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The ability to self-regulate can become impaired when people are required to engage in successive acts of effortful self-control, even when self-control
occurs in different domains. Here, we used functional neuroimaging to test whether engaging in effortful inhibition in the cognitive domain would lead to
putative dysfunction in the emotional domain. Forty-eight participants viewed images of emotional scenes during functional magnetic resonance
imaging in two sessions that were separated by a challenging attention control task that required effortful inhibition (depletion group) or not (control
group). Compared to the control group, depleted participants showed increased activity in the left amygdala to negative but not to positive or neutral
scenes. Moreover, whereas the control group showed reduced amygdala activity to all scene types (i.e. habituation), the depletion group showed
increased amygdala activity relative to their pre-depletion baseline; however this was only significant for negative scenes. Finally, depleted participants
showed reduced functional connectivity between the left amygdala and ventromedial prefrontal cortex during negative scene processing. These findings
demonstrate that consuming self-regulatory resources leads to an exaggerated neural response to emotional material that appears specific to negatively
valenced stimuli and further suggests a failure to recruit top–down prefrontal regions involved in emotion regulation.
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INTRODUCTION

Failure to regulate emotions is implicated in a range of psychological

disorders (Gross, 2002) and is a potent catalyst for excessive eating

(Heatherton et al., 1992), drinking (Sinha et al., 2009), smoking

(Tiffany and Drobes, 1990; Kassel et al., 2003) and drug use

(Childress et al., 1994). The extant research on emotion regulation

has largely focused on investigating the behavioral and neural correl-

ates of different emotion regulation strategies (e.g. suppression, cog-

nitive reappraisal). However, emotion regulation does not take place in

a void; often people are confronted with stressful situations requiring

them to regulate not only their emotions but also their thoughts,

behaviors and impulses. Contemporary research on self-regulatory fail-

ure suggests that self-regulation relies on a limited resource

(Baumeister and Heatherton, 1996) and that having to juggle any

one of these forms of regulation may impair the ability to effectively

regulate in other domains.

Neuroscientific models of emotion suggest that the amygdala and

prefrontal cortex (PFC) are central structures involved in the percep-

tion and regulation of emotion (Whalen, 1998; Ochsner et al., 2002;

Hariri et al., 2003; Kim et al., 2003; Urry et al., 2006) and for the

experience negative affect (Ochsner et al., 2009). Although the amyg-

dala responds to both negative and positively valenced stimuli, it is

more consistently implicated in the former (e.g. Zald, 2003).

Regulating negative affect is frequently associated with enhanced ac-

tivity in two regions of the PFC, namely, the lateral prefrontal cortex

(LPFC) (Ochsner et al., 2002; Hariri et al., 2003; Ochsner et al., 2004)

and the ventromedial prefrontal (VMPFC) (Urry et al., 2006;

Johnstone et al., 2007; Passamonti et al., 2008). In patients suffering

from disorders of emotional regulation [e.g. borderline personality

disorder, major depressive disorder (MDD), post-traumatic stress dis-

order], the amygdala frequently shows a maladaptive or exaggerated

response to negative emotional material in conjunction with a failure

to appropriately recruit the lateral PFC and/or VMPFC (Rauch et al.,

2000; Shin et al., 2005; Johnstone et al., 2007). Moreover, amygdala

reactivity to negative emotional material in healthy populations is

associated with individual differences in daily use of emotion regula-

tion strategies (Drabant et al., 2009). Considered together, these find-

ings suggest that an exaggerated amygdala response to negative

emotional material in the healthy population along with a failure to

recruit prefrontal regions involved in top–down control may serve as a

potential neural marker of self-regulatory failure in the emotional

domain.

Do self- and emotion-regulation rely on a common resource?

One of the most influential models of self-regulation to emerge in

recent years is the limited resource model, or the ‘strength’ model of

self-regulation (Baumeister and Heatherton, 1996). This theory of

self-regulation and its failure has marshaled considerable evidence

showing that effortful acts of self-regulation can temporarily deplete

people’s capacity to further regulate in seemingly unrelated domains

(Muraven et al., 1998; Vohs and Heatherton, 2000; Richeson and

Shelton, 2003; Gailliot et al., 2007; for a recent meta-analysis, see

Hagger et al., 2010). Although emotion regulation has traditionally

been studied apart from self-regulation, there is evidence that both

rely on the same limited resource. For example, one of the most

common techniques for exhausting self-regulatory resources is

having participants engage in an emotional inhibition task (Baumeister

et al., 1998; Muraven et al., 1998; Vohs and Heatherton, 2000; Schmei-

chel et al., 2003; Gailliot et al., 2007). This research shows that when

participants are required to inhibit their emotions during an emo-

tionally provocative film, they are subsequently impaired at regulating

their behavior on tasks in other domains, such as solving difficult

anagrams (Baumeister et al., 1998) or avoiding tempting foods

(Vohs and Heatherton, 2000).

The results of two prior experiments indicate that this ‘depletion’

effect also works in the opposite direction. That is, engaging in effortful

self-regulation can subsequently lead to emotion dysregulation. In the

first experiment of its kind, Muraven et al. (1998) found that partici-

pants who completed a thought suppression task were subsequently
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impaired at inhibiting their emotions compared to control participant.

Similarly, Schmeichel (2007) showed that inducing self-regulatory de-

pletion via a complex working memory task led to emotion regulation

failure as measured by participants’ ability to suppress facial expres-

sions of emotion when viewing a highly aversive video segment.

Importantly, both studies show that the effect of self-regulatory exer-

tion on emotion regulation is not mediated by any changes in mood

brought about by the depletion task itself (Muraven et al., 1998;

Schmeichel, 2007). Finally, we note that this work is distinct from

research on the role of cognitive load in emotional reactivity that

shows that a concurrent cognitive demand (e.g. working memory

load) during the perception of emotional stimuli reduces amygdala

reactivity (Pessoa et al., 2002). Rather, in work on self-regulatory de-

pletion, it is subsequent rather than concurrent attempts at

self-regulation that are impaired.

The current study

The results of the aforementioned behavioral studies suggest that enga-

ging in effortful self-regulation may impair subsequent attempts at

emotional control. Given the recognized importance of emotion regu-

lation to psychological well being, understanding the neural mechan-

isms behind common failures of emotion regulation in otherwise

healthy participants may help shed light on how life’s many stressors

can impair self-control. Specifically, assessing the relative contribution

of the amygdala and PFC to an emotional challenge following

self-regulatory depletion may inform our knowledge of how the

brain supports successful emotion regulation and what happens

when regulation fails.

In the present study, we employed a commonly used self-regulatory

depletion paradigm followed by a task designed to assess naturally

occurring neural responses to emotional material (similar to Drabant

et al. 2009). Participants were not explicitly instructed to engage in any

specific emotion regulation strategy (e.g. reappraisal, suppression, dis-

traction) but rather it was expected that participants would engage in

spontaneous emotion regulation (e.g. Egloff et al., 2006; Richards and

Gross, 2006; Berkman and Lieberman, 2009; Schmeichel and Demaree,

2010) that would be disrupted following self-regulatory depletion.

Participants (n¼ 48) were randomly assigned to one of two groups,

both of which underwent functional neuroimaging while viewing a

series of negative, neutral and positively valenced emotional scenes.

This was followed by a difficult attention control task in which par-

ticipants had to pay attention to a film while ignoring a series of dis-

tractor words that appeared on the screen (Gilbert et al., 1988;

Schmeichel et al., 2003; Gailliot et al., 2007). Half of the participants

were required to regulate their attention and inhibit reading any of the

distractor words (depletion group), whereas participants in the control

group could freely read the distractors. Finally, in order to assess the

effects of exerting self-regulatory effort on the subsequent neural re-

sponse to emotional material, participants viewed another series of

emotional scenes. We hypothesized that, compared to the control

group, participants in the depleted group would show exaggerated

amygdala activity to negative emotional material following self-

regulatory depletion in conjunction with reduced recruitment of�and

functional coupling with�lateral and ventromedial regions of the PFC

involved in emotion regulation.

METHODS

Participants

Participants were 56 right-handed volunteers who reported no abnor-

mal neurological history and were not currently using any psychiatric

medication. Participants were randomly assigned to either the deple-

tion or the control group. Eight participants (four in the depletion

condition and four in the control condition) were excluded from fur-

ther analysis due to excessive movement (more than two incidences of

>2 mm movement) in either the pre- or post-depletion sessions. This

left 24 participants (13 women, mean age: 20.3) in the depletion group

and 24 participants in the control group (14 women, mean age 20.6).

Participants in both groups slept equal number of hours on the even-

ing prior to scanning (Depletion group M¼ 7.0 h; Control group

M¼ 7.3 h). In addition, all participants completed a 36-item measure

of trait Self-Control (Tangney et al., 2004) as part of a previous mass

testing session. All participants gave informed consent in accordance

with the guidelines set by the Committee for the Protection of Human

Subjects at Dartmouth College.

Stimuli

Stimuli consisted of 180 emotional scenes from the International

Affective Picture System (IAPS; Lang et al., 2005) and were chosen

based on normative valence and arousal ratings such that the emotion-

ally negative category was both unpleasant and arousing (valence

M¼ 2.8; arousal M¼ 5.1), the positive category was pleasant and

arousing (valence M¼ 7.2; arousal M¼ 5.0) and the neutral category

was neither pleasant or unpleasant and of low arousal (valence rating

M¼ 5.4; arousal rating M¼ 3.6). In addition, emotional categories

were matched for the presence of people and faces in each scene to

ensure that any differential response observed between categories

was not due to a preponderance of faces in any one category.

Finally, images were split into two matched sets of 90 images each

(30 images per emotional category) to be used before and after

self-regulatory depletion (see ‘Procedure’ section). The presentation

order of these two sets was counterbalanced across participants.

Tasks

Participants completed three functional runs consisting of two tasks that

were: an emotional scene categorization task (runs 1 and 3) and the

attention control task (run 2). Both versions of the emotional scenes task

consisted of making ‘indoor or outdoor’ judgments on scenes (30 per

valence category) in a rapid event-related design. Null event trials con-

sisting of a white fixation cross against a black background were added

to introduce ‘jitter’ into the blood-oxygen-level-dependent (BOLD) time

series in order to allow for efficient estimation of tasks effects. The at-

tention control task was modeled after a task widely used in studies of

self-regulatory depletion (e.g. Schmeichel et al., 2003; Gailliot et al.,

2007) requiring participants to engage in effortful self-control over an

extended period of time. The task consisted of viewing 7 min of a silent

nature documentary on Canadian Bighorn mountain sheep (Brind &

Schmalz, 1970) that was chosen for being emotionally neutral and has

been used previously to induce a neutral mood (Heatherton et al., 1993).

During the video, a series of brightly colored one- or two-syllable dis-

tractor words (80 words total) appeared first at the bottom of the screen

and slowly moved to the center, over the course of 3 s, before disappear-

ing. The words encompassed approximately one-sixth the height of the

video and were presented in a bold yellow font, with a two-pixel red

outline to ensure visibility over the film (Figure 1). Task instructions for

participants in the depletion and control conditions differed in only one

important respect: participants in the depletion condition were in-

structed to inhibit reading the words, whereas participants in the control

condition were told that they needed only to pay attention to the video

and could freely read the words or not.

Procedure

In order to reduce suspicion, participants were informed that they

would be taking part in two separate studies, one involving the cat-

egorization of visual scenes and another involving understanding the
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gist of a movie. For the emotional scenes task, participants were ex-

plicitly instructed to maintain fixation on the images at all times, even

if they found them upsetting, and to indicate via button press whether

the image took place indoors or outdoors.

Prior to performing the depletion task, all participants underwent a

bogus eye tracking calibration session designed to convince partici-

pants that the location of their gaze was being monitored and thereby

ensure that participants in the depletion condition exert maximum

effort. In this bogus task, participants were instructed to fixate their

gaze on a series of sequentially presented white squares spanning the

four corners of the display, and were told that when the eye tracker had

determined the location of their gaze, the square would turn red. In

reality, the squares changed color after a variable amount of delay

(between 1.5 and 5 s).

Following scanning, participants completed a questionnaire to assess

suspicion, along with ratings of difficulty for the depletion task and

questions assessing how rested they were prior to scanning and

whether they managed to maintain fixation on the negatively valenced

scenes. None of the participants reported suspecting a link between the

self-regulatory depletion task and the emotional scenes task. Partici-

pants in the depletion condition rated the attention control task as

more difficult (on a scale of 1–7 with 1 being ‘very easy’ and 7 being

‘extremely difficult’) than did participants in the control condition

[Depleted¼ 5.4; Control¼ 2.1, t(46)¼ 8.34, P < 0.001] and partici-

pants in both groups indicated that they had managed to maintain

their gaze on the screen during the presentation of negatively valenced

images.

Image acquisition

Magnetic resonance imaging was conducted with a Philips Achieva 3.0

Tesla scanner using an eight-channel phased array coil. Structural

images were acquired using a T1-weighted MP-RAGE protocol

(160 sagittal slices; TR: 9.9 ms; TE: 4.6 ms; flip angle: 88; 1� 1� 1 mm

voxels). Functional images were acquired using a T2*-weighted echo-

planar sequence (TR: 2200 ms; TE: 35 ms; flip angle: 908; field of view:

24 cm). For each participant, two runs of 268 whole-brain volumes

(36 axial slices per whole-brain volume, 3 mm isotropic voxels were

collected.

Image pre-processing and analysis

FMRI data were analyzed using the general linear model (GLM) in

SPM8 (Wellcome Department of Cognitive Neurology, London, UK).

For each functional run, data were pre-processed to remove sources of

noise and artifact. Images were corrected for differences in acquisition

time between slices and realigned within and across runs via a rigid

body transformation in order to correct for head movement. Images

were then unwarped to reduce residual movement-related image

distortions not corrected by realignment. Functional data were

normalized into a standard stereotaxic space (3-mm isotropic voxels)

based on the SPM8 EPI template that conforms to the ICBM 152 brain

template space [Montreal Neurological Institute (MNI)] and approxi-

mates the Talairach and Tournoux atlas space. Finally, normalized

images were spatially smoothed (6-mm full-width-at-half-maximum)

using a Gaussian kernel to increase the signal to noise ratio and to

reduce the impact of anatomical variability not corrected for by stereo-

taxic normalization.

In order to estimate emotional scene category specific brain activity,

a GLM was constructed for each participant. This GLM included six

task effects (three for each valence category before and following the

controlled attention task) and covariates of no interest (a session mean,

a linear trend to account for low-frequency drift and six movement

parameters derived from realignment correction). Contrast images for

each participant, comparing the response to each emotional scene

category with baseline (i.e. null events), were then submitted to a

second-level repeated measures analysis of variance (ANOVA). This

analysis generated a statistical parametric map of F-values for the

main effect of emotional scene category (i.e. negative, neutral, positive)

identifying brain regions that responded to at least one of the

emotional scene categories across all participants and both time

points (i.e. before and after the attention control task). Monte Carlo

simulations using AFNI’s AlphaSim were used to calculate the min-

imum cluster size at an uncorrected threshold of P < 0.001 required for

a whole-brain correction of P < 0.05. Simulations (10 000 iterations)

were performed using smoothness estimated from the residuals ob-

tained from the GLM and resulting in a minimum cluster size of 39

contiguous voxels. This map was used to define regions-of-interest

(ROI) which were subsequently interrogated for an effect of depletion.

Specifically, ROIs (10-mm spherical ROI centered on peak voxels)

were used to extract parameter estimates for each emotional scene

category both before and after the controlled attention task. As both

groups contribute equally to the ROI-defining statistical map, these

ROIs are considered unbiased with regards to group effects. Finally, an

a priori anatomical ROI for the amygdala, created with the SPM

Anatomy toolbox (Eickhoff et al., 2005), was also used.

Psychophysiological interaction (PPI) analyses (Friston et al., 1997)

were employed in order to assess whether depleted and control par-

ticipants show differential connectivity between the amygdala and

PFC. Specifically, a functionally defined left amygdala ROI was used

as a seed region to investigate valence-dependent changes in functional

connectivity between the left amygdala and other regions of the brain.

Six millimeter spherical ROIs centered on the left amygdala ROI iden-

tified in the group GLM analysis (MNI coordinates: �21, �6, �21)

were used to extract the first eigenvariate of the individual voxel

time-series within the ROI. This representative time-series was decon-

volved from the hemodynamic response function (HRF) to generate an

estimated neuronal time-series (Gitelman et al., 2003). The product of

this estimated neuronal time-series and vectors representing each of

the onsets for the three different valence types prior to and following

depletion was computed. These six interaction terms were then recon-

volved with the HRF and entered into a new GLM along with the

vectors for the onsets for each valence type (i.e. the psychological

vectors), the original eigenvariate time-series and covariates of no

interest (i.e. a session mean, a linear trend to account for

low-frequency drift and six movement parameters derived from re-

alignment corrections). This ‘generalized’ form of PPI analysis differs

from standard PPI analyses in that it allows for the simultaneous

modeling of context-dependent connectivity for all conditions while

also showing increased sensitivity and specificity compared to trad-

itional PPI analyses (McLaren et al., 2012).

In order to examine whether depleted and non-depleted participants

exhibited differential connectivity with the left amygdala, we followed

Fig. 1 Schematic of the study design. Participants were randomly assigned to either a depletion
(n¼ 24) or control (n¼ 24) group. Both groups completed a single functional run of the emotional
scenes task followed by either the attention control task (depletion group) or passive viewing (control
group) which were identical in instruction save for the requirement that the depletion group inhibit
reading a series of words that appeared on screen (see ‘Methods’ section). Finally, participants
completed another functional run of the emotional scenes task, in this way the first functional run
served as a pre-depletion measure of baseline emotional reactivity.
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the same analysis procedure as with the analysis of BOLD responses to

emotional scenes. Specifically, the contrast images of the PPI inter-

action term for all valence types and for each participant were sub-

mitted to a repeated measures ANOVA which resulted in a main effect

of valence map identifying regions which show differential connectivity

with the left amygdala seed as a function of valence type. Statistical

thresholding and subsequent ROI analysis of this statistical map was

carried out using the same criteria as the above analysis.

RESULTS

Reaction times for scene categorization

Participants in the depleted and control groups showed similar

response latencies during the categorization of emotional scenes both

prior to [Depletion ¼ 1032 ms; Control¼ 1078 ms, t(46)¼ 1.4,

P¼ 0.16] and following the controlled attention task [Depletion¼

1013 ms, Control¼ 1049 ms, t(46)¼ 1.04, P¼ 0.3]. This was also the

case when reaction times were broken down according to the valence

category of the emotional scenes (all P > 0.14).

Brain regions sensitive to emotional valence across both groups

A repeated measures ANOVA across all participants and both sessions

identified regions showing a main effect of emotional scene valence in

a number of regions commonly implicated in the processing emotional

stimuli and regulating emotional responses (Table 1 and Figure 2a).

Specifically, the amygdala (MNI coordinates: �21, �6, �21) and LPFC

showed a main effect of emotional scene type characterized by having

the largest response to negative scenes, followed by neutral and positive

scenes (Figure 2b).

Brain regions differentiating between depleted and control
participants

In order to test for an effect of self-regulatory depletion we subtracted

each participant’s BOLD response prior to the attention control task

from their response following the task in functionally defined ROIs

and in two anatomically defined amygdala ROIs. In this way each

participant’s response prior to the attention control task serves as a

subject specific baseline for emotional reactivity. Analysis of these

change scores revealed that, following the attention control task,

depleted participants showed increased activity in the left amygdala

to negative emotional scenes, t(23)¼ 2.1, P¼ 0.047, whereas control

participants showed no change, t(23)¼ 1.2, P¼ 0.242. Moreover, this

difference was significant between groups, t(46)¼ 2.38, P¼ 0.021

(Figure 3). This was also true when using an anatomically defined

left amygdala ROI [depleted: t(23)¼ 2.12, P¼ 0.045; control:

t(23)¼ 0.586, P¼ 0.563] and the difference was significant between

groups, t(46)¼ 2.09, P¼ 0.042. The same analyses for the anatomically

defined right amygdala were all non-significant (all P > 0.1).

This effect appears to be specific to negative scenes as the left amyg-

dala ROI showed no evidence of a change in response for neutral

[depleted: t(23)¼ 1.17, P¼ 0.25; control: t(23)¼ 1.58, P¼ 0.13] or

positive scenes [depleted: t(23)¼ 1.34, P¼ 0.2; control: t(23)¼ 0.7,

Fig. 2 (A) Brain regions showing a main effect of emotional scene valence (negative, neutral or
positive) across both depletion and control groups (P < 0.05 corrected). (B) ROI analysis of parameter
estimates in the left amygdala (�21, �6, �21) and (C) left LPFC (inferior frontal gyrus; �48,24,6)
(B) demonstrate that these regions responded primarily to negatively valenced emotional scenes.
Error bars indicate SEM based on the mean squared error term for within subjects comparisons.
Coordinates (x, y, z) are in Montreal Neurological Institute stereotaxic space. IFG¼ Inferior Frontal
Gyrus.

Table 1 Brain regions showing a main effect of emotional scene valence across all
participants and sessions

Coordinates of peak activation

Brain region Side BA F-value x y z

Amygdala L – 19.27 �21 �6 �21
Lateral prefrontal cortex (IFG) L 45 22.92 �48 24 6
Lateral prefrontal cortex (IFG) R 45 19.44 48 24 18
Dorsal anterior cingulate cortex R 24 19.97 9 12 42
Dorsal medial prefrontal cortex L 10 14.02 �9 57 21
Orbitofrontal cortex R 11 13.91 �42 57 �9
Postcentral gyrus R 3 56.10 39 �24 48
Insula R 13 26.87 48 �21 15
Insula L 13 22.37 �45 �36 18
Middle temporal gyrus L 20 24.72 �51 �6 �24
Middle temporal gyrus R 21 21.38 51 6 �36
Superior temporal gyrus L 38 18.68 �36 15 �30
Supramarginal gyrus L 40 21.57 �63 �30 33
Inferior occipital gyrus L 19 39.34 �42 �81 �9
Periaqueductal gray – – 35.33 �3 �33 �6
Caudate R – 11.89 9 3 9

Note: Brain areas are listed along with the best estimate of their location. Coordinates are in MNI
stereotaxic space. BA¼ approximate Brodmann’s area; IFG¼ Inferior Frontal Gyrus

Fig. 3 Compared to control participants, depleted participants exhibited greater left amygdala
(�21, �6, �21) reactivity to negative emotional material following depletion [t(46)¼ 2.38,
P¼ 0.021]. Within groups, depleted participants exhibited increased amygdala activity to negative
emotional material compared to their pre-depletion baseline [t(23)¼ 2.1, P¼ 0.047] whereas
control participants did not [t(23)¼ 1.2, P¼ 0.242]. This was also true of an anatomically defined
left amygdala ROI (see text). Error bars indicate SEM.

Emotional reactivity following self-regulatory depletion SCAN (2013) 413



P¼ 0.49]. Moreover, the difference in change scores between depleted

and control groups was not significant for positive scenes, t(46)¼ 1.46,

P¼ 0.15, although there was evidence of a non-significant trend for

neutral scenes, t(46)¼ 1.89, P¼ 0.065 (Figure 3). Importantly, there

were no differences between the control and depletion group at base-

line (e.g. pre-depletion) in amygdala activity to the three emotion

scene types (all P > 0.22; see Supplementary Figure S1).

In addition to the amygdala, we also investigated the effect of

self-regulatory depletion on the responses to emotional scenes in two

regions of LPFC that have been implicated in emotion regulation

(i.e. the left and right LPFCs / Brodmann’s Area 45). Analysis of left

(MNI coordinates: �48,24,6) and right (MNI coordinates: 48,24,18)

LPFC ROIs derived from the statistical map of the main effect of

emotional scene type (Figure 2) showed no difference in changes

scores between depleted and control participants for negative [left

LPFC, t(46)¼ 0.37, P¼ 0.71; right LPFC, t(46)¼ 1.46, P¼ 0.71], neu-

tral [left LPFC, t(46)¼ 1.24, P¼ 0.22; right LPFC, t(46)¼ 1.91,

P¼ 0.063] and positive [left LPFC, t(46)¼ 1.54, P¼ 0.25; right

LPFC, t(46)¼ 0.72, P¼ 0.48] emotional scenes.

Correlation of left amygdala activity to negative scenes with
individual differences in self-control and a measure of depletion

Analysis of left amygdala change scores (post- minus pre-depletion)

with individual differences in trait self-control showed no relationship

in control participants (r¼ 0.09, P¼ 0.68) whereas there was a

non-significant negative relationship between trait self-control and

amygdala activity to negative scenes following depletion in the depleted

group (r¼�0.28, P¼ 0.19) such that individuals high in trait

self-control show less amygdala activity to negative scenes following

depletion. A moderated regression analysis failed to find evidence of

participant group being a moderator for the relationship between

left-amygdala activity to negative scenes and trait self-control

(� Self-Control�Group¼ 0.61, P¼ 0.16). Analysis of individual differences

in self-reported difficulty of the depletion task, showed a

non-significant positive relationship between amygdala change scores

with self-reported difficulty that was larger in the depleted participants

(r¼ 0.29, P¼ 0.17) than the control participants (r¼ 0.14 P¼ 0.51)

however a moderated regression analysis failed to evidence of partici-

pant group being a moderator (� Difficulty�Group¼ 0.4, P¼ 0.52).

Brain regions showing differential connectivity as a function of
valence and group (PPI analysis)

A repeated measures ANOVA of regions showing functional connect-

ivity with the left amygdala seed (MNI coordinates: �21, �6, �21) as a

function of scene valence type revealed two regions: the right dorso-

lateral PFC (MNI coordinates: 39,27,54; BA 8) and the left VMPFC

(MNI coordinates: �12,54, �15; BA 11). ROI analysis of these two

regions showed that, compared to controls, depleted participants ex-

hibited reduced coupling between the VMPFC and left amygdala

during negative scene viewing [t(46)¼ 2.27, P¼ 0.028]. This effect

was driven primarily by the control participants showing increased

coupling between VMPFC and the left amygdala during the second

session whereas coupling between these regions slightly decreased in

the depleted participants (Figure 4). The same pattern was in evidence

for the dorsolateral prefrontal cortex but was not significant

[t(46)¼ 1.25, P¼ 0.22]. Connectivity between the left amygdala and

VMPFC for positive and, separately, for neutral scenes did not differ

between groups (all P > 0.6).

DISCUSSION

Extensive behavioral evidence shows that the ability to regulate

thoughts, behaviors and emotions draws upon a domain-general

limited resource (Muraven et al., 1998; Vohs and Heatherton, 2000;

Gailliot et al., 2007; Hagger et al., 2010). In this study, we used func-

tional neuroimaging to investigate the effects of engaging in effortful

self-regulation on subsequent neural responses to emotional material.

Drawing upon findings from affective neuroscience on the neural

mechanisms involved in emotion regulation, we hypothesized that

self-regulatory depletion would impair participants’ ability to regulate

negative affect as evidenced by an exaggerated response in the amyg-

dala to negative emotional scenes in conjunction with reduced recruit-

ment of prefrontal regions involved in emotion regulation. The present

findings offer partial support for this conjecture in that, although

depleted participants demonstrated an exaggerated response to nega-

tive emotional scenes compared to non-depleted control participants,

we failed, however, to find evidence of decreased recruitment of the

LPFC or VMPFC in depleted participants. Instead, we found that,

compared to control participants, depleted participants showed

reduced functional coupling (i.e. PPIs analysis) between the left amyg-

dala and VMPFC that was specific to negative emotional scenes. Taken

together these findings suggest that self-regulatory depletion leads to

increased emotional reactivity that is largely specific to negatively

valenced material (although see below for an alternative conceptual-

ization) and that this exaggerated response may be due to a failure to

engage the VMPFC in top–down control of the amygdala.

The present findings are analogous to research on patients with

mood disorders. Previous work has shown that, compared to controls,

patients with MDD (Johnstone et al., 2007), anxiety disorder (-

Somerville et al., 2004), borderline personality disorder (Donegan

et al., 2003) and post-traumatic stress disorder (Rauch et al., 2000;

Shin et al., 2005) show an exaggerated amygdala response to negative

emotional material. In this study, participants were healthy young

adults who were not suffering from mood disorders, but were never-

theless induced to experience exaggerated responses to negative emo-

tional stimuli through a commonly used self-regulatory depletion

procedure. We point out these similarities not to suggest that depleted

subjects are in any way experience a clinical mood disorder, but rather

to highlight the similarity in neural mechanism underlying emotion

dysregulation.

With regards to the functional connectivity analysis we found that,

compared to control participants, depleted subjects showed reduced

coupling between VMPFC and left amygdala. This difference between

depleted and control participants was driven primarily by an increased

coupling between the VMPFC and left amygdala in the control

participants during negative emotional scenes whereas the depleted

participants showed a non-significant decrease in VMPFC and

Fig. 4 ROI Analysis demonstrated that the functional coupling between the VMPFC and the left
amygdala seed differed between depleted and control participants during negative scene processing
[t(46)¼ 2.27, P¼ 0.028]. This difference was driven primarily by an increase in the functional
coupling between amygdala and VMPFC in control subjects during the second session (positive
change scores) whereas depleted participants showed reduced coupling between these regions after
depletion (negative change scores). Error bars indicate SEM.
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amygdala coupling following depletion. Although it was expected that

control participants would show no change in functional connectivity

between the VMPFC and left amygdala, we instead found that, control

participants showed increased coupling between left amygdala and

VMPFC concomitant with an overall reduced in amygdala responses

to emotional scenes during the second session. Given prior evidence of

an important role for the structural (Kim and Whalen, 2009) and

functional coupling between VMPFC and amygdala for the regulation

of affect (i.e. Kim et al., 2003) we speculate that, in the present study

the emotion heightening effects of self-regulatory depletion are super-

imposed upon the normal process of habituation of amygdala re-

sponses to emotional material (e.g. Breiter et al., 1996; Kim et al.,

2004; Somerville et al., 2004; Davis et al., 2009) and that this failure

to habituate may result from reduced amygdala–VMPFC coupling as

compared to control participants.

Behavioral studies have shown evidence of spontaneous emotion

regulation (e.g. Egloff et al., 2006; Richards and Gross, 2006) and

demonstrate that spontaneous emotion regulation occurs more fre-

quently for negative than positive material (Volokhov and Demaree,

2010). Neuroscientific research has similarly uncovered evidence of

spontaneous emotion regulation by showing that individual differences

in daily use of emotion regulation strategies is correlated with reduced

amygdala reactivity to negative material (Drabant et al., 2009). The

current findings dovetail with this research by showing that inducing

self-regulatory failure through resource depletion leads to increased

amygdala activity to negative emotional material but not to positive

scenes. We did, however, observe a trend towards an exaggerated re-

sponse to neutral emotional scenes in depleted participants compared

to controls. Although speculative, this effect may be due to the fact that

neutral emotional scenes are more ambiguous than clearly valenced

negative and positive scenes and are therefore more susceptible to

being interpreted in a negative light. Similar findings have been

reported previously demonstrating a correlation between amygdala

activity to neutral faces and individual differences in anxiety

(Somerville et al., 2004). In addition, highly anxious individuals also

tend to view neutral faces as threatening (Yoon and Zinbarg, 2008).

Although the findings from clinical research support our conjecture,

further research is required to determine whether this trend towards

increased amygdala response to neutral items following depletion does

indeed reflect a shift towards viewing neutral material as being more

emotionally aversive.

Throughout we have discussed the effects of self-regulatory deple-

tion in terms of failure to appropriately engage in self control, however

recent work suggests that depletion may also have the unexpected

effect of increasing the strength of emotions and cravings directly.

Specifically, ratings of negative and positive affect in response to

emotional scenes are increased in depleted compared to non-depleted

participants (Vohs et al., 2012, submitted for publication). Similarly,

when evaluating neutral items depleted participants demonstrate more

extreme ratings of valence than non-depleted controls. Consistent with

neuroscientific models of self-regulation failure (i.e. Heatherton and

Wagner, 2011), what these findings suggest is that impulses and

self-regulation are held in balance, such that when self-control is

impaired (such as during self-regulatory depletion) then impulses

and emotions increase in strength. In the present study we have

focused mainly on neural responses to negative scenes, however we

did observe a non-significant trend towards increased left amygdala

activity to neutral scenes following depletion. Indeed, Figure 2 shows

that responses to all emotional scene types increased overall in depleted

subjects, even if only significant for negative scenes. Thus, the present

findings do appear to support, at least in part, the recent finding that

self-regulatory depletion may serve to heighten emotional reactivity

across the board.

A limitation of the current study is the lack of online ratings of affect

when viewing emotional scenes. Instead, participants completed a

low-level categorization task that minimally interferes with natural

amygdala responses (e.g. Hariri et al., 2003). This specific task was

chosen as prior work suggests that ‘affect labeling’ interferes with

normal affective responses in the amygdala (Lieberman et al., 2007).

Whether self-regulatory depletion itself disrupts the effects of affect

labeling, or indeed of other emotion regulation strategies, is a question

for future study. A related issue is that eye gaze was not monitored,

given recent research indicating that differences in gaze fixation pat-

terns during emotion regulation can explain some of the variability

between different emotion regulation strategies (van Reekum et al.

2007), a potential concern is that depleted and control participants

had different gaze patterns when viewing emotional scenes. Although

we did not collected eye tracking data inside the MRI environment, we

explicitly collected self-reports of participants ability to fixate on the

different scene types and found no differences between control and

depleted participants (see ‘Materials and methods’ section). Regarding

the attention control task itself, one possible concern is that this task

may elicit a change in mood. Although we did not measure mood, we

note that a number of prior studies of resource depletion, some using

the same attention control task, have explicitly assessed mood follow-

ing depletion and have found no difference between depleted and

control participants (Muraven et al., 1998; Vohs and Heatherton,

2000; Schmeichel et al., 2003; Gailliot et al., 2007).

CONCLUSION

Maintaining control over one’s emotions is important for human

social life. Failure to regulate one’s mood can lead to all manner of

maladaptive behaviors (Leith and Baumeister, 1996) such as breaking

one’s diet (Heatherton et al., 1992), alcohol use (Sinha et al. 2009),

excessive smoking (Tiffany and Drobes, 1990; Kassel et al., 2003) or

drug use (Childress et al., 1994). In the present, study we show that

engaging in an effortful self-regulation task leads to a subsequent

exaggerated neural response to negative emotional scenes along with

reduced functional coupling between the VMPFC and amygdala

during negative scene processing when compared to non-depleted con-

trols. Based on our findings, we hypothesize that people reflexively

regulate their responses to aversive material (e.g. Berkman and

Liberman, 2009) but that when this ability to regulate is temporarily

depleted, the experience of negative emotion becomes exaggerated

relative to normal, a result that is analogous to commonly reported

findings of exaggerated amygdala activity in clinical mood disorder

populations (e.g. Rauch et al., 2000; Shin et al., 2005; Johnstone

et al., 2007). Self-regulatory depletion thus may serve to shift the regu-

latory balance, such that prefrontal regions involved in top–down con-

trol are muted and regions involved in threat detection and vigilance

are amplified (e.g. Heatherton and Wagner, 2011). That this effect is

largest for negative emotional scenes may be due to the greater inher-

ent threat that such scenes present compared to neutral or positive

categories although we note that recent work by Vohs and colleagues

suggests that self-regulatory depletion may serve to amplify affective

responses to neutral and positive material as well (Vohs et al., 2012).

This last conjecture is partially supported by our finding of a marginal

increase in left amygdala activity to neutral scenes in depleted com-

pared to control participants.

Finally, the present findings offer further evidence that emotion

regulation is dependent on the same limited resource as other forms

of self-regulation and can similarly be impaired following depletion of

those resources. Understanding how these various forms of self-control

interact is vital, as failing to regulate emotions can lead to a cascade
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of further self-regulatory failures, such as when people drink alcohol,

take drugs, or eat to reduce their anxiety or repair their mood.
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