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Abstract
We propose a two-stage approach to analyze genome-wide association (GWA) data in order to
identify a set of promising single-nucleotide polymorphisms (SNPs). In stage one, we select a list
of top signals from single SNP analyses by controlling false discovery rate (FDR). In stage two,
we use the least absolute shrinkage and selection operator (LASSO) regression to reduce false
positives. The proposed approach was evaluated using simulated quantitative traits based on
genome-wide SNP data on 8,861 Caucasian individuals from the Atherosclerosis Risk in
Communities (ARIC) Study. Our first stage, targeted at controlling false negatives, yields better
power than using Bonferroni corrected significance level. The LASSO regression reduces the
number of significant SNPs in stage two: it reduces false positive SNPs and it reduces true
positive SNPs also at simulated causal loci due to linkage disequilibrium. Interestingly, the
LASSO regression preserves the power from stage one, i.e., the number of causal loci detected
from the LASSO regression in stage two is almost the same as in stage one, while reducing false
positives further. Real data on systolic blood pressure in the ARIC study was analyzed using our
two-stage approach which identified two significant SNPs, one of which was reported to be
genome-significant in a meta-analysis containing a much larger sample size. On the other hand, a
single SNP association scan did not yield any significant results.
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Introduction
Genome-wide association studies (GWAS) have achieved great successes during the past
years with more than 3,000 genetic variants found to be associated with complex traits
[Hindorff et al., 2009]. There is a convergence of knowledge that common complex traits
derive from etiologic factors with multiple loci whose genetic main effects are typically
small, therefore, require substantial sample sizes for discovery as well as replication. For
recently discovered loci associated with blood pressures and hypertension, phenotypic
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variation explained by each locus varies from 0.03% to 0.09% [Levy et al., 2009; Newton-
Cheh et al., 2009]. In the GWAS of serum lipid phenotypes, about 100 loci have been
identified with a sample size larger than 100,000 [Kathiresan et al., 2008; Kathiresan et al.,
2009; Teslovich et al., 2009]. With millions of single-nucleotide polymorphisms (SNPs)
under tests in GWAS, the power of identifying signals with such small effect sizes at the
genome-wide significance level [Pe’er et al., 2008] is typically small for many established
studies. In order to find signals showing genome-wide statistical significance, seeking
evidence outside of the study is necessary. Nowadays, large consortia have been established
to find common genetic variants mostly targeted at common complex traits. As a result,
genome-wide meta-analysis has become a common practice. On the other hand, for those
complex traits or ethnic groups that have not been widely studied, finding large number of
samples through such collaborative effort may not be feasible. GWAS have to rely upon
studies with relatively small sample sizes, hence requires exploiting information in a very
efficient manner. Although it is almost a common belief that large sample sizes are crucial
for identifying most, if not all, genetic components of complex diseases, recent genome-
wide association (GWA) results [Adeyemo et al., 2009; Asano et al., 2009; Schaefer et al.,
2010; Tanaka et al., 2010] show-case the successes of finding some variants with sample
sizes in the thousands or even hundreds. With complex genetic architecture and
heterogeneity of complex traits, effect sizes of underlying genetic variants vary across
populations. It is likely that for a particular study sample some loci will have relatively
larger effect sizes than in the general population. In this case, the so-called “winner’s curse”
[Capen et al., 1971; Yu et al., 2007] for replication is indeed a “complexity’s blessing” at the
discovery phase. In addition, longitudinal data that measure phenotypes on the same subjects
repeatedly can be used for GWAS, which have much better overall signal-to-noise ratio than
the same sample with cross-sectional snapshot data. As shown in Shi et al. [2009], using
simulated phenotypes from the Genetic Analysis Workshop 16 Problem 3 [Kraja et al.,
2009], statistical power of longitudinal analysis of a phenotype with three-visit data is
substantially greater than analysis based on any single visit. Longitudinal data have also
been considered as being more powerful and providing much better information on
individual changes than cross-sectional data, thus providing a good opportunity to test for
age depedent genetic effects, i.e., gene-age interactions. In this work, we propose a two-
stage approach for GWA analysis aiming to identify a promising set of SNPs that can be
used for independent replication or for seeking additional statistical evidence through meta-
analysis. In stage one, GWA analysis will be based on regular single SNP tests as conducted
in many genome-wide scans. Instead of applying type I error based thresholds such as
Bonferroni corrected or genome-wide significance thresholds, we subset SNPs by
controlling false discovery rate (FDR) [Benjamini and Hochberg, 1995] to minimize false
negatives meanwhile controlling false positive results. In stage two, we analyze the selected
top SNPs jointly with the least absolute shrinkage and selection operator (LASSO)
regression [Tibshirani, 1996; Efron et al., 2004] and reduce false positives further.

Methods
The proposed two-stage approach is illustrated in Supplementary Figure S1. Analysis starts
by running a genome-wide scan with a regular single SNP association test. A variety of
statistical tests can be applied at this step depending on the study design and the nature of
the phenotype. In this work, we focused on quantitative traits from a population-based study.
For dichotomous traits or other types of study designs, appropriate tests can be adopted
accordingly. Haplotype-based multi-marker tests can also be applied in the proposed two-
stage approach without loss of generality. With the results from the GWA scan, a set of top
SNPs will be determined via a FDR approach [Benjamini and Hochberg, 1995] at end of the
first stage. Different from traditional significance tests that control family-wise type I error
rate, i.e., the probability of having one or more false positive results, FDR approaches
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particularly address the multiple comparison issue by controlling the expected false
discovery rate, defined as

where S represents the total number of declared positive hypotheses, and F stands for the
number of false positives among the declared positives. Many variations of the FDR
methods have been proposed [Benjamini and Liu, 1999; Yekutieli and Benjamini, 1999;
Benjamini and Hochberg, 2000; Benjamini and Yekutieli, 2001; Storey, 2002; Storey, 2003;
Storey et al., 2004; Gordon et al., 2007] and this concept was further extended to the so-
called q value [Storey, 2002; Storey, 2003]. FDR approaches have been widely used in gene
expression micro-array data analysis [Tusher and Tibshirani, 2001; Reiner et al., 2003;
Storey and Tibshirani, 2003; Zhang, 2007], genome-wide linkage analysis [Benjamini and
Yekutieli, 2005], and most recently investigated in the context of genome-wide association
[Marenne et al., 2009]. After the FDR procedure, genome-wide SNPs would fall into two
sets: one consists of declared significant SNPs and the other consists of declared negative
SNPs. Among the significant SNPs, error rate is controlled at a pre-set FDR level. FDR
approaches are considered to be more powerful than controlling family-wise error rate
especially when a large number of hypotheses are under examination and multiple
hypotheses are expected to be true alternatives [Storey, 2003]. If all hypotheses are truly
under null, controlling of FDR is equivalent to controlling family-wise error rate [Benjamini
and Hochberg, 1995].

With the significant SNPs from stage one, we analyzed them jointly using LASSO
regression [Tibshirani, 1996; Efron et al., 2004]. The LASSO regression is a constrained
multiple linear regression method whose L1 norm of regression coefficients is restricted to
be less than or equal to a specified value. In LASSO regression, model parameters are
estimated such that

where μ is the intercept, βj are regression coefficients, and t is the bound on the L1 norm of
regression coefficients. From another point of view, this is an optimization problem with the
quadratic object function defined on a hypersphere with Manhattan distance. As a result of
such L1 constraint, LASSO regression has the so-called shrinkage property and is able to
yield a parsimonious model with many regression coefficients forced to zero. Unlike regular
regression, the optimization problem is well-defined even when the number of SNPs is
larger than the number of subjects. Hence, LASSO regression is a natural solver for variable
selection, especially for high-dimensional problems. Alternatively, the mathematical
equivalent of the LASSO regression can be formulated as

Therefore, LASSO regression is also a penalized regression approach. Ridge regression, a
regression with penalty on the L2 norm of regression coefficients, has been proposed as a
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multi-marker approach for analyzing dense SNPs in linkage disequilibrium in order to
overcome multicollinearity issue [Malo et al., 2008; Sun et al., 2009]. LASSO penalized
logistic regression was applied in the GWA analysis of case-control gene mapping problem
[Shi et al., 2007; Wu et al., 2009]. Most recently, LASSO regression was used as a multi-
marker association method for a family-based study [Sung et al., 2009] and LASSO logistic
regression was used for detecting gene×gene interaction in a population-based case control
study [D’Angelo et al., 2009]. Elastic net, a hybrid version of ridge and LASSO regressions,
was proposed for protein structure prediction [Ball et al., 2002] as well as GWAS [Cho et
al., 2009]. In this work, we applied the LASSO technique in the second stage as a tool for
trimming false positive results from stage one.

Simulation Study
To evaluate the proposed two-stage GWA method, we simulated quantitative traits using
genome-wide SNP data on 8,861 individuals from the Atherosclerosis Risk in Communities
(ARIC) study [The ARIC investigators, 1989]. Affymetrix 6.0 array genotypes were
obtained in the 8,861 self-identified whites of European descent. To avoid any missing data
issues, we used imputed genotypes [Pfeufer et al., 2009] in the simulation study, which were
conducted with high quality genotyped SNPs and HapMap CEU samples using a hidden
Markov model implemented in MACH [Li and Abecasis, 2006]. After quality control filters,
only those SNPs which are in both Affymetrix 6.0 array and the HapMap SNP panel were
used in this simulation study, which corresponds to a total of 610,018 SNPs. When
simulating quantitative traits, 25 SNPs were selected as being “causal” SNPs, which have a
genotyping missing rate of less than 1%, Hardy-Weinberg P values larger than 0.1, and
minor allele frequencies (MAFs) close to the following five values: 2.5%, 5%, 10%, 20%,
and 40%. Five SNPs were selected for each MAF value and simulated with different effect
sizes measured as R-squared, i.e., portions of phenotypic variance. The R-squared takes five
discrete values: 0.25%, 0.5%, 1%, 2%, and 4% for every MAF value. A summary of the 25
selected “causal” SNPs are shown in Supplementary Table S1. Genetic effects of the 25
SNPs were simulated to be additive without interactions among them, and the total genetic
effects account for 38.75% of the variance of the simulated phenotype. The rest of the
61.25% phenotypic variation was simulated to be additive, normally and independently
distributed random noise. The 25 SNPs spread over 22 autosomes, six of them are located on
chromosomes 1, 2, and 3 with two SNPs each, and the others reside on distinct
chromosomes. Physical distances between the two SNPs on chromosomes 1, 2, and 3 are
81.6 Mbp, 177.0 Mbp, and 29.7 Mbp, respectively. To simulate samples with different
sample sizes, subjects were drawn randomly from the total ARIC sample without
replacement.

The two-stage GWA approach was used to analyze the simulated phenotype and the 610,018
SNPs. Sample size was varied from 1,000 to 8,000 incrementally by 1,000, each with 100
replications. In stage one, single SNP association analyses were conducted using PLINK
[Purcell et al., 2007] with the “--assoc” option under the additive model, FDR analyses were
conducted with SAS PROC MULTTEST and “FDR” option, and a LASSO regression was
conducted using the LARS package [Efron et al., 2004] under R [R Development Core
Team, 2007].

Supplementary Figure S2 shows the empirical power of detecting each of the 25 “causal”
SNPs with sample sizes varying from 1,000 to 8,000 and with a Bonferroni-corrected type I
error threshold. It is easy to see that with a sample size of 1,000, only SNPs explaining 4%
phenotypic variances were detected with sufficient power (larger than 0.8). With a sample
size of 2,000, most SNPs with R-squared larger than 2% were detected with sufficient
power. A sample size of 8,000 had enough power to detect most SNPs with R-squared above
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0.5%. SNPs that explained a quarter percent of phenotypic variation had power less than 0.5
even with 8,000 samples. MAF shows no systematic impact on the power, and variations of
empirical power results among SNPs having the same effect sizes are mostly due to the
limited number of replications. These results agree with the power from theoretic predictions
using Quanto [Gauderman and Morrison, 2006], which are shown in Table I. Supplementary
Figure S3 demonstrates the average number of “causal” SNPs detected with different sample
sizes and type I error thresholds. The results of applying a step-up FDR controlling
procedure [Benjamini and Hochberg, 1995] are also shown in the same figure. As we can
see, controlling FDR at 0.05 is more powerful than controlling family-wise error rate at 0.05
(same as Bonferroni corrected), both of which are expected to yield the same family-wise
error rate when all hypotheses are truly under the null [Benjamini and Hochberg, 1995].
Under our simulation setup, controlling FDR at the 0.05 level with a sample size of 8,000 is
approximately equivalent to controlling type I error at some level between 10−4 and 10−5;
the equivalent type I error rate, however, becomes more stringent when using a sample size
of 1,000. Viewing the relationship from another point of view, Figure 1 shows the empirical
FDR when controlling type I error at different levels. It is obvious to see that if we lower the
type I error threshold to 10−4 for a sample of 1,000, almost half of the positive results will be
false discoveries under our simulation setup. For studies with smaller sample sizes, it is a
common practice to lower the type I error threshold in the hope of avoiding possible false
negatives, which may, however, increase the FDR substantially.

To verify the FDR and type I error controlling procedures, we compared empirical FDR and
type I error rates with their targeted nominal values for different sample sizes. Since the
simulated “causal” SNPs may be in linkage disequilibrium with adjacent SNPs, significant
SNPs adjacent to “causal” SNPs should be considered as true positives instead of false ones.
We define the false positives as SNPs being significant and located 5 Mbp or further away
from any simulated “causal” SNPs. Supplementary Figure S4 and S5 show the empirical
results of FDR and type I error rate, respectively. Both FDR and type I error rates are close
to their controlled nominal values. For a small sample size such as 1,000, empirical results
of the two error rates are slightly smaller than their nominal values.

At the end of stage one, a set of SNPs will be declared to be significant, among which the
false discovery rate is controlled at a pre-determined level. The average number of
significant SNPs from stage 1 for different sample sizes and FDR thresholds are shown in
Supplementary Figure S6. The number of true positive results, defined as SNPs within 5
Mbp distance from any “causal” SNPs, are shown in Supplementary Figure S7, and the
number of false positive SNPs, the difference between total positives and true positives, are
shown in Supplementary Figure S8. It can be seen that the number of true positive SNPs is
much larger than the number of simulated “causal” SNPs. Not surprisingly, this is due to the
correlation between the “causal” SNPs and their neighboring SNPs. The “inflation” of true
positive results becomes higher when sample size is larger. False positive SNPs, after
examining their genomic locations, seem to distribute randomly and without obvious
clusters observed.

SNPs significant in stage 1 were simultaneously analyzed with the multi-marker LASSO
regression in stage 2. In this simulation evaluation, we used Cp [Mallows, 1973; Efron et al.,
2004] to choose the constraint on L1 norm of regression coefficients. The model with the
smallest Cp value is finally chosen and the SNPs that stay in the final model (with minimum
Cp value) are considered “significant” in the second stage. The number of significant SNPs,
true positives, and false positives in the second stage were compared with results from stage
1 and shown in Supplementary Figure S6–S8. From Figure S7, we can see that the LASSO
regression reduces the number of SNPs dramatically. For the case with a sample size of
8,000 and an FDR of 0.05, the number of significant SNPs was reduced from 327.7 in stage
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1 to 63.7 in stage 2. Supplementary Figure S7 and S8 show the number of true positive
SNPs and false positive SNPs after the LASSO regression, respectively; both numbers
dropped substantially. For the same case with a sample size of 8,000 and an FDR of 0.05,
the number of false positive SNPs was reduced from 17.1 in stage 1 to 6.1 in stage 2. As a
result, type I error rate was reduced after the LASSO regression. See Figure 2 for the
empirical type I error rates at the two stages.

Since true positive results include multiple SNPs from the same loci, it would be interesting
to know how many true “causal” loci that were significant in stage 1 remain significant in
stage 2. We define a “causal” locus to be significant if any SNP within 5 Mbp distance from
the simulated “causal” SNP at this locus is significant. In Figure 3, we show the numbers of
“causal” loci as a function of sample size that were significant in two stages. Interestingly,
the two sets of results are very close. Hence, even though the LASSO regression reduces the
significant SNPs substantially, it keeps almost all the “causal” loci identified from stage 1.
The two-stage approach was also examined by using different definitions of finding the
“causal” signals. In a stricter sense, the successful detection requires the “causal” SNP itself
to be significant. Corresponding results are summarized in Supplementary Figure S9. Most
“causal” SNPs stay significant after the LASSO regression, but there were some “causal”
SNPs that were missed in the second stage. From Figure 3, we know that for those “causal”
SNPs losing significance in stage 2, there are some other SNPs from the same loci that
survived the LASSO regression. From the most stringent standard, a successful detection
requires the “causal” SNP not only to be significant but also to have the smallest P value
among all neighboring SNPs. Supplementary Figure S10 shows the results by this definition,
in which the LASSO regression shows no evidence of affecting the number of signals
detected. We summarized the empirical power of the two-stage method by the three
definitions in Table III. Compared with the results in Table II, which is based on controlling
Bonferroni-corrected type I error rate, we can see that the proposed two-stage method
improves power substantially, especially when the sample size is large and effect sizes of
SNPs are small. For example, for SNPs with an R-squared of 0.25%, the two-stage approach
has a power of 0.63 for identifying the “causal” SNPs with a sample size of 8,000, however,
when controlling for type I error rate it shows a power of only 0.19.

Analysis of Real Data in the ARIC Study
We applied the two-stage method in analyzing systolic blood pressure (SBP) in the ARIC
data. The ARIC study is a prospective epidemiologic study sponsored by National Heart,
Lung, and Blood Institute (NHLBI). A total of 15,792 subjects aged between 45 and 64 were
recruited at baseline (1987–89). Subjects were chosen by probability sampling from 4 US
communities, see the ARIC study website (http://www.cscc.unc.edu/aric) for the study
design and protocol. There were four clinic examinations conducted three years apart
between 1987 and 1998. Mean of the last two measurements of SBP during the first visit
was used in the analysis. Phenotypic outliers, defined as 4 standard deviations (SDs) away
from the respective mean, were excluded from the analysis. For subjects on anti-
hypertensive medication, 10 mm Hg was added to the observed SBP value value [Cui et al.,
2003]. In stage one, about 2.5 million imputed SNPs based on HapMap CEU samples
(release 22 build 36) were tested assuming an additive genetic model; sex, body mass index,
age, square of age, and field center were used as covariates. In the single-SNP association
analysis, no SNP showed genome-wide significance with a P value smaller than 5×10−8

[Pe’er et al., 2008], the SNP with the smallest P value was rs6987277 (P value= 4.96×10−7)
on chromosome 8p23.

After controlling FDR at 0.2, top SNPs from stage one included 15 SNPs distributed on four
chromosome loci 8p23, 12q21, 13q14, and 14q32. No SNPs were significant at FDR=0.05
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or FDR=0.1 levels in the first stage. Details on the top SNPs are shown in Table III. After
analyzing the 15 SNPs using LASSO regression, 2 of them were significant in the second
stage: rs6987277 on chromosome 8p23 and rs2681472 on chromosome 12q21. Interestingly,
the chromosome 12q21 SNP rs2681472 has been recently reported to be associated with
SBP (P value=2.5×10−11) in the CHARGE meta-analysis with a total sample size of 29,136
[Levy et al., 2009]. This demonstrates the efficacy of our approach for finding signals with
small effect sizes. Although SNP rs6987277 was not found in the recent GWAS of blood
pressures, SNP rs11775334 from the same 8p23 region was reported to be associated with
hypertension status (P value 4.05×10−6) [Levy et al., 2009] when combing more than 60,000
samples from the CHARGE and Global BPgen consortia.

Discussion
In our simulation work, we employed the step-up FDR procedure [Benjamini and Hochberg,
1995] that was originally developed for controlling FDR with independent test statistics, and
was later shown to be applicable to some positively dependent tests [Benjamini and
Yekutieli, 2001; Sarkar, 2003]. In GWAS, millions of dense SNPs are examined, hence test
statistics of SNPs within linkage disequilibrium blocks could be correlated. Simulation
evaluation showed good FDR control with the existence of linkage disequilibrium. Without
loss of generality, any appropriate FDR procedure can be used in our proposed two-stage
approach. It is worth mentioning that unlike controlling family-wise type I error rate whose
significance threshold depends on the number of tests only, the FDR approach is data-
driven, and its significance threshold depends on the distribution of the observed P values
from all tests. For the same reason, although the FDR approach is more powerful than
controlling family-wise type I error as reported in many FDR type publications, the absolute
magnitudes of improvement depends on the number of true “causal” SNPs, their effect sizes,
sample size, and the number of SNPs being analyzed.

LASSO regression solves least-squares regression with constraint on the L1 norm of the
regression coefficients. Due to the nature of the L1 penalty, the LASSO approach provides a
sparse selection of independent variables by shrinking most of the regression coefficients to
zero. The number of variables that can be handled by LASSO is not limited by sample size
and it is able to solve under-determined problems, hence providing an appealing approach
for analyzing a large number of markers from genome-wide association studies. In our
simulation study, LASSO reduced the number of correlated SNPs from the same locus
showing the capability to handle potential multicollinearity issues. A common question for
LASSO or other penalized regression methods, e.g., ridge regression, is what the “right” or
“best” penalty or constraint should be. In simulations, we used the Mallows’ Cp, which
provides a balance between model fitness and the number of variables, much as many other
model selection criteria do, and is readily available in the publicly available LARS package
we used. In some literature, it was reported that the Cp criterion tends to over-fit in some
situations [Stine, 2004; Ishwaran, 2004], and this issue can be solved with a modified
degrees of freedom term in the Cp formula [Stine, 2004] or the use of Cp with a stochastic
variable selection technique [Ishwaran, 2004]. Cross-validation approach is another
attractive criterion for determining the constraint parameter. However, splitting samples for
cross-validating may jeopardize the chance of discovery especially for those already under-
powered GWAS. Although it is technically feasible to apply the cross-validation criterion in
our two-stage GWA strategy, it will not be recommended for real data analysis unless it is
with a sufficiently large sample size. Most recently, the penalty parameter was used to tune
LASSO regression for selecting a predetermined number of SNPs [Wu et al., 2009]. Not
surprisingly, the order of SNP entering the model when relaxing the penalty would depend
on the marginal significance of those SNPs under general scenarios. This is particularly
useful when the resources for follow-up investigation are limited by the number of SNPs.

Shi et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2013 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We also want to mention that LASSO regression can handle when the number of SNPs is
larger than the sample size, and hence, theoretically it could handle all the GWA SNPs
simultaneously in a single model. However, it would be computationally more efficient to
first screen a subset of SNPs most of which are likely to be true signals, and then follow
with LASSO regression to reduce false positives further.

We selected 25 SNPs as “causal” SNPs in our simulation, and the simulated phenotype was
generated based on the genotypes of the subjects. Due to linkage disequilibrium, these
“causal” SNPs are correlated with many other SNPs in their neighborhoods and so are their
association results. As commonly seen in GWA literature, reported signals show clusters of
SNPs with high or moderate statistical evidence. We know that there is only one “causal”
SNP at each locus that is “biologically” associated with our simulated phenotype, hence all
other SNPs should be “biologically” false positives since they are not “functional”.
Whereas, from a statistical point of view, all significant SNPs from the same locus should be
treated as “statistically” true positives since their statistical evidence come from the
correlation with the true “causal” SNPs. We used 5 Mbp distance from “causal” SNPs as a
threshold to determine true and false positives in simulation evaluations, which is obviously
much larger than the usual linkage disequilibrium block lengths or haplotype lengths [Reich
et al., 2001]. We want to argue that the common linkage disequilibrium range, measured by
linkage disequilibrium block or haplotype lengths, characterizes the scope of SNPs with
relatively strong correlations. Some SNPs may have relatively weaker correlations at much
longer distances than the usual linkage disequilibrium block or haplotype lengths. In this
case, SNPs may still be significant due to their weak correlation with a “causal” SNP that
has a large effect size and strong statistical significance. Supported from a real data
example, with 868 cases and 1,194 controls from Genetic Analysis Workshop 16 Problem 1
[Amos et al., 2009], a top SNP in the famous HLA region associated with rheumatoid
arthritis on chromosome 6p21 shows a P value less than 1×10−100. There are 339 genotyped
SNPs at this locus having P values smaller than 5×10−8 and they spread over a region larger
than 4 Mbp. The strengths of linkage disequilibrium between the top SNP and other
significant SNPs, measured by R-squared, are even less than 0.01. To what extent genotypic
correlation will affect the error rates depends on a number of factors: the strength of linkage
disequilibrium between “causal” SNP and adjacent SNPs, sample size, as well as effect size
of the “causal” SNP. In this study, using 5 Mbp threshold appeared to account for this issue
well. However, this does not imply that the same threshold will serve as a universal standard
in real data analysis.

We computed empirical type I error and false discovery rates with 500 Kbp distance from
“causal” SNPs as the threshold for determining true and false positives, the results are
shown in Supplementary Figure S11 and S12. Both results were significantly inflated from
their nominal values especially when the sample size is large. With the 5 Mbp threshold,
about 250 Mbp chromosome regions, which is less than 10 percent of human genome, will
be considered as having no false positives by default. Hence, empirical false positives or
false discovery rates may be smaller than they actual are, but this downward bias is limited
to be less than 10%. From Supplementary Figure S4 and S5, we observed that the empirical
false positive and false discovery rates with a sample size of 1,000 are slightly smaller than
their nominal values. This discrepancy can be explained by the bias due to the 5 Mbp
distance threshold used.

In the simulation study, we looked at three different definitions of finding a “causal” signal:
(1) any SNP adjacent to the “causal” SNP is significant; (2) the “causal” SNP itself is
significant but does not necessarily have the smallest P value at its locus; and (3) the
“causal” SNP is significant and has the smallest P value. Obviously, the last criterion is the
most stringent and represents the ideal case that we wish to find when analyzing real data.
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This requires that the “causal” SNP is genotyped, statistically significant, and has the most
significant statistical evidence at its locus. Comparing results on Supplementary Figure S9
and S10, it is easy to find that “causal” SNPs actually have a good chance to be the most
significant ones if they were indeed tested. On the other hand, commercial SNP arrays cover
only a small fraction of the total human SNPs; even with imputed genotypes from the
HapMap SNP panel, the coverage is still limited to the most common ones. Identifying
associated locus instead of pinpointing the causal SNP(s) would be the practical objective
for most GWAS. Thus, the Figure 3 represents the most likely situation when analyzing real
data.

We showed that false positive SNPs are actually true positives in a statistical sense (due to
their correlations with “causal” SNPs), hence the FDR could be larger if computed
according to the number of loci instead of SNPs. Haplotype-based tests account for linkage
disequilibrium implicitly and can effectively reduce the dependence in genome-wide scan,
hence will yield better control of FDR measured by locus. Due to the extensive
computational burden involved, in this work we focused on a single SNP test only.
Haplotype-based tests can be readily applied in the proposed two-stage approach as well.

In summary, we proposed a two-stage method for analyzing GWA data. The FDR approach
in the first stage is more powerful than using stringent family-wise type I error rate and can
avoid excessive type I errors by arbitrarily lowering the type I error threshold. The multi-
marker LASSO regression in the second stage can reduce redundant SNPs in the true signal
regions due to linkage disequilibrium and effectively reduce false positives further. The two-
stage approach provides a trade-off between false negatives and false positives in GWAS
and can be used for mining loci with relatively small effect sizes, the so-called “gold dust”
[Province and Borecki, 2008], which are often below the genome-significance level thereby
escaping discovery.
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Fig. 1.
Empirical FDR for controlling type I error rates at 10−4, 10−5, 10−6, and 8.2×10−8

(Bonferroni corrected).
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Fig. 2.
Empirical type I error rate in stage 1 and stage 2.
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Fig. 3.
Number of “causal” loci significant in stage 1 and stage 2.
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TABLE III

Top SNPs from the first and second stage of analyzing ARIC SBP (FDR=0.2). SNPs significant in stage 2
(LASSO regression) are in bold.

SNP Chr Pos P* PFDR†

rs17155179 8 8,975,232 7.58×10−7 0.17

rs17155181 8 8,975,595 8.43×10−7 0.17

rs6987277 8 8,977,241 4.96×10−7 0.17

rs6601286 8 8,977,445 4.98×10−7 0.17

rs7818455 8 8,977,779 5.04×10−7 0.17

rs2681472 12 88,533,090 6.94×10−7 0.17

rs11105354 12 88,550,654 7.84×10−7 0.17

rs12579302 12 88,574,634 8.63×10−7 0.17

rs17249754 12 88,584,717 6.61×10−7 0.17

rs11105364 12 88,593,407 7.91×10−7 0.17

rs11105368 12 88,598,572 9.44×10−7 0.17

rs11105378 12 88,614,872 9.12×10−7 0.17

rs12230074 12 88,614,998 8.75×10−7 0.17

rs9533040 13 41,694,721 1.17×10−6 0.20

rs942188 14 89,613,556 8.37×10−7 0.17

*
P: P value from single SNP test;

†
PFDR: FDR corrected P value.
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