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ABSTRACT

Motivation: Expression quantitative trait loci (eQTL) studies investigate

how gene expression levels are affected by DNA variants. A major chal-

lenge in inferring eQTL is that a number of factors, such as unobserved

covariates, experimental artifacts and unknown environmental perturb-

ations, may confound the observed expression levels. This may both

mask real associations and lead to spurious association findings.

Results: In this article, we introduce a LOw-Rank representation to

account for confounding factors and make use of Sparse regression

for eQTL mapping (LORS). We integrate the low-rank representation

and sparse regression into a unified framework, in which single-

nucleotide polymorphisms and gene probes can be jointly analyzed.

Given the two model parameters, our formulation is a convex optimiza-

tion problem. We have developed an efficient algorithm to solve this

problem and its convergence is guaranteed. We demonstrate its ability

to account for non-genetic effects using simulation, and then apply it to

two independent real datasets. Our results indicate that LORS is an

effective tool to account for non-genetic effects. First, our detected

associations show higher consistency between studies than recently

proposed methods. Second, we have identified some new hotspots

that can not be identified without accounting for non-genetic effects.
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1 INTRODUCTION

Nowadays both gene expression levels and hundreds of thou-
sands of single-nucleotide polymorphisms (SNPs) can be mea-

sured by high-throughput technologies. This allows us to

systematically explore the relationship between gene expression
levels and genotypes: whether a gene is differentially expressed

with different genotypes (or alleles) at a specific locus. The loci
that are associated with gene expression levels are known as

‘expression quantitative trait loci’ (eQTL) (Li et al., 2012).
Recently, a large number of eQTLs have been found in eQTL

studies (Cookson et al., 2009). These findings provide insights on

how gene expression levels are affected by specific genetic

variants (Cheung and Spielman, 2009). They may further help

to prioritize disease-associated loci and contribute to disease

understanding (Nica and Dermitzakis, 2008).
An important issue in eQTL mapping is that a fairly large

proportion of the measured gene expression variations may not

be caused by genetic variants, but by some other factors, includ-

ing cellular state (Alter et al., 2000), environmental factors

(Gibson, 2008) and experimental conditions (Leek et al., 2010).

A typical example is the batch effect, which may arise when

sub-groups of samples were processed by different laboratories,

different technicians or on different days. Because these factors

are unrelated to genetic variants, we call them non-genetic fac-

tors in the rest of the article.
Some of the non-genetic effects can be directly measured. For

example, when the batch information is available, the batch effects

may be adjusted, e.g an empirical Bayes method named ‘Combat’

(Li and Rabinovic, 2007). However, in practice, non-genetic fac-

tors may not be directly and completely observable and thus

remain hidden. For example, Pastinen et al. (2006) showed that

cell culture conditions have an unnegligible influence on a large

number of genes. Gagnon-Bartsch and Speed (2012) reported that

a substantial within-batch effect exists in the Microarray Quality

Control study (Shi et al., 2006). ‘Expression heterogeneity’ (EH)

arises when these hidden factors are not taken into account in

statistical analysis. Leek and Storey (2007) showed that EH not

only leads to the reduction of statistical power but also spurious

association signals in eQTL mapping.

Recently, capturing EH in gene expression studies has drawn

the attention of researchers. Many methods have been proposed

to infer the hidden factors by some forms of factor analysis, and

adjust the inferred factors as if they were observed (Alter et al.,

2000; Nielsen et al., 2002).
One well-known method that attempts to address these issues

is the Surrogate Variable Analysis (SVA; Leek and Storey, 2007).

It performs principal component analysis while taking genotypes

into consideration and uses permutation to choose the number of

principal components. Kang et al. (2008) proposed the intersam-

ple correlation emended (ICE) eQTL mapping method, in which

a linear mixed model was introduced to model the hidden

factors. When modeling EH, Kang et al. (2008) used the

covariance matrix of the gene expression data as the EH covari-

ance matrix in their ICE model. However, this estimate is incon-

sistent and thus reduces the power of eQTL mapping. Listgarten

et al. (2010) introduced another linear mixed model, named*To whom correspondence should be addressed.

1026 � The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

http://bioinformatics.med.yale.edu/software.aspx
http://bioinformatics.med.yale.edu/software.aspx
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt075/-/DC1


‘LMM-EH’, which corrected the inconsistency of the estimated

EH covariance matrix. Once the latent covariance matrix has

been estimated, LMM-EH can scan every gene-SNP pair.

Alternatively, Stegle et al. (2010) jointly modeled SNPs, gene

probes and hidden confounders into a Bayesian framework.

Despite its greatly increased power in eQTL mapping, its

heavy computational burden might limit its usage. Fusi et al.

(2012) proposed another model named ‘PANAMA’ and bor-

rowed some computational techniques from Gaussian process

(Rasmussen and Williams, 2006) and further improved the per-

formance of eQTL mapping. However, during the model opti-

mization, PANAMAmay be trapped in a local optimum because

the optimization problem is not convex.
In this article, we introduce an alternative formulation to ad-

dress this issue. We propose a LOw-Rank representation to ac-

count for non-genetic factors and make use of Sparse regression

for eQTL mapping (LORS). We integrate the low-rank represen-

tation and sparse regression into a unified framework, in which

SNPs and gene probes can be jointly analyzed. Given the two

regularization parameters, the optimization of the model struc-

ture is a convex problem. We have developed an efficient algo-

rithm to solve this convex problem and its convergence is

guaranteed. We demonstrate its usefulness through its applica-

tions to both synthetic data and real data.

2 MODEL

Before introducing our formulation, we summarize the notations

used in this article. We consider the following norms of a vector

v 2 R
n: the ‘1 norm defined as kvk1 ¼

P
i jvij; the ‘2 and the

squared ‘2 norms defined as kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

i v
2
i

p
and kvk22 ¼

P
i v

2
i ,

respectively. We use the following three norms of a matrix

W 2 R
m�n: the Frobenius norm kWkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij W

2
ij

q
, the nuclear

norm kWk� ¼
Pr

i¼1 �i, where �1, . . . , �r are the singular values

of W and r is the rank of W and the ‘elementwise’ ‘1 norm

kWk1 ¼
P

ij jWijj.
Let Y be an n� q matrix corresponding to a gene expression

dataset, where n is the number of samples and q is the number of

genes. Let X be an n� p matrix corresponding to a SNP dataset,

where p is the number of SNPs. To model the relationship

between Y and X, we propose to decompose Y as:

Y ¼ 1�þ XBþ Lþ e ð1Þ

where B 2 R
p�q is the coefficient matrix, 1 2 R

n�1 is a vector

whose entries are all 1, � is a 1� q matrix with �j, j ¼ 1, . . . , q

being the j-th intercept and e 2 R
n�q is a Gaussian random noise

term with zero mean and variance �2, i.e. eij � Nð0, �
2Þ. Here we

introduce L 2 R
n�q in our model to account for the variations

caused by a few hidden factors. This model implies that gene

expression levels are influenced by genetic factors, non-genetic

factors and random noises.
To make the decomposition (1) possible, we make the follow-

ing assumptions:

� There are only a few hidden factors that may influence gene

expression levels. Thus, L is a low-rank matrix. Here, we

also implicitly assume that the hidden factors have global

effects rather than local effects.

� The gene expression level may only be affected by a small

fraction of SNPs. This implies that the coefficient matrix B

should be sparse.

Based on these assumptions, we propose to solve the following

optimization problem:

min
B,�,L

kY� XB� 1�� Lk2F

s:t: rankðLÞ � r0, kBk1 � t0

ð2Þ

where kBk1 is the elementwise ‘1 norm defined before, r0 and t0
are some fixed constants. To make the minimization problem

tractable, we relax the rank operator on L with the nuclear

norm, which has been proven to be an effective convex surrogate

of the rank operator (Recht et al., 2010). Now we rewrite (2) in a

Lagrange form

min
B,�,L

1

2
kY� XB� 1�� Lk2F þ �kBk1 þ �kLk� ð3Þ

where kLk� is the nuclear norm of L, � and � are regularization

parameters that control the sparsity of B and the rank of L,

respectively. Now it is a convex optimization problem and can

be solved efficiently.
Missing data are commonly encountered when analyzing gene

expression data. Here we extend our basic model (3) in the fol-

lowing to handle missing data naturally.
Suppose we only observed a subset of entries in Y, indexed by

:. The unobserved entries are indexed by :?. Mathematically,

we can define an orthogonal projection operator P that projects

a matrix W onto the linear space of matrices supported by ::

P:ðWÞði, jÞ ¼
0, if ði, jÞ 2 :
Wij, if ði, jÞ =2 :

�
ð4Þ

and P:? ðWÞ is its complementary projection, i.e. P:ðWÞ þ P:?

(W) ¼ W.
Because we want to find a sparse coefficient matrix B and a

low-rank matrix L based on the observed data, we propose to

solve the following optimization problem:

min
B,�,L

1

2
kP:ðY� XB� 1�� LÞk2F þ �kBk1 þ �kLk� ð5Þ

where the first term kP:ðY� XB� 1�� LÞk2F is the sum of

squared errors on the observed entries indexed by :.

3 ALGORITHM

To solve the optimization problem (3) efficiently, we need the

following lemma [the proof can be found in (Mazumder et al.,

2010)]:

LEMMA 1. Suppose matrixWm�n has rank r. The solution to the

optimization problem

min
Z

1

2
kW� Zk2F þ �kZk� ð6Þ

is given by bZ ¼ S�ðWÞ where

S�ðWÞ ¼ UD�V
T with D� ¼ diag½ðd1 � �Þþ, . . . , ðdr � �Þþ� ð7Þ

UDVT is the Singular Value Decomposition (SVD) of W,

D ¼ diag½d1, . . . , dr�, and tþ ¼ maxðt, 0Þ.
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We adopt an alternating strategy to solve problem (3). For

fixed B and �, the optimization problem becomes

min
L

1

2
kY� XB� 1�� Lk2F þ �kLk� ð8Þ

By Lemma 1, we have a closed-form solution for L:

L ¼ S�ðY� XB� 1�Þ ð9Þ

For fixed L, the optimization problem becomes

min
B,�

1

2
kY� XB� 1�� Lk2F þ �kBk1 ð10Þ

It can be further decomposed into q independent Lasso prob-

lems (Tibshirani, 1996):

min
Bj,�j

1

2
kYj � Lj � XBj � �jk

2
2 þ �kBjk1, j ¼ 1, . . . , q ð11Þ

where Yj,Lj and Bj are the j-th column of Y,L and B, respect-

ively. The Lasso problem can be solved efficiently by the coord-

inate descent algorithm (Friedman et al., 2007, 2010). Now we

have Algorithm 1:

Algorithm 1 A fast algorithm to solve problem (3)

� Input: Y 2 R
n�q,X 2 R

n�p, �, �. Initialize B 0, � 0.

� Iterate until convergence:

� L-step: L ¼ S�ðY� XB� 1�Þ.

� ðB,�Þ-step: Solve q independent Lasso problems (11) by

the coordinate descent algorithm.

� Output: B, L, �.

So far we have developed the algorithm for solving problem

(3). To derive an algorithm to solve optimization problem (5), we

need the following lemma [its proof was given by (Mazumder

et al., 2010)]:

LEMMA 2. Soft-impute algorithm

min
Z

1

2
kP:ðW� ZÞk2F þ �kZk�

¼ min
Z

1

2
kP:ðWÞ � Z� P:? ðZÞ

� �
k2F þ �kZk�

¼ min
Z

1

2
k P:ðWÞ þ P:? ðZÞ
� �

� Zk2F þ �kZk�

ð12Þ

By Lemma 1, the optimal value Z� of the optimization problem

(12) can be obtained via updating Z using

Z S�ðP�ðWÞ þ P
?
�ðZÞÞ ð13Þ

with an arbitrary initialization.

We also adopt the alternating strategy to solve (5). For fixed B

and �, optimization problem (5) becomes

min
L

1

2
kP:ðY� XB� 1�� LÞk2F þ �kLk� ð14Þ

By Lemma 2 we have

L S�ðP:ðY� XBÞ þ P?:ðLÞÞ ð15Þ

For fixed L, optimization problem (5) becomes

ðB,�Þ ¼ arg min
ðB,�Þ

1

2
kP:ðY� L� XB� 1�Þk2F þ �kBk1 ð16Þ

Again, this problem can be decomposed into q independent

Lasso problems as follows:

min
ðBj,�jÞ

1

2
kP:j
ðYj � Lj � XBj � �jÞk

2
2 þ �kBjk1, j ¼ 1, . . . , q ð17Þ

Now we have Algorithm 2:

Algorithm 2 A fast algorithm to solve problem (5)

� Input: Y 2 R
n�q,X 2 R

n�p, �, �. Initialize B 0, � 0.

� Iterate until convergence:

� L-step: iteratively update L using (15).

� ðB,�Þ-step: Solve q independent Lasso problems (17)

using the coordinate descent algorithm.

� Output: B, L, �.

The convergence analysis of our algorithms and the CPU tim-

ings are provided in the Supplementary Document.

4 PARAMETER TUNING

We have two parameters that need to be tuned in our models.

Here we propose a cross-validation-like strategy to select these

two parameters. The idea is as follows: Let : be the index of the

observed entries of Y. We randomly divide : into training entries

:1 and testing entries :2: :1

S
:2 ¼ : and :1

T
:2 ¼ ;. The

sizes of :1 and :2 are roughly the same. We may solve problem

(5) on a grid of (�, �) values on the training data:

min
B,�,L

1

2
kP:1
ðY� XB� 1�� LÞk2F þ �kBk1 þ �kLk� ð18Þ

Then we evaluate the prediction error (19) on the testing data

Errð�, �Þ ¼
1

2
kP:2
ðY� XBð�, �Þ � 1�ð�, �Þ � Lð�, �ÞÞk2F ð19Þ

where we write B, � and L as Bð�, �Þ, �ð�, �Þ and Lð�, �Þ to
emphasize that B, � and L depend on the parameters � and �.
We can then choose the parameter setting ð��, ��Þ, which min-

imizes the prediction error (19).
However, searching for two parameters on a grid of values

may be too computationally expensive when dealing with large

datasets. Instead, we search a good � value with fixing � ¼ 1
and then perform a one dimensional search on a sequence of �
values. In our implementation, we first set the maximum rank of

L, denoted as rankmaxðLÞ, equal to minðn, qÞ=2. Then, we start

from a large �max, which equals to the second largest singular

value of matrix P:ðYÞ. After solving

min
L

1

2
kP:1
ðY� LÞk2F þ �kLk� ð20Þ

if rankðLÞ5rankmaxðLÞ, we reduce � by a factor � ¼ 0:9 and

repeatedly solve (20) until rankðLÞ 	 rankmaxðLÞ. Using
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warm-start, this sequential optimization is efficient (Mazumder

et al., 2010).
Then we choose a � value, which minimizes the prediction error

Errð�Þ ¼
1

2
kP:2
ðY� Lð�ÞÞk2F ð21Þ

Let �̂ be the value corresponding to the minimal prediction

error (21). Now we can perform a one dimensional search for a

good value for �. We generate a sequence of � values with length

n� equally decreasing from �max to ��max on the log scale, where

�max is the smallest � value such that all entries of Bð�, �̂Þ are zero.
Typically, we set n� ¼ 20 and � ¼ 0:05. For each � value, we solve

min
B,L,�

1

2
kP:1
ðY� 1�� XB� LÞk2F þ �kBk1 þ �̂kLk� ð22Þ

and evaluate the prediction error:

Errð�, �̂Þ ¼
1

2
kP:2
ðY� 1�ð�, �̂Þ � XBð�, �̂Þ � Lð�, �̂ÞÞk2F ð23Þ

Then we choose the � value corresponding to the minimal

prediction error (23). Now we can solve model (5) using (�̂, �̂)
as regularization parameters, and obtain a sparse matrix Bð�̂, �̂Þ
and a low rank matrix Lð�̂, �̂Þ.

5 DISCUSSION

5.1 Relationship between our method and other methods

To our knowledge, LMM-EH (Listgarten et al., 2010) proposed

the first framework, where multiple gene expression levels and

confounder effects can be jointly analyzed in eQTL studies. For

the j-th gene expression level in the LMM-EH model, it assumes

the following structure:

Yj ¼ XBj þ uj þ ej, j ¼ 1, . . . , q ð24Þ

where Y 2 R
n�q,X 2 R

n�p are the expression and SNP data

matrices, respectively. Here ej denotes Gaussian noise, i.e.

ej � Nð0, �
2
e IÞ, and uj denotes a random effect, i.e.

uj � Nð0, ��Þ, where � is a scalar and � 2 R
n�n. Assuming the

independence among Yj, j ¼ 1, . . . , q, and integrate out uj and ej,

we arrive at the following form:

PrðYjX, fB, �, �eg,�Þ ¼
Yq
j¼1

PrðXBj, �
2�þ �2e IÞ ð25Þ

LMM-EH adopts the following strategy to estimate the co-

variance matrix � and other model parameters � ¼ fB, �, �eg:

� First, it estimates � from the null model, which does not

include any SNPs, denoted as b� (Kang et al., 2008, 2010;

Lippert et al., 2011).

� Second, using b� in model (24) as a known covariance and

estimate � ¼ fB, �, �eg for all gene-SNP pairs (one gene ver-

sus one SNPs at a time).

PANAMA extends LMM-EH and allows joint analysis of all

SNPs (Fusi et al., 2012). Specifically, PANAMA models the re-

lationship between gene expression levels and SNPs as follows:

Y ¼ �þ XBþHWþ e ð26Þ

here � is the intercept, B and W are the corresponding coeffi-

cients representing the effects of SNPs and hidden factors H.

PANAMA assigns independent Gaussian priors for B and W:

PrðBÞ ¼
Yp
i¼1

Nð0,	2i IÞ, PrðWÞ ¼
YK
k¼1

Nð0,
2kIÞ ð27Þ

where K is the number of hidden factors. Assuming Yj, j ¼ 1,

. . . , q are independent and integrating out B and W, the model

becomes

PrðYjH,�Þ ¼
Yq
j¼1

Nð0,
Xp
i¼1

	2i XiX
T
i þ

XK
k¼1


2kHkH
T
k þ �

2
e IÞ, ð28Þ

where the intercept term � is dropped for notation convenience

and � ¼ ff	2i g, f

2
kg, �

2
e g. In principle, parameter estimation in

(28) can be done by borrowing some computational tricks

from Gaussian process model optimization (Rasmussen and

Williams, 2006). Computation becomes prohibitive when all

genome-wide SNPs are included. In this case, PANAMA

adopts a heuristic strategy: PANAMA begins with the null

model (i.e. the model does not include SNPs). It first uses prin-

cipal components to initialize H and gradually adds significantly

associated SNPs into model (28), and re-estimate model param-

eter � and H. This process iterates until no significantly asso-

ciated SNPs are added into the model. In summary,H and � are

jointly optimized during the iterations.

Our model (1) can be regarded as an equivalent form of (26)

because a low rank matrix can always be written as L ¼ HW

with H 2 R
n�r,W 2 R

r�q, where r is the rank of L. Unlike

PANAMA, both our formulations (3) and (5) are joint convex

w.r.t (B, �, L). When the tuning parameters (� and �) are given,
our algorithms are guaranteed to converge to the optimal solu-

tion without any heuristic. Furthermore, we do not assume that

Yi, i ¼ 1, . . . , q are independent. This can be seen from Lemma 1

and Lemma 2: information among multiple gene expression is

used jointly by singular value decomposition.

Compared with PANAMA, the proposed method LORS has

its disadvantages. Using PANAMA’s formulation, statistical sig-

nificance of the associations can be evaluated. Currently, we can

not provide a rigorous statistical significance test of the estimated

coefficient matrix B. The difficulty comes from the unknown

statistical property of the nuclear norm. How to do statistical

tests with the nuclear norm regularization needs to be investi-

gated in the future. In this article, we use permutation to obtain a

rough estimate of false discovery rate (FDR) for our method.

5.2 A screening method based on LORS

Although optimization of our LORS model (3) is a convex prob-

lem, it is still too computationally intensive to directly use it for

analyzing human-size datasets (e.g. the number of genes

q 
 20 000, the number of SNPs p 
 500 000). One can see the

computational bottleneck in the (B,�) step of Algorithm 1 and 2.

In this step, q Lasso problems need to be solved, each of which

involves p variables. To overcome this computational difficulty,

we propose to solve the following optimization problem:

min

j,�,L

1

2
kY� Xj
j � 1�� Lk2F þ �kLk� ð29Þ
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where Y 2 R
n�q is the entire data matrix of gene expression,

Xj 2 R
n�1 is the j-th SNP, 
j 2 R

1�q is the coefficient of the

j-th SNP corresponding to its effect size on q genes. Here we

consider one SNP at a time, and thus, we do not add L1 regu-

larization. Clearly, it can be considered as the single-variable

version of LORS. Thus, we call this screening method as

‘LORS-Screening’. The algorithm to solve (29) is given in the

Supplementary Documents. The computational time of

LORS-Screening is given in the Supplementary Material.
For large datasets (e.g. human datasets), we recommend to use

LORS-Screening to reduce the number of SNPs. After the

screening process, we may select top d SNPs for each gene

(based on the absolute value of the coefficients). Then we can

fit the LORS model using the selected SNPs. This strategy is

similar to the single-variable screening step followed by joint

analysis in linear regression (Fan and Lv, 2008). According to

the property of L1 regularization, LORS can identify at most n

non-zero coefficients for each gene. Here we may set d¼ n.

6 RESULTS

6.1 Synthetic data

To avoid the simulation setup favoring our own model, we use

LMM-EH model (24). Specifically, we generate genetic effects,

non-genetic effects and noises as follows:

� Genetic effects: each SNP is generated independently and

the minor allele frequencies of these SNPs are uniformly

distributed in the interval (0.1, 0.4). The coefficient matrix

B is a sparse matrix with 1% non-zero entries. These non-

zero coefficients are generated using standard Gaussian dis-

tribution. Let G denote the genetic effect G ¼ XB.

� Non-genetic effects: The covariance matrix � is generated

by HHT, where H 2 R
n�K and Hi, j � Nð0, 1Þ. Here K is the

number of hidden factors. The random effect uj is drawn

from Nð0, ��Þ. Let u ¼ ½u1, . . . , uq�.

� e � Nð0, �2e IÞ.

Now we have

Y ¼ XBþ uþ e ¼ Gþ uþ e ð30Þ

In the following simulation studies (Sections 6.2 and 6.3), we set

n¼ 100, p¼ 100 and q¼ 200. To evaluate the performance under

different signal-to-noise ratios, we define SNR1 and SNR2 as:

SNR1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðGÞ

VarðeÞ

s
, SNR2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðGÞ

VarðuÞ

s
ð31Þ

Parameters � and �e can be used to control SNR1 and SNR2.

An example of synthesized datasets is given in the Supplementary

Document.

6.2 Influence of parameter tuning

Before we compare LORS with some other methods, we would

like to empirically evaluate our parameter tuning procedure.

Given a dataset, we need to randomly partition the observed

entries into two parts: :1 and :2. Basically, we train our

model based on :1 for different parameters and choose a good

parameter configuration such that the trained model has an ac-

curate prediction on :2. There may be two concerns: (i) Because

the random partition may introduce randomness in our model-

ing process, does this strategy provide a stable parameter selec-

tion? (ii) Can this strategy adapt to different noise level? To

answer these questions, we do 100 random partitions of a syn-

thetic dataset, and run our method based on each partition sep-

arately. The distribution of the selected parameters is shown in

Figure 1. First, one can see that the selected parameters ð�, �Þ do
not change a lot during 100 random partitions. The stability of

our method should be attributed to the continuity property of

the ‘1 norm (Fan and Li, 2001), that is, a small change of dataset

will not cause a big change of the optimization solution. Second,

when the signal becomes weaker, i.e. SNR1 ¼ 1 (the left panel of

Fig. 1) reduces to SNR1 ¼ 1=2 (the right panel of Fig. 1), a larger
� will be selected to prevent the noise from entering the model.

This shows that our parameter tuning strategy can adapt to dif-

ferent noise levels. In Section 3.2 of the Supplementary

Document, we provide more evidence to show that the random

partition in our parameter tuning has little effects on eQTL map-

ping (i.e. the estimation of matrix B).

6.3 Performance evaluation

We will mainly compare our method LORS with PANAMA.

The reasons are: (i) PANAMA can be regarded as an extension

of LMM-EH as we discussed above. (ii) Fusi et al. (2012) showed

that PANAMA significantly outperforms other related methods,

including SVA, PEER and ICE. Here we include the results from

standard linear regression as reference, and compare LORS,

LORS-Screening and PANAMA with the standard linear

regression.

To compare our method with PANAMA under different

settings, we vary SNR1, SNR2 and K. For each setting, we

report the averaged result from 50 realizations. Figure 2 shows

the comparison results for different combinations of SNR1,

Fig. 1. The distribution of selected parameters (100 random partitions of

training and testing data) for synthetic datasets. Left panel: the synthetic

dataset is generated with n¼ 100, p¼ 100, q¼ 200, SNR1 ¼ 1 and

SNR2 ¼ 1=3. For the parameter �, �27 and �28 are selected in the se-

quence of � values in most cases; for parameter �, �13 is selected in most

cases. Right panel: the synthetic dataset is generated with n¼ 100,

p¼ 100, q¼ 200, SNR1 ¼ 1=2 and SNR2 ¼ 1=3. For �, �20 and �21 are

often selected; for �, �12 is selected in most cases
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SNR2 and K (more simulation results can be found in the

Supplementary Document). From these simulation results, we

can see the following:

� When the number of hidden factors increases, the perform-

ance of both LORS and PANAMA degrades slightly.

� When the genetic effects and non-genetic effects are small

(compared with noises), e.g. SNR1 ¼ 1=2, SNR2 ¼ 1),

LORS is only comparable with standard linear regression

and PANAMA is even worse. This is because the noise plays

a dominant role here, it is difficult to account for

non-genetic effects under this situation.

� As the genetic effects and non-genetic effects become

more apparent, both LORS and PANAMA perform

better than standard linear regression. As we mentioned in

Section 5.1, LORS and PANAMA share the same

model structure, and they differ in how the model struc-

ture is inferred. We suspect that PANAMA may be

trapped at a local optimum during its model optimization.

As a result, LORS may have better performance than

PANAMA.

� Regarding to LORS-Screening, it turns out that LORS-

Screening is slightly worse than LORS but comparable

with PANAMA. Because the computational cost is largely

reduced, it is preferred in large data analysis.

6.4 Estimate of false discovery rate

Owing to lack of statistical tests, it is necessary to provide a way

to estimate the FDR of our method. Because correlation exists

among the rows and columns of Y, exactly estimating FDR be-

comes difficult. Here we follow the strategy of (Tibshirani and

Wang, 2008; Nowak et al., 2011) to obtain a rough estimator of

the true FDR, which may serve as a guideline when applying our

method. We use dFDR� ¼
N �

A�
ð32Þ

as a rough estimator for FDR, where N � is the number of asso-

ciations identified at threshold � under the null distribution, A� is

the number of associations identified at threshold � in the original

dataset. We use permutation to obtain the number of associations

identified under the null distribution. Specifically, for a given

threshold �, we do T permutations. At the t-th permutation, we

permute the rows of the expression dataset Y to generate a null

dataset, denoted as eYðtÞ. Then, we run LORS on the permuted

dataset (eYðtÞ,X) and obtain the number of associations by apply-

ing the threshold � to the estimated matrix bB, denoted as eAðtÞ� .

After T permutations, the final estimation of dFDR� is given by

dFDR� ¼
N �

A�
¼

1
T

PT
t¼1

eAðtÞ�
A�

ð33Þ

Fig. 2. The ROC curves for performance comparison. (A) The number of hidden factorsK¼ 10. (B) The number of hidden factors K¼ 30. In each panel,

we vary SNR1 ¼ f1=2, 1, 2g, SNR2 ¼ f1, 1=2, 1=3g to compare the performance of LORS, PANAMA and standard linear regression
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We report estimated FDR based on the simulated data as

described in Section 6.1 in Figure 9 of the Supplementary

Document. The permutation strategy provides a reasonably

good estimate for the true FDR. The estimated FDR often over-

estimates the true FDR (due to the correlation), and thus, it may

serve as a conservative guideline.

6.5 Application to eQTL data from yeast

We applied our method to two yeast datasets for eQTL mapping.

The first dataset is from Brem et al. (2002) (GEO accession

number GSE 1990), which consists of 7084 probes and 2956

genotyped loci in 112 segregates. The second one comes from

Smith and Kruglyak (2008), which includes 5493 probes mea-

sured in 109 segregates. Analysis of these two datasets provides

us an opportunity to demonstrate the benefit of our method

because the two expression data share the same genetic effect

but different confounding effects.

The significant linkage peaks given by standard linear regres-

sion are shown in Figure 3 (A). We can clearly see the confound-

ing effects that lead to spurious associations. We also show the

result given by LORS in Figure 3 (B). In total, LORS has de-

tected about 10000 associations according to non-zero B values.

Because LORS does not perform statistical significance tests, we

are not able to report our result based on statistical significance.

In practice, people may be more interested in the top signals that

will be followed up for replications. Thus, we only show the top

1000 associations based on the absolute value of B. The plots of

all associations are also given in the Supplementary Document

for completeness. It can be seen that the confounding effects are

successfully accounted by LORS, and thus spurious associations

are greatly reduced. To quantitatively evaluate the ability of ac-

counting for confounding effects, we compare the reproducibility

of the results given by LORS and PANAMA. We examine the

reproducibility based on the following two criteria:

� The consistency of detected SNP-gene associations. Let S1
and S2 be the sets of SNP-gene associations detected in the

two yeast datasets, respectively. The most T significant as-

sociations from the two datasets are denoted as ST1 and ST2 .

The consistency is defined as
jST1\S

T
2 j

T , where jST1 \ S
T
2 j de-

notes the size of ST1 \ S
T
2 . For LORS, the ranking is based

on the absolute value of B. For PANAMA, the ranking is

based on the q-value.

Fig. 3. (A) A plot of significant linkage peaks given by standard linear regression (P50.01 after Bonferroni correction) for expression QTL in the study

(Smith and Kruglyak, 2008) by marker location (x-axis) and expression trait location (y-axis). (B) The plot of linkage peaks in the study (Smith and

Kruglyak, 2008) given by LORS (Top 1000 associations based on abs ðBÞ are shown here. The plot of All associations are given in the supplementary

document)

Fig. 4. Consistency of detected associations between two independent

yeast eQTL datasets
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� The consistency of detected hotspots. For a SNP, we can

count the number of associated genes from the detected

SNP-gene associations (for LORs, all SNP–Gene pairs

with a non-zero B are defined as associations. For

PANAMA, SNP–Gene pairs with a q-value 50.001 are

defined as associations, we tried different cutoffs from 0.01

to 0.001, the results are similar), i.e. the regulatory degree of

the SNP. SNPs with large degrees are often referred to as

hotspots. According to SNPs’ regulatory degrees, we sort

them in a descending order and denote the sorted SNPs

lists as L1 and L2 for the two yeast datasets. Let LT1 and

LT2 be the top T SNPs in the sorted SNP lists, respectively.

The consistency of detected hotspots is defined as
jL

T
1\L

T
2 j

T .

For Brem’s dataset (Brem et al., 2002), the estimated sparse

matrix B given by LORS has about 6000 non-zero entries in

total. Among them, there are 4500 entries with abs ðBÞ40:01
and 2500 entries with abs ðBÞ40:05, respectively. For Simth’s

dataset (Smith and Kruglyak, 2008), the estimated B has about

10 000 non-zero entries in total. There are about 4500 entries

with abs ðBÞ40:05. (To provide a meaningful guideline of the

thresholds, we estimate FDR using 50 permutations. The esti-

mated FDR corresponding to different thresholds are provided

in the Supplementary Document. It tells us that FDR � 0.01

when threshold � 	 0.01). In Figure 4, we show the consistency

of the top 4500 associations. The consistencies of hotspots are

shown in Figure 5. It seems to be counter-intuitive that the frac-

tion of consistency of PANAMA increases as the number of

detected association increases. In fact, the consistency of

PANAMA increases to 0.12 and then drops. We provide the

detailed information in the Supplementary Document. From

Figures 4 and 5, it can be seen that LORS achieves better con-

sistency than PANAMA.
So far we have shown that spurious associations can be

reduced by successfully accounting for non-genetic effects.

Now we are going to show whether it could help to detect

more biologically relevant associations. We take a closer inspec-

tion of the top 15 hotspots, as listed in Table 1. In most cases

(12/15), associated genes are enriched with at least one GO cat-

egory, which implies that they are biologically relevant findings.

In particular, we detect two novel hotspots (NO. 9 and NO. 13),

which can not be detected by standard linear regression (adjusted

P 40:1). For these two hotspots, the associated genes are

Table 1. Summary of the detected hotspots

Hotspot index Sizea Locib GO categoryc Hitsd t-test (all)e t-test (hits)f

NO. 1 32 Chr XII:1056103 Telomere maintenance via recombination��� 5 20 5

NO. 2 27 Chr IV:1525327 Telomere maintenance via recombination��� 4 5 3

NO. 3 26 Chr XII:662627 Sterol metabolic process��� 7 25 7

NO. 4 24 Chr I:52859 Fatty acid metabolic process��� 10 12 6

NO. 5 24 Chr XV:202370 Response to abiotic stimulus�� 10 11 6

NO. 6 23 Chr III:201166 Response to pheromone�� 7 16 6

NO. 7 21 Chr VII:402833 Protein folding�� 8 4 3

NO. 8 19 Chr I:7298 Fatty acid beta-oxidation��� 5 13 4

NO. 9 18 Chr IV:33214 Response to toxin� 5 0 0

NO. 10 16 Chr II:562415 Cytokinesis��� 8 15 8

NO. 11 16 Chr X:698149 — — 3 —

NO. 12 16 Chr XV:132423 — — 13 —

NO. 13 15 Chr XIII:843356 Organic acid transport� 5 0 0

NO. 14 15 Chr V:395442 — — 3 —

NO. 15 15 Chr XVI:486637 Sexual reproduction� 6 8 4

aNumber of genes associated with the hotspot. bThe chromosome position of hotspot. cThe most significant GO category enriched in the associated gene set. The enrichment

test was performed using DAVID (Huang da and Lempicki, 2008). The gene function is defined by GO Fat category. DAVID outputs the Benjamini–Hochberg adjusted

P-value. Adjusted P-values are indicated by �, where �10�2 � 10�3; ��10�3 � 10�5; ���10�5 � 10�10: dNumber of associated genes that are functional in the enriched GO

category. eNumber of associated genes that can also be identified using t-test. fNumber of associated genes that are functional in the enriched GO category and can also be

identified using t-test. Two novel hotspots (NO. 9 and NO. 13) which cannot be detected by standard linear regression are in bold.

Fig. 5. Consistency of detected eQTL hotspots between two independent

yeast eQTL datasets
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enriched in GO categories. In detail, for hotspot NO. 9, five of

the 18 associated genes are functional in response to toxin, they

are AAD4, YDL218W, YLL056C, AAD6 and SPS100. The hot-

spot eQTL is cis-linked to one of them, AAD4, which apparently

explains the detected association. Hotspot NO. 13 locates at

transcription factor (TF) CAT8. Based on the transcriptional

regulation information in yeast from both direct (Chip-chip) or

indirect (Microarrays—wild type versus TF mutant) evidence

(Teixeira et al., 2006), 9 (they are ADY2, PUT4, GAP1, ATO3,

ALP1, YDR222w, CWP1, ADH2 and LPX1) of the 15

associated genes can be potentially regulated by CAT8 (adjusted

P 510�10, the details of the p-value calculation is given in the

Supplementary Document). Interestingly, five genes (i.e. ADY2,

PUT4, GAP1, ATO3, ALP1) are functional in organic acid

transport and CAT8 is known to regulate acid transport pathway

(Young et al., 2003). Identification of this hotspot provides a

positive example and indicates that, when non-genetic effect

has been successfully accounted for, we may be able to detect

more biologically relevant trans eQTL.

7 CONCLUSIONS

In this article, we have introduced a method named ‘LORS’ to

account for non-genetic effects in eQTL mapping. LORS pro-

vided a unified framework in which all SNPs and all gene probes

can be jointly analyzed. The formulation of LORS is a convex

optimization problem and thus its global optimum can be

achieved. We also developed an efficient algorithm to solve this

problem and guaranteed its convergence. We demonstrated its

performance using synthetic datasets and real datasets.
A limitation of LORS is that we do not provide a rigorous

statistical significance test of the estimated coefficient matrix B.

Here we simply rank associations based on the estimated sparse

matrix abs(B) and estimate FDR.
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