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INTRODUCTION
The detailed analysis of human sleep requires polysom-

nography (PSG), the simultaneous recording of the electroen-
cephalogram (EEG), electrooculogram, electromyogram and 
often other physiologic signals. Although PSG remains the 
gold standard, the procedure is time-consuming and costly. 
This unfortunately makes it difficult to use PSG to quantify 
sleep in the large-scale cohorts that are, for example, desirable 
in twin-sibling heritability studies and genome-wide associa-
tion studies (GWAS).

A step up in cost-efficacy, yet a step down in precision, was re-
alized with the introduction of actigraphy, the recording of wrist 
movements with a small solid-state recorder.1-3 Given the asso-
ciation between prolonged immobility and sleep,4 actigraphy is 
considered a reasonably reliable and valid alternative method to 
estimate sleep-wake patterns.5 In the days that actigraphy was 
developed, miniature solid-state memory for data storage was 
of very limited capacity. Therefore, the detected acceleration 
signal is usually preprocessed to store a single count value per 
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epoch, usually per 30 sec or per min. Moreover, linear three-
dimensional accelerometers were quite bulky and costly, so that 
manufacturers usually resorted to monoaxial pressure sensitive 
piezo elements, e.g., with a lever connected to it, yielding a 
nonlinear acceleration response and some between-device vari-
ability. Still, acceptably valid sleep estimates could be derived 
by algorithms acting on the recorded counts,2,6,7 although it has 
been argued whether sensitivity and specificity are acceptable 
in people with disorders such as insomnia8-10 or Parkinson dis-
ease.11-13 Actigraphy does not provide the detailed information 
on sleep that PSG gives, but has a number of advantages over 
PSG. First, the unobtrusive character of actigraphy makes it tol-
erable to uncooperative patients.14-16 Second, the possibility to 
record for multiple days or even weeks has opened up the pos-
sibility to quantify between-day sleep variability patterns and to 
obtain more representative sleep estimates than can be obtained 
with one or at most only a few nights of PSG.17,18 Unfortunately, 
the pooling and integration of actigraphic data from several co-
horts, as is for example considered necessary for GWAS stud-
ies where actigraphy can be of great value,19 is obstructed by 
brand-specific differences in instrumentation, data reduction, 
and scoring algorithms.20

These limitations can be overcome with the help of recent 
advances in microelectronics. Accelerometers integrated in mi-
croelectromechanical systems (MEMS) have become widely 
available, thanks to their mass production for use in mobile de-
vices such as smartphones, games, and tablet computers. This 
provides the opportunity for long-term recording of raw triaxial 
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linear accelerometry signals at high sample rates in SI units, 
rather than brand-specific actigraphy count signals extracted 
from nonlinear uniaxial accelerometers, opening up the possi-
bility to compare and pool data from any brand. Although accel-
erometers with good linearity have been applied in actigraphs,21 
the long-term high-resolution sampling of three-dimensional 
linear accelerometers has only become widely available with 
MEMS. Importantly, as is the case for EEG, reproducible al-
gorithms for preprocessing and analysis and later reanalysis of 
raw signals can be published and used.

MEMS-accelerometers for long-term recordings have be-
come available and shown valid to estimate energy expendi-
ture.22 Currently, several larger cohort studies and follow-up 
studies use the traditional activity count type of actigraphs. 
The necessity of continuity of outcome measures may impede 
researchers from switching to the newer type and attain other 
advantages of the more precise movement assessment. The con-
tinuity problem would be solved with a valid method to convert 
the MEMS-accelerometry signal into the traditional counts. 
This would subsequently allow for the use of the very same 
validated algorithms to estimate sleep parameters from activity 
counts and thus provide backward compatibility in long-term 
follow-up studies and cohort studies.

Therefore, the aim of the current study is to provide a data-
driven optimized conversion of the raw accelerometry signal 
into counts as stored in one of the most commonly used ac-
tigraphs, the Actiwatch (Cambridge Neurotechnology Ltd., 
Cambridge, UK and Mini Mitter, Respironics Inc., Bend, Or-
egon, USA). Subsequently, the performance of the generated 
counts in estimating sleep parameters will be evaluated by 
comparing them with sleep parameter estimates obtained from 
the simultaneously worn actigraphs. Finally, the reliability of 
MEMS-accelerometry recorders as compared to traditional ac-
tigraphs will be evaluated by comparing sleep estimate agree-
ment between two MEMS-accelerometers, two actigraphs, and 
a MEMS-accelerometer and an actigraph.

METHODS

Study Participants
Fifteen volunteers (10 males, 29.7 ± 3.9 y [23-36 y], mean 

± SD [range]) were recruited by advertisement and word of 
mouth. All participants stated to be in good health and worked 
regular office hours. As part of a larger protocol, the study was 
approved by the Ethics Committee of the VU University and 
Medical Center.

Actigraphs and MEMS-Accelerometers
Traditional actigraphic count recordings were obtained using 

the Actiwatch. MEMS-accelerometry signals were obtained us-
ing the Geneactiv recorder (ActivInsights Ltd., Kimbolton, UK).

The Actiwatch contains an acceleration-responsive piezo-
electric sensor with a range of ± 5 g and a sensitivity ≥ 0.01 g. 
Sensitivity to motion is greatest when the wrist is moved along 
the palmar-dorsal axis, less in the radial-ulnar axis, and least 
when the wrist moves parallel to the long axis of the radius and 
ulna. This generates an intrinsic nonlinearity, which is further 
amplified by the use of a lever to amplify the force on the piezo-
electric sensor. The Actiwatch applies a 3-11 Hz analog band-

pass filter prior to digital sampling at 32 Hz and a resolution of 
approximately 25 counts/g. The signal is converted online to a 
summary count measure by taking the peak value of each sec 
and determining the sum across the epoch length. The current 
investigation used 15-sec epochs, the best available time reso-
lution on the Actiwatch.

The Geneactiv recorder contains a triaxial MEMS-acceler-
ometer with a range of ± 8 g and a sensitivity of ≥ 0.004 g. It 
records both motion-related and gravitational acceleration and 
has a linear and equal sensitivity along the three axes. The x-
axis of the Geneactiv recorder corresponds to the radial-ulnar 
axis, the y-axis to the long axis of the radius and ulna, and the 
z-axis to the palmar-dorsal axis. Therefore, the z-axis of the 
Geneactiv recorder corresponds to the most sensitive axis of the 
Actiwatch. The sampling frequency of the Geneactiv recorder 
was set at 50 Hz.

Procedures
Each study participant underwent an overnight home record-

ing from 18:00 to 09:00 the next day. Each study participant 
kept a sleep log of their sleep-wake schedule (including bed-
time, lights out time, final wake time, and get-up time). No 
instructions were given with regard to their sleep pattern. All 
recordings were obtained within 5 weeks (week 29-34, 2011). 
For each recording, participants wore two Geneactiv recorders 
and two Actiwatches simultaneously on the nondominant wrist. 
Prior to each recording, two Geneactiv recorders and two Acti-
watches were randomly selected from a pool of six Geneactiv 
recorders and a pool of six Actiwatches. To optimize synchro-
nization, the same personal computer was used to initiate all 
devices sequentially. Synchronization was verified by cross-
correlation analysis of the time series and corrected using the 
optimal lag if required. The two Geneactiv recorders and two 
Actiwatches were tightly attached to a 28 mm × 69 mm × 1 mm 
rigid plastic strip (Figure 1). The strip was oriented parallel to 
the long axis of the forearm. Due to the shape of the devices, 
both Actiwatches were attached to the medial (ulnar) side of the 
strip, whereas the Geneactiv recorders were placed on the lat-
eral (radial) side. The devices lay directly on the dorsal surface 
of the wrist underneath the strip. The device pairs were placed 
side by side on the wrist, and randomly assigned to the more 
proximal and more distal location. Thus, a distal pair of one 
Actiwatch and one Geneactiv recorder was placed as close as 
possible to the hand, and the other pair was placed immediately 
proximal to that.

Data Conversion Steps
As a first step to obtain a transfer function that converts raw 

Geneactiv accelerometry data into Actiwatch counts, accelerom-
etry data were preprocessed according to the technical specifica-
tion of the Actiwatch. Thus, only the palmar-dorsal (z) axis of the 
Geneactiv recorder was used for analysis as it corresponds to the 
most sensitive axis of the Actiwatch. Subsequently, a band-pass 
filter (3-11 Hz, Butterworth, order 5) was applied, which removed 
most of the acceleration signal caused by rotations in the gravita-
tional field.23 The signal was then rectified and divided into 128 
bins between 0 and 5 g, such that a value of 25 corresponds to 
approximately 1 g. Within each sec the peak values were detected 
and summed to obtain one count value per 15-sec epoch.
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An initial investigation of the similarity of Actiwatch counts 
and Geneactiv-derived counts indicated that the Geneactiv 
counts were seldom zero for the intervals where correspond-
ing Actiwatch counts were zero. This indicated that a higher 
sensitivity or higher noise fl oor was present in the Geneactiv 
recordings. An optimized threshold thus had to be introduced 
to correct for this noise fl oor, which was accomplished as fol-
lows. First, Actiwatch epochs were converted to a binary score. 
All epochs containing any activity (counts ≥ 1) were scored 
as 1 and all immobility epochs scored as 0. Similarly, for the 
Geneactiv recordings all epochs with activity above a given 
threshold were scored as 1, or 0 if below this threshold. The 
optimal threshold was defi ned as the threshold at which there 
was a minimal absolute difference between the binary scores of 
both devices. The mean optimal threshold across all Geneactiv 
recordings of all study participants was subtracted from each 
epoch and negative counts/epoch were set to zero.

Optimization of the Transfer Function
Figure 2A shows that preprocessing steps identical to the man-

ufacturer’s specifi cation of those taken in the Actiwatch fi rmware 
still resulted in substantially smaller Geneactiv- estimated counts 
per epoch as compared to the Actiwatch counts. To correct for 
this proportional difference, nonparametric Passing-Bablok re-
gression was used to obtain the optimal regression equation to 
convert the Geneactiv counts/epoch into Actiwatch counts/ep-
och.24,25 The Passing-Bablok method has fewer assumptions re-
garding the distribution of the data than ordinary least-squares 
regression. It allows for imprecision in both the reference method 
(Actiwatch) and the comparison method (Geneactiv), and it is 
not biased strongly by outliers. For each participant, regression 
coeffi cients were calculated between the counts of both distal 
devices (i.e., GeneactivDist and ActiwatchDist) and both proxi-

mal devices (i.e., GeneactivProx and ActiwatchProx), resulting 
in 2 × 15 (2 × N) regression equations (ActiwatchCount = slope 
× GeneactivCount + intercept). All coeffi cients were estimated 
over an equal number of 15-sec epochs (3,600), i.e., the entire 
recording period from 18:00 until 09:00 on the next day.

Cross-validation
Preliminary analyses indicated that the regression slopes for 

signals recorded at the proximal part of the wrist were signifi -
cantly higher than regression slopes for signals recorded at the 
distal part of the wrist. Therefore, the N Passing-Bablok equa-

Figure 1—A photograph of the setup showing the proximal and distal 
pairs of Actiwatches (indicated by the solid red arrows) and Geneactiv 
accelerometers. The pairs are interconnected by a rigid plastic strip. The 
axes of the Geneactiv (dashed white arrows) are plotted in the distal 
device. The most sensitive axis of the Actiwatch (solid white arrow) is 
identical to the z-axis of the Geneactiv.
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Figure 2—(A) Scatterplot of Actiwatch-given and Geneactiv-derived counts/epoch from the distal recording of a single participant after applying the initial 
preprocessing steps, before matching the sensitivity of the devices according to the Passing-Bablok regression equation (solid line). The line of unity, i.e. x = y 
(dotted line) highlights the difference in sensitivity between Actiwatch counts and Geneactiv counts after the initial data conversion steps. (B) Bland-Altman 
plot of Actiwatch and Geneactiv counts/epoch after the cross-validation transfer function has been applied. The 95% limits of agreement (dashed line) were 
estimated using a square root regression for half-normally distributed data (± 5.99*square root(mean counts/epoch)).31
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tions were independently cross-validated for the proximal and 
distal locations using the K-fold approach (‘leave-one-out’).26 
The mean slope and intercept were calculated over the slopes 
and intercepts of the equations of N-1 Geneactiv-Actiwatch pairs 
of recordings (training pairs). The equation was subsequently ap-
plied to convert Geneactiv to Actiwatch counts for the excluded 
pair of Geneactiv-Actiwatch recordings (validation set). The re-
sulting counts were rounded to the nearest integer. Subsequently, 
actigraphic sleep parameters were calculated from this series of 
counts and compared to those obtained from the corresponding 
Actiwatch data. This was repeated N times, such that data from 
each device pair were used once as a validation set.

Evaluation of Performance of Derived Counts to Estimate Sleep 
Parameters

To test the practical applicability of the conversion steps, the 
algorithm used by the Actiwatch software was applied to the de-
rived Geneactiv counts to estimate sleep parameters (Table 1). 
The Actiwatch software uses a validated algorithm to classify 
an epoch as either sleep or wake6,7: first, the activity in each 
epoch is rescored by weighting of activity in the surrounding 
2-min period. For each 15-sec epoch the rescored activity is 
calculated as follows:

A0 = 0.04E-(8-5) + 0.2E-(4-1) + 4E0 + 0.2E+(1-4) + 0.04E+(5-8)

Where A0 is the total rescored activity for the 15-sec epoch of 
interest; E0 is the activity in the scored epoch; En is the activ-
ity in the epochs 2 min before (E-8 to E-1) and after (E+1 to E+8) 
the scored epoch. If A is less or equal to a predefined threshold 
(A ≤ T) the epoch is scored as sleep, otherwise the epoch is 
scored as wake (A > T). Estimates of the most commonly used 
sleep parameters, listed in Table 1, were calculated using the 
low (T = 20 counts), default medium (T = 40 counts) and high 
threshold setting (T = 80 counts).

Statistical Analyses
The agreement between individual epochs being scored as 

wake or sleep by the algorithm was quantified using the Co-
hen kappa statistic.27,28 Agreement between all-night sleep 
parameter estimates derived from Actiwatch counts versus 

Geneactiv-derived count estimates was visually inspected with 
Bland-Altman (mean-difference) plots.29,30 For each Bland-
Altman plot, the assumption of normality of the differences 
was statistically evaluated using the Shapiro-Wilk test. Due to 
the half-normal distribution of counts/epoch, the 95% limits of 
agreement (LOA) in Figure 2B were calculated using regres-
sion on the square root of the mean counts/epoch.31 Spearman 
rank correlation analysis between the differences and the mean 
counts/epoch was used to test for constant or proportional bias 
throughout the measurement range. Inference of the population 
mean regression slope and the 95% confidence interval (CI) 
was obtained by applying the bootstrap method. One thousand 
new mean regression slopes were obtained by resampling with 
replacement from the original dataset of 15 regression slopes. 
The CIs were estimated using the bias corrected and accelerated 
percentile method.32

The a priori criterion set to allow for the conclusion of ad-
equate performance, the variance between MEMS- and acti-
graph-derived sleep estimates should ideally be smaller than or 
equal to the variance between sleep estimates derived from two 
different exemplars of the same actigraph type.

Actiwatch and Geneactiv data were uploaded to the com-
puter using the Actiwatch Activity and Sleep Analysis software 
(version 5.08, Cambridge Neurotechnology Ltd., Cambridge, 
UK) and the Geneactiv PC software (version 1.0, ActivIn-
sights Ltd., Kimbolton, UK), respectively. Data preprocessing, 
Passing-Bablok regression, cross-validation, bootstrapping and 
calculation of the Cohen kappa statistic, and sleep parameters 
were all performed offline using custom-written MATLAB 
programs (The Mathworks Inc., Natick, Massachusetts, USA). 
Statistical analyses were conducted using SPSS 18 (SPSS Inc., 
Chicago, Illinois, USA).

RESULTS

Sleep Log
The sleep logs indicated that bed times ranged from 21:30 

to 00:31 and lights out times from 21:45 to 00:31. Final wake 
time and get up times ranged from 05:30 to 08:45 and 05:45 to 
09:00, respectively. The average time in bed was 481 ± 56 min 
(mean ± SD).

Table 1—Definition of sleep parameters
Time in bed (TIB) Time between bedtime and get-up time.
Sleep start The time associated with the first epoch of a 10-min period of immobility starting from lights out time. Within the 

immobility period 1 epoch of activity was allowed.
Assumed sleep period (ASP) Time between sleep start and final wake time.
Sleep onset latency (SOL) Time between lights out time and sleep start.
Total sleep time (TST) The number of epochs within the assumed sleep period scored as sleep multiplied by the epoch length.
Wake after sleep onset (WASO) The number of epochs within the assumed sleep period scored as wake multiplied by the epoch length. 
Sleep efficiency (SE) The ratio of total sleep time to assumed sleep time multiplied by 100.
Number of wake bouts (#WB) The number of continuous blocks of length ≥ 1 epoch(s) in which each epoch is scored as wake, in the assumed 

sleep period.
Mean wake bout time (MWBT) Wake after sleep onset divided by the number of wake bouts.
Number of sleep bouts (#SB) The number of continuous blocks of length ≥ 1 epoch(s) in which each epoch is scored as sleep, in the assumed 

sleep period.
Mean sleep bout time (MSBT) Total sleep time divided by the number of sleep bouts.
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Data Conversion Performance
After the Geneactiv z-axis signal had been band-pass filtered, 

binned, and converted to 15-sec epochs, the derived counts/ep-
och were converted to binary scores to correct for offset. The 
mean optimum threshold at which there was a minimal absolute 
difference between the binary scores of both proximal devices 
and distal devices was 18 derived counts/epoch (range = [17-
19] and [17-18] respectively). After subtracting this offset from 
all epochs, a linear relation between Actiwatch and Geneactiv 
counts/epoch was found (Figure 2A). Despite applying the 
Actiwatch preprocessing specifications to the Geneactiv raw 
signals, each Geneactiv-derived count/epoch was substantially 
smaller than its corresponding Actiwatch-given count/epoch.

Linear Passing-Bablok regression was used to calibrate 
the Geneactiv counts/epoch to Actiwatch counts/epoch. The 
mean slope of the Passing-Bablok regression (Actiwatch = 
slope*Geneactiv + intercept) of the 15 proximal device pairs 
(3.30 ± 0.19) was significantly higher than the mean slope of 
the 15 distal device pairs (3.07 ± 0.30): 0.23 ± 0.25; 95% CI 
(0.09; 0.36); t(14) = -3.526, P = 0.003.The intercept was 0 
for all 30 regressions due to the high number of zero counts 
in the data (2,385 ± 249 and 2,477 ± 229, for Actiwatch and 
Geneactiv respectively), which is in agreement with expecta-
tion for sleep data. After the regression conversion was applied, 
the counts/epoch of the Geneactiv were similar to those of the 
Actiwatch (Figure 2B). Some nonlinearity was observed for > 
250 counts/epoch, which did not affect sleep-wake classifica-
tion because all epochs with such high activity will be scored 
as wake anyway.

Agreement of Scoring an Epoch as Sleep or Wakefulness and of 
Sleep Parameter Estimates

Bootstrapping the mean and CIs of the slope resulted in a 
mean of 3.30 95% CI (3.20; 3.40) and 3.07 95% CI (2.95; 3.26)
for the proximal and distal slopes, respectively. The agreement 
of individual epochs being scored as either sleep or wake was 
almost perfect at all three thresholds (Table 2).33 When aver-
aged across study participants and distal and proximal place-
ment, kappa values were (mean ± SD (range)): 0.87 ± 0.05 
(0.75-0.94), 0.85 ± 0.06 (0.71-0.92) and 0.83 ± 0.07 (0.65-0.93) 
for the low, medium, and high threshold, respectively.

Statistical testing and visual inspection of the Bland-Alt-
man plots revealed one outlier. This was due to a substan-
tial difference in the estimation of sleep onset latency (SOL) 
between two Actiwatch devices within the same participant 
(participant 6). This outlier subsequently also affected nor-
mality of the differences in the Bland-Altman plots of total 
sleep time (TST), sleep efficiency (SE), wake after sleep on-
set (WASO), mean wake bout time (MWBT), and mean sleep 
bout time (MSBT). It moreover increased the LOA in favor of 
the newer assessment device (i.e. between-MEMS variance 
would be smaller than between-actigraph variance). Inspec-
tion of the time series of Actiwatch counts revealed that two 
extra activity peaks postponed the estimation of sleep start in 
one Actiwatch by 13 min. Although this stresses the need for 
reliable estimation of SOL, the error was due to a limitation 
of the sleep scoring algorithm rather than due to the conver-
sion algorithm per se. Therefore, a conservative approach was 
taken and the outlier was excluded from the Bland-Altman 

plots and not used in the estimation of the mean bias and LOA 
of the differences.

After removal of the outlier, SOL differences were still not 
normally distributed. However, most of the differences were 
equal to zero and transformation of the data did not result in 
normality. Therefore, the estimated LOAs for SOL should be 
interpreted with caution. The removal of the outlier resulted in 
normality of the differences of all other sleep parameters and 
therefore reliable estimates of the LOA (Figure 3).

A nonsignificant Spearman rank correlation between the dif-
ferences and means of all the Bland-Altman plots confirmed 
that the bias was uniform throughout the measurement range. 
At the medium (default) threshold, the bias between two Ac-
tiwatch devices was similar to the bias between two Geneac-
tiv devices for SOL, TST, WASO, SE, MWBT, and MSBT 
(Figure 3).

Only the LOAs of SOL and MSBT were larger between two 
Geneactiv devices than between two Actiwatch devices, but as 
stated previously, the LOA of SOL should be interpreted with 
caution. For all other sleep parameters, the LOAs obtained by 
two Geneactiv devices were smaller than the LOAs obtained by 
two Actiwatch devices (Table 3). This indicated more congru-
ent sleep parameter estimates from two Geneactiv devices at 
two different sites than from two Actiwatch devices at two dif-
ferent sites. The algorithm was also applied using the low and 
high threshold (data not shown). As sensitivity increased from 
the high to the low threshold, both the bias and the LOAs in-
creased in magnitude, irrespective of the device. Nevertheless, 
at all thresholds agreement between two Geneactiv devices was 
better than between two Actiwatch devices for all sleep esti-
mates, except for SOL and MSBT.

DISCUSSION
The aim of the study was to investigate whether MEMS-

accelerometers could give equivalent sleep parameter estimates 
as actigraphy. Although this may seem a rather trivial question 
at first sight, a confirmative answer would have important con-
sequences for sleep research in the current era of large-scale 
pooled-cohorts GWAS studies. First, because MEMS-acceler-
ometers store the raw and linear acceleration signals, it would 
become feasible to pool data from different cohorts measured 
with different brands of MEMS-accelerometers, in contrast to 
the problematic pooling of data obtained with different brands 
of actigraphs. Furthermore, a successful conversion algorithm 
would make it feasible for ongoing long-term cohort or follow-
up studies to switch from actigraphs to MEMS-accelerometers 

Table 2—Percentage of epochs rated as congruent (diagonal) and 
incongruent (off-diagonal) by Actiwatch and Geneactiv at the medium 
threshold

MEMS scores 
sleep

MEMS scores 
wake

Actiwatch scores sleep 91.6 ± 3.3% 1.0 ± 0.4%
Actiwatch scores wake 1.0 ± 0.6% 6.4 ± 2.9%

Data are presented as mean ± standard deviation, averaged 
across all participants and distal and proximal placements. MEMS, 
microelectromechanical systems.
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Figure 3—Bland-Altman (mean-difference) plots for sleep onset latency, total sleep time, wake after sleep onset, sleep efficiency, mean wake bout time, 
and mean sleep bout time estimated using the medium threshold of the sleep scoring algorithm. Differences between two measurements by two devices are 
plotted against the mean of the two measurements. The bias (dotted line) is the mean difference between all measurements by the two devices. The 95% 
limits of agreement (dashed lines) define the range between which 95% of the differences between measurements by the two devices will lie. The smaller 
the limits of agreement, the better the agreement between two different devices (between comparison), or between two identical devices (within comparison). 
The left Bland-Altman plots show the difference in sleep parameter estimation between both proximal and both distal recordings of the two different types 
of devices (i.e. GeneactivProx-ActiwatchProx and GeneactivDist-ActiwatchDist). These Bland-Altman plots include two recordings per participant, thus the 
95% limits of agreement were adjusted for repeated measures.29 The middle and right Bland-Altman plots show the differences between proximal and distal 
recording within the same type of device. Please note the difference in the scaling of the axes.
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without compromising backward compatibility. Finally, the 
availability of the raw linear acceleration signal can be of use 
for those studies where the traditional data-reduction and analy-
sis steps do not yield reliable sleep estimates, e.g., in infants34; 
different algorithms can be applied to the stored raw data as 
they become available.

To design and optimize an algorithm to make MEMS-ac-
celerometers mimic actigraphs, their raw acceleration signal 
was converted to movement counts, which were subjected to 
the algorithm used by the Actiwatch software to obtain sleep 
estimates. Systematic comparisons were made on simultane-
ous recordings of sets of two Actiwatches and two MEMS-
accelerometers. The results indicate that the congruency of 
sleep estimates obtained from two different MEMS-acceler-
ometer devices was better than the congruency of sleep esti-
mates obtained from two different exemplars of the same type 
of actigraph. Therefore, most of the disagreement between the 
Geneactiv and the Actiwatch could be attributed to poor reli-
ability, i.e., poor congruence between two exemplars of the 
same type of Actiwatch.29 The transformation algorithm allows 
MEMS-accelerometers to be used interchangeably with tradi-
tional actigraphs, because the 95% LOA for sleep parameter 
estimates obtained using a MEMS-accelerometer device versus 
those obtained using a traditional actigraph was equal or better 
than the 95% LOA for sleep parameter estimates obtained using 
two exemplars of the same type of actigraph.

Very few studies have addressed the between-device reli-
ability of traditional actigraphs by simultaneously using two 
exemplars and comparing the sleep parameter estimates gen-
erated by the two. Benson et al.35 compared sleep parameter 
estimates generated by the simultaneously worn Mini-Motion 
Logger and Actiwatch during two nonconsecutive sleep re-
cordings. These devices differ with respect to hardware, data 
reduction algorithms, and scoring algorithms. Unfortunately, 
no duplicate recordings were made to evaluate the agreement 
between two different exemplars of the same device type. 
The authors reported no significant differences between the 
two types of devices at low and medium sensitivity setting 
(i.e., a high and a medium threshold, respectively). However, 
at high sensitivity (i.e., a low threshold), the devices differed 
significantly on TST, WASO, and SE. Current results show a 
similar trend of increasing bias and variance as the threshold 
was lowered.

An interesting observation was that recordings with devices 
placed more distally on the wrist yielded lower TST and SE and 
higher WASO than recordings with devices placed more proxi-
mally on the wrist. Considering that only the palmar-dorsal 
axis was analyzed and the larger radius (43 mm) relative to the 
elbow and shoulder joint, stronger accelerations are expected 
in the distal recording. Stronger accelerations result in higher 
counts, likely more epochs with counts beyond the threshold 
for sleep and thus increased wake detection (WASO), which 
subsequently decreases TST and SE. Given that small differ-
ences in arm length affect sleep estimates, future algorithms 
based on more sensitive raw accelerometry might consider arm 
length as an additional variable.

The weight of the Geneactiv devices (2 × 16 g), the Acti-
watches (2 × 17.5 g), the plastic strip, and the straps was 89 g 
in total. Thus, the weight of our validation set-up is more than 
the weight of a single actigraph. However, adding 89 g induces 
an increase of only 2-3% to the intrinsic weight of the arm and 
hand.36,37 At least in our young and healthy population, this find-
ing appears insufficient to considerably affect the accelerations 
brought about by the upper arm and shoulder muscles. It should 
be noted that the cumulative weight of the validation setup is 
comparable to the weight of the first commercially available 
actigraphs. If cross-validation would be pursued within popu-
lations suffering from severe muscle atrophy, the issue would 
require careful consideration.

Bootstrap analyses on subsamples of our population indicat-
ed that follow-up studies can reliably estimate regression coef-
ficients in a sample of 13 (or more) participants (Appendix A).

It should be noted that the conversion algorithm presented 
here applies to a healthy adult population and is specific for 
the Actiwatch. Because MEMS record raw accelerometry 
signals, similar algorithms can be designed for other types of 
actigraphs that obtain counts by manufacturer-specific prepro-
cessing steps. This results in the further advantage that MEMS 
recordings can be made compatible with different brands and 
types of actigraphs.

In conclusion, the current study optimized and validated a 
data-processing algorithm that makes it possible to pool and 
exchange data obtained with one of the most frequently used 
actigraphs and data obtained with MEMS-accelerometers. If 
anything, more reliable sleep parameter estimates could be 
obtained from MEMS-accelerometers than from actigraphs, 

Table 3—Summary of bias and 95% limits of agreement of the Bland-Altman plots in Figure 3

Geneactiv-Actiwatch ActiwatchProx-ActiwatchDist GeneactivProx-GeneactivDist
Sleep onset latency (min) -0.37 (-2.32; 1.59) -0.29 (-1.39; -0.82) -0.30 (-2.26; 1.65)
Total sleep time (min) 1.19 (-7.05; 9.43) 2.77 (-5.74; 11.28) 2.39 (-2.62; 7.40)
Wake after sleep onset (min) -0.82 (-8.85; 7.21) -2.48 (-10.62; 5.66) -2.09 (-6.39; 2.22)
Sleep efficiency (%) 0.20 (-1.64; 2.03) 0.55 (-1.33; 2.44) 0.48 (-0.52; 1.48)
Mean wake bout time (min) 0.02 (-0.16; 0.19) -0.04 (-0.22; 0.15) -0.04 (-0.15; 0.07)
Mean sleep bout time (min) 0.70 (-1.27; 2.67) 0.41 (-0.41; 1.23) 0.31 (-0.87; 1.50)

Bias and 95% limits of agreement of the Bland-Altman plots of sleep onset latency, total sleep time, wake after sleep onset, sleep efficiency, mean wake bout 
time, and mean sleep bout time estimated using the medium threshold. The bias is the mean difference between measurements by the two devices. The 
95% limits of agreement define the range between which 95% of the differences between measurements by the two devices will lie. The smaller the limits of 
agreement, the better the repeatability of the device.
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because MEMS-accelerometers show less variability between 
different exemplars of the same type of device. The demon-
stration of validity has strong implications for sleep research. 
Because MEMS-accelerometers can be produced currently at 
a fraction of the cost of actigraphs, large-scale assessment of 
cohorts in GWAS studies, for example, may become feasible. 
The algorithm provided even makes it feasible for ongoing co-
hort studies to switch from actigraphy to MEMS-accelerometry 
while maintaining backward compatibility. To aid in the tran-
sition from older Actiwatches to newer MEMS-accelerometry 
devices, the conversion steps presented in this study were inte-
grated in a MATLAB program with a graphical user interface. 
The program can be obtained from the authors and allows the 
user to analyze the data in a similar manner as the Actiwatch 
Activity and Sleep Analysis software.

The availability of the original raw acceleration signals 
will not only make it easy to pool data obtained with differ-
ent brands of MEMS-accelerometers, but also to explore new 
ways to optimize movement-based sleep estimates. Future 

studies that combine video monitoring, PSG, and MEMS-
accelerometry can be used to further validate MEMS-accel-
erometry for sleep-wake discrimination. The possibility for 
in depth analysis of the three-dimensional acceleration signal 
might improve the sensitivity and specificity of movement-
based sleep estimates. It would be interesting to investigate 
whether the three-dimensional raw acceleration signal could 
be exploited to design and validate algorithms to discriminate 
movements that are specific to sleep stages. For example, not 
only eye movements38 but also limb movements39 during rapid 
eye movement sleep have been noted to be of a different qual-
ity than wake movements. In addition, the availability of the 
gravitational acceleration may be of use for the detection of 
the prolonged maintenance of a supine position, which would 
make the cumbersome and often unreliable logs of bedtime 
and get-up time superfluous. It may furthermore be used to 
discriminate gross body movements and postural changes 
from mere wrist movements and thus improve the estimate of 
sleep quality.40 Further improvements of the sleep estimates 
might be feasible by combining the acceleration signal with 
other physiological signals, for example skin temperature.41-43 
The availability of MEMS-accelerometers may herald a new 
era of valid, reliable, and feasible large-scale, field-based as-
sessment of objective sleep estimates.

APPENDIX A
For future cross-validation and optimization studies, the 

number of study participants required to obtain a sufficiently 
precise estimate of the conversion regression slope should be 
considered. To provide an indication based on our data, we ap-
plied bootstrapping to subsets of the original dataset of 15 re-
gression slopes. For each sample of size S (between three and 
15 study participants) we created 1,000 new datasets of S re-
gression slopes by sampling, with replacement, from the origi-
nal dataset of 15 regression slope coefficients. The intercepts 
of the regressions were all zero and therefore excluded from 
the analysis. For each of these 1,000 datasets the mean slope 
was calculated. Subsequently, the mean and standard error of 
the mean (SEM) of all 1,000 means was calculated and plot-
ted against the sample size (Figure 4). Beyond 13 study par-
ticipants the reduction in standard error of the mean with every 
additional study participant appears minimal, indicating that 13 
(or more) participants should be sufficient to get a reliable esti-
mate of the mean regression slope.
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Figure 4—Mean and standard error of the mean (SEM) of the proximal 
(A) and distal (B) regression slopes plotted against sample size. Please 
note the difference in the range of the vertical axes.
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