic locations. This might arise

from real differences between the reference and the source of

the reads, or from errors in obtaining the reads or the genome

sequence. The value of d can either be provided by the user or

learned from the data once the fragment length distribution has

been estimated (in our experiments, we use a default value of

d ¼ 0:01). If we assume that a pair comes from any location in

the reference with uniform probability, we can express the prior

probability as:

pða, b, IÞ ¼
d=ð2gÞ2 if I ¼ 0,
ð1� dÞnðfabÞ=2g if I ¼ 1,

�

where I serves as an indicator variable (0 for reads being disjoint,

1 for conjoint), 2 g is the number of bases in both strands of the

haploid genome, fab is the fragment length implied by a and b

and nðfabÞ is the probability of fragment length based on the

distribution estimated in Step 2.
Next, we wish to compute the likelihood pð�,�ja, b, IÞ of

having observed � and � given alignments a and b. Given an

alignment between a pair of sequences, classical sequence align-

ment methods assign it a score, which is a measure of the like-

lihood that the sequences are related as opposed to being

unrelated (Durbin et al., 1998). This is done based on a scoring

model, which assigns a score Sxy for aligning a pair of bases

x, y 2 fa, c, g, tg. Sxy can be interpreted as a log likelihood ratio:

Sxy ¼ T ln
Mxy

AxBy
,

where Ax is the probability (abundance) of base x in the refer-

ence, By is the probability of y in the query, Mxy is the probabil-

ity of x aligned to y in a true alignment and T is an arbitrary

scale factor. This scoring model can be generalized to include

gaps (Durbin et al., 1998) and also to incorporate sequence qual-

ity data (Frith et al., 2010). As Last is based on this generalized

scoring model, the score assigned by Last to an alignment is the

log of its likelihood ratio. Therefore, if sa and sb are the scores of

Fig. 1. Paired-end versus single-end mode. Comparing the results of

mapping the same set of simulated 100bp-long human reads with the

human reference genome hg19, in paired-end mode (solid lines) and

single-end mode (dashed lines). The caption of Figure 3 describes how

the lines in the plot above are computed. Details of the simulation process

are provided in Section 3.1
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alignments a and b and T is the scale factor, by exponentiating

the scores, we arrive at:

pð�,�ja, b, IÞ / eðsa=TÞeðsb=TÞ:

Finally, letting A and B denote the set of all possible align-

ments of � and � to the reference, we can calculate the posterior

probability pðaj�, �Þ of a indicating the true genomic source of

the read as follows:

pðaj�,�Þ ¼
X1
I¼0

X
b2B

pða, b, Ij�,�Þ

¼
X1
I¼0

X
b2B

pð�,�ja, b, IÞpða, b, IÞ

P1
I¼0

P
a2A

P
b2B

pð�,�ja, b, IÞpða, b, IÞ

ð1Þ

Naturally, it is not feasible to exhaustively search A and B;

therefore, we approximate (1) by restricting A and B to be the set

of alignments that are produced by Last in Step 1.

2.3 Efficient computation

To calculate the posterior probabilities efficiently, we use the

following intermediate values:

ea ¼ exp
sa
T

� �
,

x ¼
d

2g

X
b2B

eb,

ya ¼ ð1� dÞ
X
b2B

ebnðfabÞ,

za ¼ eaðxþ yaÞ, and

z ¼
X
a2A

za:

Then Equation (1) can be rewritten as:

pðaj�,�Þ ¼
za
z

ð2Þ

2.4 Accounting for alignment cut-off

Step 1 inevitably uses a cut-off: it returns alignments with score

� smin. This may lead to false-positive mappings.

For example, suppose we have a read pair that is truly con-

joint, where the first read’s true alignment has score ¼ smin � 1,

and the second read’s true alignment has score � smin. Suppose

the first read has a random alignment with score ¼ smin. Our

probabilistic method will confidently predict an incorrect

mapping.
To solve this problem, we modify our probabilistic method

slightly. We assume an unlucky case: the first read has an align-

ment with score ¼ smin � 1, at the optimal distance from the best

alignment of the second read (as we use integer scores, smin � 1 is

the highest possible score5smin). Let smax be the maximum score

of any alignment in B and nmax be the maximum value of n(f) for

any f. We modify Equation (2) as:

pðaj�, �Þ ¼
za

zþ w
,

where

w ¼ eððsmin�1Þ=TÞeðsmax=TÞð1� dÞnmax

2.5 The case where jBj ¼ 0

The preceding calculations do not work when jBj ¼ 0. In this

case, we define the result to be the same as if there was one

alignment in B on a different chromosome to any alignment inA.

za ¼ ea
d

2g

z ¼
X
a2A

za

w ¼ eððsmin�1Þ=TÞð1� dÞnmax

pðaj�,�Þ ¼
za

zþ w

3 PERFORMANCE TESTING

In this section, we compare the results of testing our method with

those of other mapping tools that provide a paired-end option.

We tested the following: Novoalign, Stampy, BWA, Bowtie,

GSNAP and SOAP. Although the list is not comprehensive,

the tools chosen are representative of the different paired-end

mapping strategies discussed in Section 1 that have been used

so far to deal with paired-end reads. Obviously the performance

is also hugely affected by how individual reads are mapped be-

cause this phase precedes the pairing phase for most aligners.

With our selection of mapping tools, we have also attempted

to cover a wide range of techniques that are used for mapping

individual reads. BWA, Bowtie and SOAP use the Burrows–

Wheeler transform to index the reference, whereas Novoalign,

Stampy and GSNAP use hash-bashed techniques. BWA, SOAP

and GSNAP search for semi-global alignments that contain no

more than a certain user-specified number of mismatches and

gaps, whereas Stampy and Novoalign follow the traditional

seed-and-extend technique with affine gap penalties. Newer ver-

sions of Bowtie and BWA can perform both semi-global, as well

as local alignments. The version information of each aligner is

provided in the Supplementary Material.

We conducted a series of tests that cover a variety of practical

scenarios, such as when the reference is incomplete, when the

sample lacks a reference and has to be mapped to the reference

of a close species or when there are large variations between the

reference and the sample that have the effect of confounding the

pairing relation.
Our results, which we describe later in the text, show that Last

provides a good combination of sensitivity, error rate and com-

putation time and is consistently among the top performers in all

of the tests. However, we realize that each aligner comes with

numerous parameter settings that provide a trade-off among

sensitivity, error rate and time, and it is difficult to judge per-

formance based on a single set of parameters. Here, we have tried

to show the aligners in the best light possible. For most aligners,

we report the best results after having tried various parameter

settings, details of which can be found in the Supplementary

Material. With Last, we use the same settings throughout all

the tests so as to avoid deliberate optimization to fit the data.
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3.1 Generation of simulated data

Although it is desirable to work with real datasets, they are

accompanied by the problem of not knowing the true genomic

location of the reads. This limits us to working with simulated

data. Using Dnemulator (www.cbrc.jp/dnemulator), a package

for simulating DNA sequencing errors and polymorphisms, we

generated paired-end reads from chromosomes 1–22 and X of the

human genome hg19. Starting with hg19, we simulated a diploid

genome by incorporating polymorphisms into it. This was done

by picking real alleles based on their frequencies obtained from

snp132Common.txt, a SNP database available from the UCSC

Genome Database (Fujita et al., 2011, Sherry et al., 2001). Next,

from the simulated genome, we randomly drew a million frag-

ments from which paired-end reads of length 100bp were gener-

ated. Finally, we simulated sequencer errors, according to the

per-base error probabilities of the first million pairs of reads in

ERR037752, downloaded from DDBJ. In a similar manner,

simulated paired-end reads of lengths 76 and 35bp were also

generated with error profiles based on datasets ERR007826

and ERR000408, respectively. The error profiles of these three

datasets are shown in Figure 2. The Supplementary Material in-

cludes further details about the simulation workflow.
Additionally, we generated a second 100bp-read dataset using

the same 100bp reads as aforementioned, but simulating sequen-

cing error based on error probabilities from SRR067577. As

SRR067577 contains significantly more low-quality reads

than ERR037752, this dataset allowed us to understand the

effect of error profile on aligner performance. All experiments

we describe below were also repeated on this dataset. Because of

space constraints, we provide those results in the Supplementary

Material.

3.2 Mapping simulated human reads to human reference

To start with a relatively easy test, we mapped our three sets of

simulated reads to the human reference genome containing

Chromosomes 1–22 and X of hg19. For aligners that require

the user to input the fragment length statistics, we provided the

exact values used to produce the simulated dataset. The results

are shown in Figure 3 by solid (non-dashed) lines.

For the dataset containing reads of length 35 bp, edit-distance–
based aligners outperform Last. For longer reads, Last is among

the top performers. Novoalign is consistently the best aligner,
but its run time gets extremely large for short reads.

To see how sequencer error rate affects the results, we repeated
this experiment with the extra 100bp dataset. The results

(Supplementary Fig. S4a) show that Last does better than all

the other aligners when the reads are more error-ridden. The
results in Figure 1 were also obtained using this dataset. And

while Last does not require explicit trimming of reads, failing to

do so can significantly worsen the performance of some aligners
like BWA and SOAP. We address this issue of read trimming in

greater detail in the Supplementary Material.
Finally, one concern about Last might be that the run time for

longer reads is relatively slow. We describe in Section 4.2 several
techniques to make Last achieve higher speeds without degrading

accuracy.

3.3 Mapping to an incomplete reference

Because of incompleteness of sequence assembly, the available
reference genome may have large chunks missing. Some reads

possibly come from regions that are missing in the reference,

confounding both the alignment algorithm, as well as the pairing
algorithm. To simulate this scenario, we repeated the earlier ex-

periment with the same set of simulated reads, but with a part of

the reference (Chromosome 5 was chosen arbitrarily) deliberately
removed. The results are shown in Figure 3 by dashed lines.

As Chromosome 5 accounts for �5% of the full reference, it is
natural that the number of correct mappings decreases by about

the same proportion. It is interesting, however, that the error rate
also increases, even for Novoalign, which showed very low error

rates in the test with the full reference.

3.4 Xenomapping

A great majority of organisms lack a reference genome. Even for
mammals, of which there are45000 species, only a small number

of them have been sequenced. For samples with no available

reference, reference of a related species is used. This is also the
case for extinct species. While divergence between the two

Fig. 2. Error profiles of the first 1 million reads of the real datasets based on which we have simulated sequencer errors. The horizontal axis shows

position along the 50–30 direction along the read, and the vertical axis shows for each position the frequency of reads based on their phred-scaled quality

scores
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genomes can make the task of aligning individual reads harder, it

can also make the pairing phase more challenging, as a pair of

reads may map to disjoint locations because of rearrangements

in the two genomes since their last common ancestor. To simu-

late this situation, we map our simulated human reads to the

rhesus monkey reference (rheMac2). To decide the correctness

of reported alignments, we use the human–rhesus pairwise align-

ments (rheMac2.hg19.all.chain) provided by UCSC. In doing so,

we are assuming that the alignments provided by UCSC are

correct, which might not always be the case; however, we can

afford to neglect this issue, as it affects all mappers equally. The

results are shown in Figure 4.
Last is again among the top performers, alongside Bowtie,

which was used in the local alignment mode, and Stampy. As

would be expected, edit-distance–based methods like BWA,

GSNAP and SOAP perform poorly because the expected

number of mismatches between the read and reference is high.

The run times, shown in Figure 4b, are also worth noting. Most

of the other aligners get drastically slow compared with their run

times for mapping human reads to human reference. A similar

pb67=htgneldaeR)b(pb001=htgneldaeR)a(

emitgninnuR)d(pb53=htgneldaeR)c(

Fig. 3. (a–c) The result of mapping 1 million pairs of simulated short reads of various lengths to Chromosomes 1–22 and X of hg19, respectively. Most

aligners assign to each reported alignment a mapping quality score, which reflects the aligner’s estimate of the probability that the alignment is incorrect.

Although Last reports raw probability values, some aligners like BWA and Bowtie apply phred-like scaling to obtain discretized integer scores. In either

case, the mapping results from an aligner can be filtered to obtain only those alignments that pass a certain mapping quality threshold. Each curve in the

plots above is obtained from connecting discrete points, each point corresponding to the fraction of wrongly mapped and the fraction of correctly

mapped reads at a certain mapping quality threshold. When varying the mapping quality threshold, we were careful not to go below the mismap

probability of 0.5. As it is not possible to have more than one alignment with mismap probability50.5, this avoids the complications of having to

evaluate cases of multiple/secondary mappings. Solid lines are for mapping reads to a complete reference, and dashed lines are for the test with reference

with chromosome 5 missing. An exception is SOAP, which does not provide mapping quality values; therefore, it is represented by a single data point in

each plot. (d) The running time for creating the index of the reference genome and the alignment time corresponding to the results of (a–c), when

executed on a single core of a machine with Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz and 32 GB random access memory
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trend was observed for another dataset of read length 100bp

(Supplementary Fig. S4b).

3.5 Chromosome translocations

Even within the same species, real differences between the source

and reference genomes can arise because of chromosomal

abnormalities in the source or the reference that are caused by

rearrangements of segments of chromosomes. This phenomenon

of translocations is a common occurrence, for instance, in cancer

cells. If a pair of reads happens to span a translocation break

point, the two ends might be disjoint in the reference. This could

possibly confuse the pairing algorithm. To test whether mappers

are tolerant to this kind of phenomenon, we randomly shuffled a

portion (40%) of the reads in one of the fastq files, thus

re-assigning those pairs. Although this does not truly reflect the

natural process of chromosomal translocations, it does have a

similar effect of dismembering paired reads. Also, although 40%

of the pairs being disjoint is unrealistic even for, say, cancer

genomes, the main interest of many studies lies precisely in

these reads. Therefore, it is imperative that aligners be able to

map these reads accurately, and the objective of this test was to

see how well this is done. Figure 5 shows the result of mapping

these shuffled reads compared with the result of Section 3.2. We

can see that while Last and Novoalign are only slightly affected

by shuffling, the remaining aligners see a sharp decrease in ac-

curacy. Repeating this experiment on our second 100bp dataset

yielded similar results (Supplementary Fig. S5). It must be

pointed out that in this experiment, we have left the setting of

d, the prior disjoint probability, to its default value of 0.01. We

describe in Section 4.5 and the Supplementary Data how choos-

ing the value of d wisely can improve Last’s performance.

3.6 Testing with real data: flow-sorted human

X-chromosome

Simulation may miss some aspects of real data; therefore, it is

desirable to work with real datasets. Real data means lack of

knowledge of true genomic locations of reads. We worked

around this problem by using paired-end reads (DDBJ dataset

ERX000112) of flow-sorted X chromosomes. This dataset con-

tains 2 703 583 pairs of reads of length 35bp. As we know that the

reads come from the X-chromosome, we can treat the reads

mapped to a chromosome other than X as being wrongly

mapped. Results of mapping these reads to chromosomes 1–22

and X of hg19 are shown in Figure 6. That the results closely

resemble those in Figure 3c works as a validation of our simula-

tion technique. Certainly, wemust take into account possible con-

tamination of DNA from non-X chromosome in the dataset. The

experiment metadata claims 90% purity, which we corroborated

by using Last in a slow-but-sensitive mode that resulted in 9–10%

of the mapped reads being mapped to non-chromosome X.

4 DISCUSSION

4.1 Simulation limitations

Our simulation fails to capture some real-world details. Our

method of simulating sequencer errors based on the per-base

)b()a(

Fig. 4. Xenomapping. (a) The result of mapping 1 million pairs of simulated human reads of length 100bp to rheMac2 (dashed lines) compared with that

of mapping the same reads to hg19 (solid lines). (b) The running time (excluding the genome indexing step) corresponding to the results of (a)

Fig. 5. Result of mapping 1 million pairs of simulated human reads of

length 100bp with 40% of reads in one of the fastq files shuffled (dashed)

compared with no shuffling (solid)
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error probability reported in experimental datasets is more real-

istic than previous methods of introducing uniform random

errors. However, we assume that the reported probabilities are

correct, which might not always be true depending on the se-

quencer and the experiment. Also, we do not consider adapter

sequences, which in real experiments might be attached to reads.

Furthermore, we have assumed that our read sets are free of

contaminants or artifacts, which is unlikely with real data.

4.2 Speeding up Last

Applying several simple workarounds, we can significantly im-

prove the speed of Last without degrading its accuracy. The

alignment phase of Last takes approximately two-thirds of the

total running time. Last performs gapless alignments signifi-

cantly faster than gapped alignments; for cases where the

sample and reference have few indel polymorphisms between

them, Last can be used in the gapless mode. We show in the

Supplementary Material that mapping human reads to the

human reference in a gapless mode reduces the running time of

the alignment phase by450% with no cost to accuracy.

The pairing phase can also be made faster. As the paired-end

module is written in python, file operations can be costly. As its

default output file format, the alignment phase uses maf format.

Changing this to the smaller tabular format can significantly

bring down the running time of the pairing phase by 30%

(Supplementary Data). Also, greater speed can be achieved by

running the paired-end script using a faster implementation of

Python, such as PyPy. The running times reported in this article

were obtained when using PyPy. Another way to speed-up the

pairing phase is to quickly estimate the fragment size distribution

using a large-enough sample instead of using the complete set of

aligned reads, and then apply this estimate to calculate the

mismap probabilities.
Avoiding temporary files by using named pipes also avoids

speed issues due to slow disk access operations.

These speed-up techniques are discussed in the Supplementary

Material and also appear in the user manual provided with the

program.

4.3 Extension to RNA

Last allows mapping of paired-end RNA reads. To handle RNA

data, we modify the fragment length distribution model and the

prior disjoint probability. We observed from a test with human

RNA-seq data that the distance distribution resembles a mixture

of two log-normal distributions, having a prominent peak for

shorter introns and a much smaller peak for long introns. For

simplicity, we assume that the genomic fragment lengths of the

reads come from a single log-normal distribution. To compen-

sate for not incorporating longer introns in the model, the default

disjoint probability value is increased from its default value of

0.01 to 0.02.

4.4 Circular DNA

Many prokaryotic cells as well as eukaryotic organelles contain

circular chromosomes. With circular chromosomes, we must

ensure that we do not consider as disjoint a pair of reads that

straddle the position at which the circular sequence is disrupted

to obtain its linear representation. Last provides an option to

specify whether any chromosomes in the reference are circular.

4.5 Learning prior disjoint probability

In our tests, we have used the default value for the prior prob-

ability of a read pair being disjoint. Instead of relying on a de-

fault value, it is possible to estimate it from the set of uniquely

mapping reads. Our experiments with setting this value to match

the actual proportion of disjoint pairs show that it slightly im-

proves accuracy. However, we are yet to implement this feature

in the program. In contrast, changing a similar prior probability

setting of Stampy brought about no significant changes in

performance.

5 CONCLUDING REMARKS

In this article, we have shown that Last is a versatile aligner, and

it is especially promising for ‘hard’ cases. We believe this is partly

due to our pair model and partly due to our reliance on trad-

itional sequence alignment techniques. Edit-distance–based

methods, on the other hand, are specialized for almost-perfect

matches, which basically restricts their use on short and less er-

roneous reads. Recent advances in sequencing technologies sug-

gest the contrary—while reads are getting longer, they still

remain error prone.
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Fig. 6. Result of mapping 2 703 583 pairs of 35bp-long reads from DDBJ

dataset ERX000112 to Chromosome 1–22 and X of hg19. The horizontal

axis shows the fraction of reads that were mapped, and the vertical axis

shows the fraction of the mapped reads that were mapped to the X

chromosome. The figure at the bottom end of each curve indicates the

running time (excluding time for genome indexing) in minutes
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