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Key points

• Activation of N-methyl-D-aspartate (NMDA) receptors (NMDARs) is a crucial mechanism
underlying the development and maintenance of pain.

• Little is known about the role of presynaptic NMDARs in regulating glutamate release from
the spinal primary afferent terminals in neuropathic pain conditions in adult rats.

• In this study we use electrophysiological recording from superficial dorsal horn neurons to show
that endogenous activation of presynaptic NMDARs in neuropathic rats increases glutamate
release from the primary afferents, which contributes to the enhanced amplitudes of EPSCs
evoked by input from the primary afferents. In contrast, glutamate release from the primary
afferents in sham-operated rats was not regulated by presynaptic NMDARs. These findings are
supported by an increase of NR2B receptor protein expression in both the dorsal root ganglion
and spinal dorsal horn ipsilateral to the injury site in neuropathic rats.

• Our data demonstrated that suppression of the presynaptic NMDAR activity in the primary
sensory afferents is an effective approach to attenuate the enhanced glutamatergic response in
the spinal first sensory synapse induced by peripheral nerve injury, and presynaptic NMDARs
might be a novel target for the development of analgesics.

Abstract Activation of N-methyl-D-aspartate (NMDA) receptors (NMDARs) is a crucial
mechanism underlying the development and maintenance of pain. Traditionally, the role of
NMDARs in the pathogenesis of pain is ascribed to their activation and signalling cascades
in postsynaptic neurons. In this study, we determined if presynaptic NMDARs in the primary
afferent central terminals play a role in synaptic plasticity of the spinal first sensory synapse
in a rat model of neuropathic pain induced by spinal nerve ligation. Excitatory postsynaptic
currents (EPSCs) were recorded from superficial dorsal horn neurons of spinal slices taken
from young adult rats. We showed that increased glutamate release from the primary afferents
contributed to the enhanced amplitudes of EPSCs evoked by input from the primary afferents
in neuropathic rats. Endogenous activation of presynaptic NMDARs increased glutamate release
from the primary afferents in neuropathic rats. Presynaptic NMDARs in neuropathic rats were
mainly composed of NR2B receptors. The action of presynaptic NMDARs in neuropathic rats
was enhanced by exogenous D-serine and/or NMDA and dependent on activation of protein
kinase C. In contrast, glutamate release from the primary afferents in sham-operated rats was
not regulated by presynaptic NMDARs. We demonstrated that the lack of NMDAR-mediated
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regulation of glutamate release in sham-operated rats was not attributable to low extracellular
levels of the NMDAR agonist and/or coagonist (D-serine), but rather was due to the insufficient
function and/or number of presynaptic NMDARs. This was supported by an increase of NR2B
receptor protein expression in both the dorsal root ganglion and spinal dorsal horn ipsilateral
to the injury site in neuropathic rats. Hence, suppression of the presynaptic NMDAR activity in
the primary sensory afferents is an effective approach to attenuate the enhanced glutamatergic
response in the spinal first sensory synapse induced by peripheral nerve injury, and presynaptic
NMDARs might be a novel target for the development of analgesics.
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ratio; SNL, spinal nerve ligation injury.

Introduction

Neuropathic pain, i.e. pain caused by injury or
dysfunction in the nervous system, is a major treatment
challenge for both patients and healthcare providers.
Ineffective treatment of neuropathic pain results from
our incomplete understanding of mechanisms under-
lying abnormal neuronal activity along the nociceptive
pathways. Excessive activation of glutamate receptors
in neurons is a crucial mechanism leading to the
enhancement of excitatory synaptic transmission in
nociceptive pathways in chronic pain (Ren & Dubner,
2007; Salter & Pitcher, 2012). Increased glutamate release
from primary afferent terminals in the spinal dorsal horn
(Chen et al. 2009; Yang et al. 2011), decreased clearance
of glutamate due to impairment of glutamate transporters
(Sung et al. 2003; Nie & Weng, 2010), and increases in the
number and/or function of glutamate receptors (Doolen
et al. 2012; Salter & Pitcher, 2012) have all been ascribed
to the excessive activation of glutamate receptors in spinal
dorsal horn neurons.

The critical role of NMDARs (one type of glutamate
receptor) in spinal nociceptive sensory processing was
demonstrated by early reports that blockade of spinal
NMDARs with intrathecal injection of NMDA antagonists
has little effect on the responses to acute nociceptive
stimuli in normal animals but markedly reduces touch-
and heat- hyperalgesia following peripheral inflammation
or nerve injury (Chapman & Dickenson, 1992; Yamamoto
& Yaksh, 1992; Ma & Woolf, 1995; Lufty et al. 1997).
Traditionally, NMDARs are considered to be located
in postsynaptic neurons. Numerous studies have shown
that the activation of postsynaptic NMDARs not only
participates in glutamatergic sensory synaptic trans-
mission in normal conditions, but more importantly
is also involved in synaptic plasticity in the spinal
dorsal horn in pathological pain conditions induced
by tissue inflammation or nerve injury (Wu & Zhuo,
2009; Salter & Pitcher, 2012). It is generally believed
that excessive activation of NMDARs results in enhanced

influx of Ca2+ into the neuron. Inside the cell, Ca2+

triggers calcium-sensitive signalling cascades and synaptic
plasticity (Wu & Zhuo, 2009; Salter & Pitcher, 2012).
Despite extensive studies on the role of postsynaptic
NMDARs in the development and maintenance of
pathological pain including neuropathic pain, the role of
presynaptic NMDARs of primary afferents in the spinal
nociceptive sensory processing remains elusive.

NMDARs are present in primary afferent terminals in
the spinal dorsal horn and dorsal root ganglion neurons,
as repeatedly confirmed both anatomically and physio-
logically (Liu et al. 1994; Bardoni et al. 2004; Li et al. 2006;
Zeng et al. 2006). Activation of presynaptic NMDARs with
intrathecal injection of the NMDAR agonist NMDA results
in increased release of substance P from primary afferents
in adult rats (Liu et al. 1997). Selective knockdown of
NMDARs in primary afferent neurons decreases pain
behaviours in phase 2 of the formalin test in adult rats
(McRoberts et al. 2010). In the naive neonatal spinal dorsal
horn, activation of presynaptic NMDARs on primary
afferent terminals by bath application of NMDA inhibits
glutamate release as measured by EPSPs in dorsal horn
neurons (Bardoni et al. 2004). However, activation of
presynaptic NMDARs in morphine-tolerant neonatal rats
increases glutamate release from primary afferents in the
spinal dorsal horn (Liu et al. 1994; Bardoni et al. 2004;
Zeng et al. 2006). Little is known about the role of pre-
synaptic NMDARs in regulating glutamate release from
the spinal primary afferent terminals in neuropathic pain
conditions in adult rats.

In this study, using the whole cell voltage clamp
recording technique, we demonstrated that injury of L5
spinal nerve resulted in an increased glutamate release
from the primary afferents in the spinal dorsal horn,
which, in part, is attributable to the endogenous activation
of presynaptic NMDARs in the primary afferents. In
contrast, release of glutamate from the primary terminals
in the spinal dorsal horn of normal (sham-operated)
animals is not regulated by functional presynaptic
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NMDARs. Our study reveals a novel synaptic mechanism
underlying the plasticity induced by nerve injury in the
first spinal sensory synapse.

Methods

Animals

Young adult male Sprague–Dawley rats (weight range,
160–230 g) were used. All experiments were approved by
the Institutional Animal Care and Use Committees at the
University of Georgia and the University of Texas M.D.
Anderson Cancer Center, and were fully compliant with
the National Institutes of Health Guidelines for the Use
and Care of Laboratory Animals.

Ligation of L5 spinal nerve and behavioural tests

The animals were randomly divided into spinal nerve
ligation injury (SNL) group and sham-operated (control)
group. SNL injury was performed as previously described
(Kim & Chung, 1992). Briefly, under 2–3% isoflurane
anaesthesia, a midline incision above the lumbar spine and
deep dissection through the paraspinal muscles were made
to expose the left L6 transverse process, and the process
was then removed. The L5 spinal nerve was isolated and
tightly ligated with a 4-0 silk suture distal to the dorsal root
ganglia and proximal to the formation of the sciatic nerve.
The incisions were then closed. Sham-operated rats under-
went the same operation and handling as the SNL group,
but without nerve ligation. No drugs were used after the
surgery. Behavioural tests were performed to determine
mechanical sensitivity 1 day before the operation, and
on days 7–14 post-surgery, prior to electrophysiological
and molecular experiments. Behavioural tests were used
to determine the hind paw mechanical sensitivity after
the surgery as described earlier (Nie & Weng, 2010;
Weng et al. 2003). Briefly, the animals were placed on
wire mesh, loosely restrained under a plexiglass cage
(12 cm × 20 cm × 15 cm), and allowed to accommodate
for at least 30 min. Von Frey monofilaments with bending
forces ranging from 0.1 to 12.4 g were applied from below
through the mesh onto the mid-plantar side of each hind
paw to evoke paw withdrawal responses. Each hind paw
was stimulated 10 times with each Von Frey monofilament,
and the frequency (percentage) of paw withdrawal
responses to 10 stimulations was recorded. The least
bending force that evoked withdrawal in more than half
the trials was assigned as the 50% withdrawal threshold.

In vitro whole cell recordings and data analysis

Spinal slice preparation. Rats were deeply anaesthetized
by isoflurane inhalation and underwent laminectomy for

removal of the lumbar spinal cord. The lumbar spinal
cord section was placed in ice-cold sucrose artificial
cerebrospinal fluid (aCSF) pre-saturated with 95% O2

and 5% CO2. The sucrose aCSF contained 234 mM

sucrose, 3.6 mM KCl, 1.2 mM MgCl2, 2.5 mM CaCl2, 1.2 mM

NaH2PO4, 12.0 mM glucose, and 25.0 mM NaHCO3. The
pia-arachnoid membrane was removed from the section.
The L4–5 spinal segment, identified by the lumbar
enlargement and large dorsal roots, was attached with
cyanoacrylate glue to a cutting support, which was then
glued onto the stage of a vibratome (Series 1000, Technical
Products International, St Louis, MO, USA). Transverse
spinal cord slices (400 μm) were cut in the ice-cold sucrose
aCSF and then preincubated in Krebs solution oxygenated
with 95% O2 and 5% CO2 at 35◦C for at least 2 h before
they were transferred to the recording chamber. The Krebs
solution contained 117.0 mM NaCl, 3.6 mM KCl, 1.2 mM

MgCl2, 2.5 mM CaCl2, 1.2 mM NaH2PO4, 11.0 mM glucose,
and 25.0 mM NaHCO3.

Whole cell voltage-clamp recordings. Following pre-
incubation, a single slice was placed in the recording
chamber (volume, 1.5 ml), perfused with Krebs solution
at 35◦C, and saturated with 95% O2 and 5%
CO2. Borosilicate glass recording electrodes (resistance,
3–5 M�) were pulled and filled with an internal solution
containing (in mM) potassium gluconate, 135; KCl, 5;
MgCl2, 2.0; CaCl2, 0.5; Hepes, 5.0; EGTA, 5.0; ATP-Mg,
5.0; Na-GTP, 0.5; QX-314, 10; and MK-801, 1; guanosine
5′-O-(2-thiodiphosphate) (GDP-β-S), 2. MK-801 was
used to block postsynaptic NMDARs (Berretta & Jones,
1996; Drdla et al. 2009; Nie & Weng, 2009) and GDP-β-S
(2 mM) used to block signalling pathways activated by
G protein-coupled receptors. Live dorsal horn neurons
in the spinal lamina I and outer lamina II were
visualized using a microscope system and approached
using a three-dimensional motorized manipulator (Sutter
Instrument Company), and whole-cell configurations
were established by applying moderate negative pressure
after electrode contact (Nakatsuka et al. 2003). A seal
resistance of at least 2 G� and an access resistance of
20–35 M� were considered acceptable (Wu et al. 2005;
Weng et al. 2007). The series resistance was optimally
compensated by at least 70% and constantly monitored
throughout the experiments. Experiments showing any
evidence of loss of voltage control were discarded. Signals
were amplified using an Axopatch 700B (Molecular
Devices) and displayed and stored in a personal computer.

Excitatory postsynaptic currents (EPSCs) were evoked
using constant-current electrical stimuli (0.2 ms duration
repeated every 40 s) at a fixed stimulating intensity
(0.8 mA) applied with a concentric bipolar stimulating
electrode placed at the dorsal root entry zone (Yoshimura
& Nishi, 1993; Weng et al. 2006). To specifically determine
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the function of presynaptic NMDARs in the primary
afferent terminals, only neurons receiving monosynaptic
input from primary afferent input were recorded. Mono-
synaptic input was based on a constant latency with
graded intensity and high-frequency repetitive stimulation
(20 Hz) (Yoshimura & Jessell, 1989; Kohno et al. 2003).
Miniature EPSCs (mEPSCs) were recorded in the presence
of tetrodotoxin (TTX, 1 μM). In a subset of experiments,
currents in superficial dorsal horn neurons were evoked by
exogenous L-glutamate (50 μM) injected onto the recorded
neuron by puff-application (pressure: 3 p.s.i.; duration:
20 ms, repeated every 60 s) through a glass pipette with
opening tip size of 8–12 μm. All recordings were made
in the presence of bicuculline (10 μM) and strychnine
(5 μM) in the external solution, to block GABAA and
glycine receptors, respectively, at a membrane potential
of –70 mV.

Data analysis. Data were recorded using Axopatch 700B
amplifier, digitized at 10 kHz, and analysed off-line. The
means of four EPSCs evoked by electrical stimulation at
baseline, in the presence of tested drugs, and after washout
of tested drugs were measured using the Clampfit software
program (version 10.2; Molecular Devices, Sunnyvale,
CA, USA). In some neurons, we also measured the
inverse squared coefficient of variation (CV−2) of the peak
amplitudes of 10 evoked EPSCs, where CV represents the
ratio of the standard deviation to the mean. The frequency
and amplitude of mEPSCs in the 3 min before and during
perfusion of tested drugs were analysed and averaged using
a peak detection program (MiniAnalysis; Synaptosoft Inc.,
Decatur, GA, USA).

The data were presented as the mean ± SEM. Student’s
t test was used to determine statistical differences between
data obtained in the absence and presence of tested
drugs (paired t test) or between groups (non-paired t
test). A P value less than 0.05 was considered statistically
significant.

Western blot experiments

Animals were deeply anaesthetized with urethane
(1.3–1.5 g kg−1, I.P.) 7 days after ligation of the L5 spinal
nerve. The L4 and L5 dorsal root ganglions ipsilateral
to the injury site and the L4 and L5 spinal segments
were exposed by surgery and removed from the rats.
The dorsal quadrant of the spinal cord of each segment
ipsilateral to the operated side was isolated. The dorsal
root ganglions and the dorsal quadrants of the spinal
cord were quickly frozen in liquid nitrogen and stored
at –80◦C for later use. Frozen tissues were homogenized
with a hand-held pellet in lysis buffer (50 mM Tris, pH 7.5,
150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% deoxycholic
acid, 2 mM orthovanadate, 100 mM NaF, 1% Triton X-100,

0.5 mM phenylmethylsulfonyl fluoride, 20 μM leupeptin,
100 IU ml−1 aprotinin) for 0.5 h at 37◦C. The samples
were then centrifuged for 20 min at 12,000 g at 4◦C
and the supernatants containing proteins were collected.
The quantification of protein contents was made by
the BCA method. Protein samples (40 μg) were electro-
phoresed in 8% SDS polyacrylamide gels and trans-
ferred to a polyvinylidene difluoride membrane (Milli-
pore, Bedford, MA, USA). The membranes were blocked
with 5% milk and incubated overnight at 4◦C with a poly-
clonal goat anti-NR2B (1:200, Santa Cruz Biotechnology,
CA, USA) or a monoclonal mouse anti-β-actin (1:2000,
Sigma-Aldrich, St Louis, MO, USA) primary antibody as
a loading control. Then the blots were incubated for 1 h at
room temperature with a corresponding HRP-conjugated
secondary antibody (1:5000; Santa Cruz Biotechnology,
CA, USA), visualized in enhanced chemiluminescence
(ECL) solution (SuperSignal West Pico Chemiluminescent
Substrate, Pierce, Rockford, IL, USA) for 1 min, and
exposed onto FluorChem HD2 System. The intensity of
immunoreactive bands was quantified using ImageJ 1.46
software (NIH). Results were expressed as the ratio of
NR2B to β-actin control. Student’s t test (non-paired t
test) was used to determine statistical differences between
the neuropathic and sham-operated groups. A P value less
than 0.05 was considered statistically significant.

Materials

Bicuculline, strychnine, N-methyl-D-aspartic acid
(NMDA), GDP-β-S, 1,2-bis(o-aminophenoxy)ethane-
N ,N ,N ′,N ′-tetraacetic acid (BAPTA), GF109203X,
MK-801, L-glutamate and TTX were obtained from
Sigma (St Louis, MO, USA). D-Aminophosphonovaleric
acid (D-AP5) and Ro 25-6981 were obtained from Tocris
Bioscience (Minneapolis, MN, USA). The protein kinase
C inhibitor peptide PKCI 19–31 was obtained from EMD
Biosciences (San Diego, CA, USA). All pharmacological
agents were applied via perfusion into the recording
chamber unless indicated otherwise.

Results

All rats receiving ligation of L5 spinal nerve had
mechanical allodynia prior to undergoing the electro-
physiological experiments performed on days 7–14 post
surgery. The mechanical threshold ipsilateral to the L5
ligation side decreased significantly from 7.25 ± 0.37 g at
baseline to 1.29 ± 0.16 g (P < 0.001) prior to the electro-
physiological recordings and molecular experiments in 48
SNL rats. The mechanical threshold in 25 sham-operated
rats was not significantly altered (from 6.93 ± 0.40 g to
7.06 ± 0.40 g).
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Amplitudes of EPSCs evoked by primary afferent
input were higher in neuropathic rats than those
in sham rats

Response of first sensory synapses in superficial dorsal
horn neurons (Sugiura et al. 1986; Basbaum et al. 2009) to
peripheral sensory stimulation was studied by recording
EPSCs, evoked by electrically stimulating the dorsal root
entry zone, from superficial dorsal horn neurons in
spinal slices. We first compared EPSCs in neuropathic
and sham-operated rats evoked by primary afferent input
elicited by the same stimulation intensity (0.2 ms duration
and 0.8 mA). In general, EPSC amplitudes recorded
from neuropathic rats (1045.44 ± 30.99 pA, n = 69) were
significantly (P < 0.001) higher than those obtained
from sham-operated rats (amplitude: 800.23 ± 74.05 pA;
n = 31). The increased EPSC amplitude in neuropathic
rats might result from alteration in any or a combination
of the followings: (a) an increase of glutamate release from
presynaptic terminals; (b) a decrease of glutamate uptake
by glial cells (astrocytes) and/or neurons; (c) an increase
in the function and/or number of postsynaptic glutamate
receptors. In the following experiments, we specifically
determined the contribution of presynaptic plasticity to
the enhanced EPSC amplitude induced by nerve injury.

Glutamate release from the primary afferent central
terminals in neuropathic rats was increased

To examine glutamate release in the first sensory synapse
in the spinal dorsal horn, we first recorded mEPSCs
in neuropathic rats and sham-operated rats in the pre-
sence of TTX (1 μM). Consistent with findings by others
(Balasubramanyan et al. 2006; Takasusuki et al. 2007;
Fukushima et al. 2011), we found that frequencies of
mEPSCs in neuropathic rats (6.24 ± 0.85 Hz, n = 19)
were significantly (P < 0.001) higher than those obtained
from sham-operated rats (2.53 ± 0.36 Hz, n = 18) but
amplitudes of mEPSCs in neuropathic (27.58 ± 1.39 pA,
n = 19) and sham-operated (26.59 ± 1.49 pA, n = 18)
rats were similar (Fig. 1A). These findings suggest an
increase of glutamate release probability from presynaptic
terminals in neuropathic rats. It is likely that synaptic
input from the primary afferent fibres constitutes only
a fraction of the total excitatory input to superficial
dorsal horn neurons. The mEPSCs we recorded might
well be a reflection of overall excitatory inputs from both
the primary afferents and excitatory interneurons to the
recorded neuron. To specifically address glutamate release
from the primary afferents, a pair of EPSCs were evoked by
a pair of electrical stimulating pulses (50 ms apart) applied
to the spinal dorsal root. We measured the paired-pulse
ratio (PPR) of EPSCs (i.e. the ratio of the second peak
amplitude over the first peak amplitude induced by
paired-pulse stimulation). Analysis of PPRs is a classic

approach to determine the transmitter release probability
from presynaptic terminals (Zucker, 1989; Foster &
McNaughton, 1991; Manabe et al. 1993; Weng et al. 2007;
Xu et al. 2008). A decrease of PPR indicates an increased
probability of neurotransmitter release from presynaptic
terminals. In contrast, an increase of PPRs indicates a
decreased probability of neurotransmitter release from
presynaptic terminals. We found that in comparison with
PPRs of sham-operated rats (0.73 ± 0.02, n = 31), PPRs
in neuropathic rats (0.63 ± 0.01, n = 69) were significantly
(P < 0.001) reduced (Fig. 1B). Furthermore, we analysed
the inverse squared coefficient of variation (CV−2) of
the peak amplitudes of 10 evoked EPSCs. An increase
of presynaptic release is expected to cause an increase in
CV−2 (Bekkers & Stevens, 1990; Korn & Faber, 1991). We
found that the CV−2 in neuropathic rats (1749.04 ± 192.6,
n = 20) was significantly (P < 0.001) larger than that in
sham-operated rats (496.90 ± 34.83, n = 20) (Fig. 1C). A
decrease of the PPR and an increase of both the mEPSC
frequency and CV−2 in neuropathic rats all indicate that
an increase of glutamate release from the primary afferent
terminals contributed to the enhanced EPSCs in neuro-
pathic rats.

Blockade of presynaptic NMDARs reduced glutamate
release from the presynaptic terminals in neuropathic
rats

To investigate the role of presynaptic NMDARs in
regulating glutamate release in neuropathic rat, we
examined the effects induced by the selective NMDAR
antagonist D-AP5 on non-NMDA mEPSCs and EPSCs
evoked by stimulation of the spinal dorsal root. Bath
application of D-AP5 (concentration in bath: 25 μM)
significantly (P < 0.05) and reversibly reduced the mEPSC
frequency from 7.37 ± 2.15 Hz to 5.71 ± 1.77 Hz (n = 5)
but did not change the mEPSC amplitude in neurons
recorded from the spinal L4 segment of neuropathic
rats. Similarly, in neurons recorded from the spinal
L5 segment of neuropathic rats, D-AP5 (25 μM) bath
perfusion significantly (P < 0.05) decreased the mEPSC
frequency from 7.70 ± 1.94 Hz to 5.66 ± 0.87 Hz (n = 5)
but not the amplitude of mEPSCs. Percentages of the
frequency reduction induced by D-AP5 in L4 spinal
segment neurons (24.02 ± 2.83%) were similar (P = 0.59)
to those of L5 spinal segment neurons (28.29 ± 4.95%).
Thus, data from both the L4 and L5 spinal segments
were combined and presented in Fig. 2A. In comparison,
perfusion of D-AP5 (25 μM) did not alter the amplitude
or the frequency of mEPSCs in neurons (n = 9) of spinal
slices obtained from sham-operated animals (Fig. 2B).

To specifically define the role of NMDARs of the
primary afferents, we determined the effects of D-AP5 on
a pair of EPSCs evoked by a pair of pulses (50 ms apart)
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of stimulation of the spinal dorsal root. Bath application
of D-AP5 (25 μM) significantly and reversibly reduced the
first peak amplitudes by 27.10 ± 2.62% (n = 9, P < 0.001)
for L4 spinal segment neurons and by 28.2 ± 3.09%

for L5 spinal segment neurons (n = 7, P < 0.001). This
was accompanied by a significant increase of PPRs from
0.63 ± 0.02 to 0.73 ± 0.01 (n = 9, P < 0.001) for L4 spinal
segment neurons and from 0.65 ± 0.03 to 0.76 ± 0.02
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Figure 1. Glutamate release from the primary afferent terminals in neuropathic rats was increased in
comparison with sham-operated rats
A, samples of mEPSC recordings recorded from sham-operated (Sham) and neuropathic rats. Bar graphs show
comparisons of mean (+SEM) amplitudes (left) and frequencies (right) of mEPSCs between sham-operated and
neuropathic rats. B, samples of EPSCs evoked by a pair of electrical pulses applied to the spinal dorsal root
in a neuron from sham-operated rats and neuropathic rats. Bar graphs show the mean (+SEM) P2/P1 ratios in
sham-operated and neuropathic rats. The ratio of the second peak amplitude (P2) over the first peak amplitude (P1)
was lower in neuropathic rats than in sham-operated rats. C, samples of variability of 10 evoked EPSCs collected
from a neuron of sham-operated rats and neuropathic rats. Bar graphs show the mean (+SEM) CV−2 values in
sham-operated and neuropathic rats. The inverse squared coefficient of variation (CV−2) was larger in neuropathic
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(n = 7, P < 0.001) for L5 spinal segment neurons. As the
effects induced by D-AP5 on the first peak amplitude and
PPR in L4 and L5 spinal segment neurons were similar
(P > 0.79), combined data from both the L4 and L5 spinal
segments were presented in Fig. 3A. Furthermore, in a
subset of experiments, we also measured CV−2 values
of the peak amplitudes of 10 evoked EPSCs before and
after bath perfusion of D-AP5 (25 μM). The CV−2 was
significantly reduced by D-AP5 from 1800.73 ± 589.50 to
229.18 ± 70.06 (n = 5, P < 0.05) for L4 spinal segment
neurons and from 1652.48 ± 265.74 to 197.28 ± 28.73
(n = 5, P < 0.001) for L5 spinal segment neurons. The
degree of changes induced by D-AP5 CV−2 in L4 and L5
spinal segment neurons were similar (P = 0.71). Data from
L4 and L5 spinal segment neurons were pooled together
and illustrated in Fig. 3B. Because D-AP5 had similar
effects on L4 and L5 spinal segment neurons, data collected
from L4 and L5 spinal segment neurons were combined
for analysis in the rest of this paper. To further confirm
the presynaptic action of D-AP5 under our experimental
conditions, we recorded currents in superficial dorsal horn
neurons elicited by exogenous glutamate applied through
a puff electrode in 8 cells, we found that bath perfusion
of D-AP5 (25 μM) did not change the currents elicited by
exogenous glutamate (data not shown). Together, these
results indicate that D-AP5 acted on presynaptic terminals

and caused a reduced glutamate release from the primary
afferents in neuropathic rats. In other words, endogenous
activation of presynaptic NMDARs increased glutamate
release from presynaptic terminals in the first sensory
synapse in the spinal dorsal horn of neuropathic rats.

In contrast, when we recorded afferent evoked EPSCs
and PPRs in spinal slices taken from sham-operated
rats, perfusion of D-AP5 (25 μM) did not change the
EPSC amplitude or PPR in nine neurons tested (Fig. 3C).
Together with the negative effects by D-AP5 on mEPSCs
in slices from sham-operated rats, these data indicate
that glutamate release from the primary afferents in the
normal spinal dorsal horn is not regulated by endogenous
activation of presynaptic NMDARs.

Exogenous NMDA increased glutamate release from
the primary afferents in the spinal dorsal horn of
neuropathic rats but not in sham-operated rats

To further confirm the role of presynaptic NMDARs and
determine whether presynaptic NMDARs are functionally
saturated by the endogenous agonist in neuropathic rats,
we recorded a pair of EPSCs evoked by a pair of electrical
pulses before and during perfusion of exogenous NMDA
(50 μM) (Fig. 4A). In slices taken from neuropathic rats,
addition of exogenous NMDA into the recording bath
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Figure 2. Glutamate release from presynaptic terminals was enhanced by endogenous activation of
presynaptic NMDARs in neuropathic rats but not in sham-operated rats
A, inhibition of NMDARs significantly and reversibly reduced the frequency of miniature EPSCs (mEPSCs) but did
not change the amplitude of mEPSCs in neuropathic rats. B, inhibition of NMDARs did not significantly alter the
mEPSC frequency or amplitude in sham-operated rats. Samples of mEPSC recordings before, during, and after
washout of a NMDAR inhibitor (D-AP5, 25 μM) obtained from neuropathic and sham-operated rats are shown
(top). The recordings before and during perfusion of D-AP5 were enlarged. Bar graphs show the mean (+SEM)
frequencies and amplitudes of mEPSCs before, during, and after washout of D-AP5. ∗P < 0.05; ∗∗P < 0.01; NS,
no statistical significance.
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Figure 3. Endogenous activation of presynaptic NMDARs increased glutamate release from the pre-
synaptic terminals in the first sensory synapse in the spinal dorsal horn of neuropathic rats but not in
sham-operated rats
A, samples of EPSCs evoked by a pair of electrical pulses recorded from a neuron of neuropathic rats before (base-
line), during and after washout of D-AP5 (25 μM). Bar graphs (right) show the mean (+SEM) amplitudes and P2/P1
ratios before, during, and after washout of D-AP5. Bath application of D-AP5 significantly and reversibly reduced
the first peak amplitudes but increased the P2/P1 ratio. B, samples of variability of 10 evoked EPSCs collected from
a neuron of neuropathic rats before (left) and during perfusion of D-AP5 (25 μM) are shown. The mean (+SEM)
CV−2 values before and during perfusion of D-AP5 are shown in bar graphs (right). D-AP5 significantly increased
the variability of evoked EPSCs. C, samples of EPSCs evoked by a pair of electrical pulses recorded from a neuron
of sham-operated rats before (baseline) and during perfusion of D-AP5 (25 μM). Bar graphs (right) show the mean
(+SEM) amplitudes and P2/P1 ratios before and during perfusion of D-AP5. Bath application of D-AP5 did not alter
the first peak amplitudes or the P2/P1 ratio. ∗∗∗P < 0.001; NS, no statistical significance.
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significantly and reversibly increased the peak amplitude
of the first EPSCs by 23.42 ± 2.43% (n = 9, P < 0.001).
Meanwhile, the PPR was decreased by exogenous NMDA
from 0.57 ± 0.05 to 0.49 ± 0.04 (n = 9, P < 0.001). These
data indicate that the function of presynaptic NMDARs in
neuropathic rats was not saturated at baseline, and further
confirm that activation of presynaptic NMDARs facilitated
glutamate release from the primary afferents in the spinal
dorsal horn of neuropathic rats.

We then, in spinal slices of sham-operated rats, perfused
the NMDAR agonist NMDA (concentration in bath:
50 μM) after recording baseline afferent evoked EPSCs
and PPRs in six neurons. Neither the amplitude nor
the PPR was changed by exogenous NMDA (Fig. 4B).
Thus, the lack of endogenous activation of presynaptic
NMDARs in normal rats is not because ambient glutamate
concentrations in sham-operated rats are lower than in
neuropathic rats (Sung et al. 2003; Nie & Weng, 2010).

Exogenous D-serine increased glutamate release from
the primary afferents in neuropathic rats but not in
sham-operated rats

Activation of NMDARs requires not only glutamate or
NMDA binding but also concurrent binding of glycine
(or its endogenous ligand, D-serine) (Johnson & Ascher,
1987; Mothet et al. 2000) at the glycine site of NMDARs. It

was reported that levels of NMDAR co-activator D-serine
in the spinal dorsal horn are elevated under pathological
pain conditions (Guo et al. 2006). It could be possible
that ambient D-serine levels in normal conditions are not
high enough to induce a sufficient number of activated
NMDARs. In the following experiments, we recorded
a pair of EPSCs evoked by a pair of electrical stimuli
before and during perfusion of D-serine (200 μM) (Gaiarsa
et al. 1990; Shuker et al. 1994; Li & Han, 2007) in
spinal slices of sham-operated rats. We found that bath
perfusion of D-serine (200 μM) plus NMDA (50 μM)
did not change either the EPSC amplitude or PPR in
neurons (n = 7) from sham-operated rats (Fig. 5A). These
data indicate that low D-serine concentrations do not
ascribe to the lack of presynaptic NMDAR-mediated
glutamate release in sham-operated rats, and that the lack
of NMDAR-mediated regulation of glutamate release in
sham-operated rats results from the insufficient function
and/or number of presynaptic NMDARs.

In contrast, in spinal slices taken from neuropathic
animals, D-serine (200 μM) significantly and reversibly
increased the evoked EPSC amplitudes by 22.74 ± 2.00%
(n = 7, P < 0.001), but reduced PPRs in neuropathic
rats (Fig. 5B). In addition, concurrent application of
both D-serine (200 μM) and NMDA (50 μM) produced
similar changes in the evoked EPSC amplitudes and
PPRs (Fig. 5C) as those induced by D-serine (50 μM)
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Figure 4. Exogenous bath application
of the NMDAR agonist NMDA enhanced
glutamate release from the primary
afferents in neuropathic rats but not in
sham-operated rats
A, samples of EPSCs evoked by a pair of
electrical pulses recorded from a neuron of
neuropathic rats before (baseline), during
and after washout of NMDA. Bar graphs
(right) show the mean (+SEM) amplitudes
and P2/P1 ratios before, during, and after
washout of NMDA. Bath application of
NMDA (50 μM) significantly and reversibly
increased the first peak amplitudes but
reduced the P2/P1 ratio. B, samples of
EPSCs evoked by a pair of electrical pulses
recorded from a neuron of sham-operated
rats before (baseline) and during perfusion
of NMDA (50 μM). Bar graphs (right) show
the mean (+SEM) amplitudes and P2/P1
ratios before and during perfusion of
NMDA. Bath application of NMDA (50 μM)
did not significantly alter the first peak
amplitudes or the P2/P1 ratio. ∗∗P < 0.01;
∗∗∗P < 0.001; NS, no statistical significance.
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Figure 5. Exogenous application of
D-serine plus NMDA increased
glutamate release from the primary
afferents in neuropathic rats but not in
sham-operated rats
A, samples of EPSCs evoked by a pair of
electrical pulses recorded from a neuron of
sham-operated rats before (baseline) and
during perfusion of D-serine (200 μM) plus
NMDA (50 μM). Bar graphs (right) show
the mean (+SEM) amplitudes and P2/P1
ratios before and during perfusion of
D-serine plus NMDA. Bath application of
D-serine plus NMDA did not significantly
alter the first peak amplitudes or the P2/P1
ratio. B, samples of EPSCs evoked by a pair
of electrical pulses recorded from a neuron
of neuropathic rats before (baseline),
during and after washout of D-serine
(200 μM). Bar graphs (right) show the
mean (+SEM) amplitudes and P2/P1 ratios
before, during and after washout of
D-serine. Bath application of D-serine
significantly and reversibly enhanced the
first peak amplitudes but reduced the
P2/P1 ratio. C, samples of EPSCs evoked by
a pair of electrical pulses recorded from a
neuron of neuropathic rats before
(baseline), during and after washout of
D-serine (200 μM) plus NMDA (50 μM). Bar
graphs (right) show the mean (+SEM)
amplitudes and P2/P1 ratios before, during
and after washout of D-serine. Bath
application of D-serine plus NMDA
significantly and reversibly enhanced the
first peak amplitudes but reduced the
P2/P1 ratio. ∗∗P < 0.01; ∗∗∗P < 0.001.

(Fig. 5B) or NMDA (50 μM) alone (Fig. 4A). These results
indicate that, in neuropathic rats, presynaptic NMDARs
are regulated by D-serine and the glycine site of NMDARs
is not functionally saturated.

NR2B subunit was a dominant NMDAR at the primary
afferent terminals in neuropathic rats

Most NMDARs in the central nervous system (CNS)
are composed of NR1 and NR2 subunits forming a

tetrameric complex of two NR1 and two NR2 subunits.
NR2 receptors have different subtypes including NR2A,
NR2B, NR2C and NR2D. Each subtype of NMDAR
has different functional properties, and triggers different
signalling pathways (Cull-Candy & Leszkiewicz, 2004).
We then determined the contribution of the NR2B
subunit to the composition of presynaptic NMDARs
in neuropathic rats. In slices taken from neuropathic
rats, we recorded a pair of EPSCs evoked by a pair
of electrical stimuli before and during bath perfusion
of the selective NR2B receptor antagonist Ro 25-6981
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(1 μM) (Fischer et al. 1997; Mutel et al. 1998; Nie et al.
2010). Ro 25-6981 has more than 5000-fold greater
selectivity for NR1/NR2B than for NR1/NR2A (Fischer
et al. 1997). As shown in Fig. 6, perfusion of Ro 25-6981
significantly and reversibly reduced the amplitudes of the
first EPSCs by 26.41 ± 3.303% (n = 6, P < 0.001), which
was accompanied by a significant increase of PPRs. We also
found that the percentage of reduction (26.41 ± 3.303%)
induced by Ro 25-6981 was similar to those induced
by D-AP5 (27.58 ± 1.94%), indicating that presynaptic
NMDARs mediating glutamate release from the primary
afferents in neuropathic rats are predominantly composed
of NR2B subunits.

The function of presynapic NMDARs in neuropathic
rats was dependent on activities of protein kinase C

It was reported previously that phosphorylation of
NMDARs by protein kinase C (PKC) increases the
function of NMDARs (Tingley et al. 1997; Lim et al.
2005; Kohno et al. 2008). We then tested whether
the function of presynaptic NMDARs in neuropathic
rats is regulated by PKC. We first determined the
effects induced by the non-selective PKC inhibitor
GF109203X on a pair of EPSCs evoked by a pair of
electrical stimuli applied to the spinal dorsal root.
In this set of experiments (all data in Fig. 7), a PKC
inhibitor (PKCI 19–31, 5 μM) and a calcium chelator
[1,2-bis(o-aminophenoxy)ethane-N ,N ,N ′,N ′-tetraacetic
acid (BAPTA), 10 mM) were included in the pipette
solution to preclude possible effects induced by
GF109203X in the recorded postsynaptic neuron (Kohno
et al. 2008) and signalling pathways activated by changes

of intracellular Ca2+ levels in the recorded neuron
(Kovalchuk et al. 2002; Gordon et al. 2005). After a pair
of EPSCs evoked by a pair of electrical stimuli (50 ms
apart) at baseline was recorded, GF109203X (4 μM) was
perfused into the recording bath and a pair of EPSCs were
recorded again. GF109203X significantly reduced the peak
amplitude of the first EPSCs by 28.23 ± 1.62% (n = 23,
P < 0.001) but increased the PPR from 0.63 ± 0.02 to
0.77 ± 0.02 (n = 23, P < 0.001) in neurons from neuro-
pathic rats (Fig. 7). These data indicate that activation of
PKC in presynaptic terminals increased glutamate release
from the primary afferents in neuropathic rats.

After the effects of GF109203X on the amplitude and
PPR of evoked EPSCs were documented, we conducted
the following experiments. In order to determine whether
presynaptic NMDARs are the downstream effector of PKC
in neuropathic rats, in the first subset of experiments, we
examined the effects of D-AP5 on a pair of EPSCs in the
presence of GF109203X. Bath application of D-AP5 did not
alter either the amplitudes or the PPRs of evoked EPSCs
in the presence of GF109203X in neuropathic rats (n = 7)
(Fig. 7A). In other words, inhibition of PKC completely
occluded the effects induced by D-AP5. This occlusion
effect may result from direct suppressive effects induced
by GF109203X on presynaptic NMDARs. Alternatively,
inhibition of PKC by GF109203X may somehow reduce
ambient glutamate concentrations, leading to deactivation
of NMDARs. If this is the case, the enhancement induced
by exogenous NMDA on the EPSCs in neuropathic rats
demonstrated in Fig. 4A should be preserved in the pre-
sence of GF109203X. This possibility was excluded in the
second subset of experiments. In these experiments, in
the presence of GF109203X (4 μM), we further added
exogenous NMDA (50 μM) into the recording bath and
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Figure 6. NR2B subunit was a dominant NMDAR at the presynaptic terminals in neuropathic rats
Original recordings show samples of EPSCs evoked by a pair of electrical pulses recorded from a neuron of
neuropathic rats before (baseline), during and after washout of Ro 25-6981 (1 μM). Bar graphs (right) show the
mean (+SEM) amplitudes and P2/P1 ratios before, during and after washout of Ro 25-6981. Bath application of Ro
25-6981 significantly and reversibly reduced the first peak amplitudes but increased the P2/P1 ratio. ∗∗P < 0.01;
∗∗∗P < 0.001.
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Figure 7. The function of presynapic NMDARs in neuropathic rats was dependent on PKC activities
A, samples of EPSCs evoked by a pair of electrical pulses recorded from a neuron of neuropathic rats at baseline,
during perfusion of a PKC inhibitor, GF109203X (GF, 4 μM), and then during addition of a NMDAR inhibitor,
D-AP5 (25 μM) in the presence of GF109203X. Bar graphs (right) show the mean (+SEM) amplitudes and P2/P1
ratios at baseline, and during application of GF109203X, and then GF109203X plus D-AP5. Bath application of
GF109203X significantly reduced the first peak amplitude but increased the P2/P1 ratio. Further addition of D-AP5
had no effects on the amplitude and P2/P1 ratio. B, samples of EPSCs evoked by a pair of electrical pulses recorded
from a neuron of neuropathic rats at baseline, during perfusion of GF109203X (GF, 4 μM), and then during addition
of NMDA (50 μM) in the presence of GF109203X. Bar graphs (right) show the mean (+SEM) amplitudes and P2/P1
ratios at baseline, and during application of GF109203X, and then GF109203X plus NMDA. NMDA had no effects
on the amplitude and P2/P1 ratio in the presence of GF109203X. C, samples of EPSCs evoked by a pair of electrical
pulses recorded from a neuron of neuropathic rats at baseline, during perfusion of GF109203X (GF, 4 μM), and
then during addition of NMDA (50 μM) plus D-serine (200 μM) in the presence of GF109203X. Bar graphs (right)
show the mean (+SEM) amplitudes and P2/P1 ratios at baseline, and during application of GF109203X, and then
NMDA plus D-serine in the presence of GF109203X. NMDA plus D-serine had no effects on the amplitude and
P2/P1 ratio in the presence of GF109203X. ∗∗P < 0.01; ∗∗∗P < 0.001. NS, no statistical significance.
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recorded the pair of evoked EPSCs again. We found that
in the presence of GF109203X (4 μM), exogenous NMDA
(50 μM) no longer altered the amplitude and PPR in
neurons (n = 9) (Fig. 7B). Another possible mechanism
underlying the suppressive effect induced by GF109203X
on presynaptic NMDAR activities is that inhibition of PKC
reduces levels of the endogenous agonist binding to the
glycine site of NMDARs. To rule out such a possibility, in
the third set of experiments, we added NMDA (50 μM)
plus D-serine (200 μM) simultaneously into the recording
bath in the presence of GF109203X (4 μM). As shown in
Fig. 7C, concurrent bath application of exogenous NMDA
and D-serine did not alter either the amplitudes or the PPRs
of afferent evoked EPSCs in the presence of GF109203X.
Taken together, these data indicated that the function of
presynaptic NMDARs in neuropathic rats is dependent on
the activation of PKC.

In comparison, perfusion of GF109203X (4 μM) did
not alter the peak amplitude of the first EPSCs or the PPR
recorded from neurons (n = 6) in slices of sham-operated
rats (data not shown).

Protein expression of NR2B subunit in the L4 and L5
dorsal root ganglions and spinal dorsal horn
ipsilateral to the injury site in neuropathic rats was
upregulated

Finally, we conducted Western blot experiments to
determine protein expression levels of the NR2B subunit in
the spinal dorsal horn and dorsal root ganglions in neuro-
pathic (n = 5) and sham-operated (n = 5) rats. As shown
in Fig. 8, 7 days after ligation of the L5 spinal nerve, protein
expression of the NR2B subunit was significantly increased
by 95.97 ± 25.47% (P < 0.05) in the L4 spinal dorsal
horns, and 106.46 ± 15.33% (P < 0.01) in the L5 spinal
dorsal horns ipsilateral to the injury site in comparison

with the sham-operated rats. At the same time, protein
expression of the NR2B subunit in the L4 and L5 dorsal
root ganglions ipsilateral to the injury site was also
significantly increased by 140.81 ± 33.69% (P < 0.01) and
116.73 ± 12.40% (P < 0.01), respectively, in comparison
with the sham-operated animals. The changes of NR2B
subunit expression in the dorsal root ganglion and spinal
dorsal horn at the L4 level were similar to those at the
L5 level. These data support our conclusions that the lack
of NMDAR-mediated regulation of glutamate release in
sham-operated rats results from the insufficient function
and/or number of presynaptic NMDARs.

Discussion

Activation of NMDARs is a crucial mechanism under-
lying the development and maintenance of chronic pain,
including neuropathic pain. Traditionally, the role of
NMDARs in the pathogenesis of pain is ascribed to their
activation and signalling cascades in postsynaptic neurons
(Ren & Dubner, 2007; Salter & Pitcher, 2012). In this study,
we, for the first time, identified endogenous activation of
presynaptic NMDARs in the central terminals of primary
afferents as a critical mechanism underlying the increased
glutamatergic synaptic response in the first sensory
synapse in the spinal dorsal horn of rats with neuropathic
pain. Presynaptic NMDARs in neuropathic rats are mainly
composed of NR2B receptors. This is consistent with
and supported by an increase of NR2B subunit protein
expression in both the dorsal root ganglion and spinal
dorsal horn in neuropathic rats. The action of presynaptic
NMDARs in neuropathic rats is enhanced by exogenous
D-serine and/or NMDA and dependent on PKC activities.
We demonstrated that glutamate release from the primary
afferents in sham-operated rats is not regulated by pre-
synaptic NMDARs. We also provide evidence that the lack
of NMDAR-mediated regulation of glutamate release in

Figure 8. Protein expression of NR2B
subunit in the L4 and L5 dorsal root
ganglions and spinal dorsal horn
ipsilateral to the injury site in neuropathic
rats was increased
Samples of NR2B subunit expression in the
spinal dorsal horn and dorsal root ganglion at
the L4 and L5 levels in neuropathic (n = 5)
and sham-operated (n = 5) rats are shown.
Bath graphs show the mean (+SEM) relative
density to β-actin in each group. DRG, dorsal
root ganglion; ∗P < 0.05; ∗∗P < 0.01.
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sham-operated rats results from the insufficient function
and/or number of presynaptic NMDARs.

Endogenous activation of presynaptic NMDARs as a
novel mechanism underlying synaptic plasticity
induced by nerve injury

The first nociceptive sensory synapse is the primary
station for processing nociceptive information in the CNS.
Glutamate is a major excitatory neurotransmitter released
from the primary afferents in the spinal dorsal horn (De
Biasi & Rustioni, 1988; Willis, 2002). In the neuroplasticity
induced by nerve injury in the first nociceptive sensory
synapse, changes in glutamate synaptic function are crucial
to the development and maintenance of neuropathic pain
(Salter & Pitcher, 2012). The function of glutamatergic
synapses is governed by three key factors including the
amount of glutamate release from presynaptic terminals,
the rate at which glutamate is taken up by glutamate trans-
porters, and the number and function of postsynaptic
glutamate receptors (Danbolt, 2001). Glutamate release
from primary afferent terminals in the spinal dorsal horn
can be regulated by many receptors present presynaptically
on the primary afferent terminals. For example, glutamate
release from the primary afferents in the spinal dorsal horn
is reduced upon activation of μ-opioid receptors (Heinke
et al. 2011), α2 adrenoreceptors (Kawasaki et al. 2003), CB1
cannabinoid receptors (Lever & Malcangio, 2002), GABAA

receptors (Willis, 2006), GABAB receptors (Ataka et al.
2000), and group II and group III metabotropic glutamate
receptors (Gerber et al. 2000). On the other hand,
activation of group I metabotropic glutamate receptors
increases glutamate release from the central terminals
of primary afferents (Song et al. 2009). Despite these
extensive studies of the mechanism regulating glutamate
release from primary afferent terminals, little is known
about the role of presynaptic NMDARs in primary afferent
terminals in pathological pain conditions. Our study
reveals that endogenous activation of NMDARs in the
central terminals of primary afferents in the spinal dorsal
horn is critical to the increased glutamate release from
primary afferent terminals triggered by peripheral sensory
input in neuropathic rats. The suppression of glutamate
release by the NMDAR antagonist D-AP5 found in this
study may well contribute to the inhibitory effects of
NMDA antagonists and PKC inhibitors on the genesis of
neuropathic pain reported in numerous previous studies
(Wang et al. 2004; Yajima et al. 2005; Brown & Krupp,
2006; Salter & Pitcher, 2012).

Our findings are reminiscent of a previous study
reporting that activation of presynaptic NMDARs in
morphine-tolerant neonatal rats increases glutamate
release from the primary afferents in the spinal dorsal
horn (Zeng et al. 2006). Increased glutamate release in

forebrain areas in animal models of epilepsy is also related
to the activation of presynaptic NMDARs (Yang et al. 2006;
Graebenitz et al. 2010). Furthermore, activation of pre-
synaptic NMDARs is involved in long-term potentiation
(LTP) in the amygdala (Humeau et al. 2003; Samson
& Pare, 2005), and long-term depression (LTD) in the
neocortex (Sjöström et al. 2003) and cerebellum (Casado
et al. 2002). Thus, endogenous activation of presynaptic
NMDARs is a critical mechanism leading to synaptic
plasticity induced by both pathological and physiological
conditions.

Mechanisms underlying NMDAR-mediated
enhancement of glutamate release in neuropathic
rats

It is conceivable that activation of presynaptic NMDARs
causes influx of Ca2+ into the central terminals of
primary afferents and subsequent increase of glutamate
release, as shown in hippocampal slices (McGuinness
et al. 2010). The influx of Ca2+ could come directly
from the opening of NMDARs (Glitsch & Marty, 1999)
and/or from voltage-gated calcium channels in response
to depolarization due to the opening of NMDARs
(Awatramani et al. 2005; Christie & Jahr, 2008).

Prerequisites for the activation of NMDARs include
binding of both glutamate (or NMDA) and glycine
(or D-serine) to NMDARs and sufficient membrane
depolarization to relieve Mg2+ blockade of the ion
channels (Mayer et al. 1984; Oliet & Mothet, 2009).
Glutamate binding to presynaptic NMDARs may come
from three sources. Firstly, glutamate released from the
presynaptic terminals may activate presynaptic NMDARs.
This is supported by a recent hippocampal study showing
that glutamate released from presynaptic terminals,
triggered by the arrival of action potentials, can diffuse and
bind to presynaptic NMDARs (autoreceptors), resulting
in an increase of Ca2+ in the bouton of Schaffer
collaterals (McGuinness et al. 2010) and an increased
release of glutamate. Secondly, presynaptic NMDARs can
be activated by glutamate released from astrocytes as
shown in a recent report from studies of the hippocampal
dentate gyrus (McGuinness et al. 2010). It remains
to be further clarified if these two mechanisms occur
in the spinal dorsal horn. Thirdly, NMDARs can be
activated by ambient glutamate in extracellular space
as demonstrated in forebrain slices (Herman & Jahr,
2007; Le Meur et al. 2007). Elevated ambient glutamate
concentrations in neuropathic pain, caused by deficient
glial glutamate uptake, would further increase the number
of NMDARs activated. Our findings that exogenous
application of NMDA increased evoked EPSC amplitudes
but reduced EPSC PPRs provide direct evidence that pre-
synaptic NMDARs can be activated by ambient agonists
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in the spinal dorsal horn. In this study, we also found
that NR2B subunits are a predominant subtype in the
primary afferent central terminals in neuropathic rats. In
comparison with NR2A subunits, NR2B subunits have
a higher affinity to glutamate (Erreger et al. 2007) and
longer deactivation time (Monyer et al. 1994; Vicini et al.
1998). These special properties of NR2B subunits may
yield a greater functional impact on the primary afferent
central terminals in response to a given concentration of
glutamate.

It is intriguing that the effects of presynaptic NMDARs
shown in the current study and other studies are observed
under normal extracellular Mg2+ concentrations (Zeng
et al. 2006; Corlew et al. 2008). It was recently suggested
that depolarization induced by the arrival of action
potentials at the bouton removes Mg2+ block in NMDA
channels (McGuinness et al. 2010). Although this may
account for the effects of NMDAR inhibitors on EPSCs
evoked by peripheral sensory input (Figs 3 and 6), it would
not speak for the effects of D-AP5 on mEPSCs which were
recorded when action potentials were blocked by TTX
(Fig. 2). It is most likely that the mEPSCs recorded in this
study are a reflection of spontaneous glutamate release
from both the primary afferents and excitatory inter-
neurons in the spinal dorsal horn. The resting potential in
the primary afferent central terminals and excitatory inter-
neuron terminals are unknown. Two possible mechanisms
may take place. First, unblock of Mg2+ in NMDA channels
may occurs if the resting potential in the primary afferent
central terminals and excitatory interneuron terminals is
less negative. Alternatively, depolarization of membrane
potentials and removal of Mg2+ block in presynaptic
terminals may be induced upon activation of AMPA
and/or kainite receptors in the presynaptic terminals (Lee
et al. 2002; Lu et al. 2002).

Mechanisms underlying the lack of presynaptic
NMDAR-mediated regulation of glutamate release in
normal rats

In sham-operated adult rats, we found that EPSCs evoked
by the primary afferent input were not altered by selectively
blocking NMDARs with D-AP5, indicating that glutamate
release from the primary afferents is not endogenously
regulated by NMDARs in normal adult rats. It could be
possible that extracellular levels of the NMDAR agonist
and/or coagonist (glycine and/or D-serine) in normal
animals are not high enough to activate a sufficient
number of NMDARs. This possibility has been ruled out
by our results showing that bath application of NMDA
alone or NMDA plus D-serine did not alter EPSCs evoked
by the primary afferent input in sham-operated rats.
Alternatively, the impact produced by the activity of
NMDARs in the primary central terminals in normal
animals is below a threshold needed to alter glutamate

release. In other words the number of NMDARs, and/or
the function of individual NMDARs, in the primary
central terminals in normal animals is less than in those of
neuropathic rats. This notion is supported by our findings
that glutamate release regulated by presynaptic NMDARs
in neuropathic rats is dependent on the PKC activity
whereas glutamate release in normal rats is not altered
by blocking PKC activity. In agreement with our findings,
numerous studies have shown that the NMDAR function
is increased upon phosphorylation by PKC (Tingley
et al. 1997; Lim et al. 2005; Kohno et al. 2008). More
specifically, activation of PKC enhances and prolongs the
NMDA-evoked Ca2+ signals in the soma of the primary
afferents (dorsal root ganglion neurons) (Castillo et al.
2011).

Function of presynaptic NMDARs in regulating
glutamate release is synaptic specific, age- and
function-dependent

The lack of regulation by NMDARs in the sham-operated
adult rats in this study is in contrast with a previous
report that exogenous application of NMDA into the
recording bath reduces glutamate release from the primary
afferent terminals in normal neonatal dorsal horn as
measured by EPSCs in the spinal dorsal horn (Bardoni
et al. 2004). It is noteworthy that the response to high
doses of selective agonist in this study does not directly
reveal the physiological role of presynaptic NMDARs when
exposed to endogenous levels of glutamate. Nevertheless,
the NMDAR number and function in the spinal dorsal
horn alter significantly during development (Pattinson
& Fitzgerald, 2004). Although the physiological role of
NMDARs in the primary afferent central terminals in
newborn rats remains to be determined, synaptic studies
of other CNS areas show that glutamate release regulated
by endogenous activation of presynaptic NMDARs in
normal adult rats tends to be less marked or lost. For
example, activation of presynaptic NMDARs enhances
neurotransmitter release at synapses onto visual cortex
pyramidal cells in mice before postnatal day 20, but has no
apparent effect after postnatal day 23 (Corlew et al. 2007).
The presynaptic effect of NMDA on glutamate release
is observed in Purkinje cells recorded from juvenile but
not from adult mice (Lonchamp et al. 2012). Similarly,
endogenous activation of presynaptic NMDARs in the
frontal cortex enhances GABA release in 12- to 15-day-old
rats but not in 3-week-old rats (Pradhan et al. 2011).
Furthermore, the activation of presynaptic NMDARs can
increases glutamate release in some synapses (Berretta &
Jones, 1996; Sjöström et al. 2003; Bender et al. 2006; Yang
et al. 2006; Corlew et al. 2007; Brasier & Feldman, 2008)
but decrease glutamate release in other synapses (Casado
et al. 2002). Our current study extends this complexity
by demonstrating that presynaptic NMDARs regulate
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glutamate release in the adult spinal dorsal horn after peri-
pheral nerve injury but not in normal rats. This functional
alteration induced by the nerve injury is accompanied
by an increase of NR2B subunit protein expression in
the dorsal root ganglion and spinal dorsal horn (Fig. 8)
Hence, the function of presynaptic NMDARs in regulating
glutamate release is synaptic specific and depends on
the functional (physiological versus pathological) and
developmental states (age).

In conclusion, this study reveals that suppression of
the presynaptic NMDAR activity in the primary sensory
afferents is an effective approach to attenuate the enhanced
glutamatergic response in the spinal first sensory synapse
induced by peripheral nerve injury, and presynaptic
NMDARs might be a novel target for the development
of analgesics.
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