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Abstract
Neuroimage phenotyping for psychiatric and neurological disorders is performed using voxelwise
analyses also known as voxel based analyses or morphometry (VBM). A typical voxelwise
analysis treats measurements at each voxel (e.g. fractional anisotropy, gray matter probability) as
outcome measures to study the effects of possible explanatory variables (e.g. age, group) in a
linear regression setting. Furthermore, each voxel is treated independently until the stage of
correction for multiple comparisons. Recently, multi-voxel pattern analyses (MVPA), such as
classification, have arisen as an alternative to VBM. The main advantage of MVPA over VBM is
that the former employ multivariate methods which can account for interactions among voxels in
identifying significant patterns. They also provide ways for computer-aided diagnosis and
prognosis at individual subject level. However, compared to VBM, the results of MVPA are often
more difficult to interpret and prone to arbitrary conclusions. In this paper, first we use penalized
likelihood modeling to provide a unified framework for understanding both VBM and MVPA. We
then utilize statistical learning theory to provide practical methods for interpreting the results of
MVPA beyond commonly used performance metrics, such as leave-one-out-cross validation
accuracy and area under the receiver operating characteristic (ROC) curve. Additionally, we
demonstrate that there are challenges in MVPA when trying to obtain image phenotyping
information in the form of statistical parametric maps (SPMs), which are commonly obtained from
VBM, and provide a bootstrap strategy as a potential solution for generating SPMs using MVPA.
This technique also allows us to maximize the use of available training data. We illustrate the
empirical performance of the proposed framework using two different neuroimaging studies that
pose different levels of challenge for classification using MVPA.
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1 Introduction
Many neuroimaging studies are conducted with a priori hypotheses to be tested. Voxelwise
analysis1 (henceforth referred to as VBM) is the most widely used framework for hypothesis
testing in neuroimaging. In this framework, the measurements at each voxel (or region) are
treated as outcome measures and are analyzed independently leading to a large number of
univariate analyses. Depending on the study, these measurements could be any of the
following: cortical thickness obtained using T1 weighted images, blood oxygen level
dependent activations obtained using functional magnetic resonance imaging (fMRI),
fractional anisotropy computed using diffusion tensor images (DTI), or the index of
metabolic activity using positron emission tomography (PET). The relationship between the
outcome measure and the experimental design variables is commonly modeled using
generalized linear models (GLM) of which the linear model (LM) is a special case
(McCullagh and Nelder, 1989).2

With increasingly large amounts of data being collected, hypothesis testing alone fails to
utilize all of the information in the data. Such studies may also be used to discover
interesting patterns of regularity and to find image phenotypical information effecting
individual differences in diagnosis, prognosis, or other non-imaging observations. Increasing
sample sizes and multi-center studies combined with the maturation of high dimensional
statistical tools has led to an increasing interest in multi-voxel pattern analysis (MVPA)
(Norman et al, 2006; Pereira et al, 2009; Hanke et al, 2009a; Anderson and Oates, 2010;
Carp et al, 2011; Halchenko and Hanke, 2010).3 Thus far, the majority of this work has been
in the area of classification and primarily using functional magnetic resonance imaging in
detecting various states of mind (Pereira et al, 2009). There is a growing interest, in the spirit
of computer-aided diagnosis, in performing MVPA using structural information of the brain
with modalities such as T1-weighted MRI and diffusion tensor imaging (DTI). However,
performing MVPA using structural brain signatures is a harder problem than using
functional brain signatures. This is because, except in studies investigating atrophy,
structural changes (effect-sizes) are usually much smaller and reside in higher effective-
dimensions compared to functional changes, thus demanding more data for both VBM and
MVPA models. Yet, surprisingly, the majority of the neuroimaging studies have
significantly more functional data collected compared to the structural data such as DTI.
Hence, driven by improving performance scores such as cross-validation accuracies and area
under the receiver operating characteristic (ROC) curves, the current research has primarily
focused on the following two areas. (1) The first area involves developing pre-processing
methods for extracting various features such as using topological properties of the cortical
surfaces (Pachauri et al, 2011), spatial frequency representations of the cortical thickness
(Cho et al, 2012), shape representations of region-specific white matter pathways (Adluru et
al, 2009) or including various properties of the diffusion tensors in specific regions of

1These are also known as voxel based analyses (VBA) or voxel based morphometry (VBM). Also there are popular, mathematically
equivalent, variants of VBM such as region-of-interest (ROI) analysis (Nieto-Castanon et al, 2003).
2As is standard in the statistics literature we use the acronym GLM for generalized linear model, not general linear model. We broadly
use the term linear model (LM) to include what some authors might call the general linear model. The key point is that the LM is a
special case of GLM and assumes the error distribution is normally distributed whereas the error distribution in GLM can belong to
the more general exponential dispersion family.
3Whether MVPA denotes multi-variate pattern analysis or multi-voxel pattern analysis, it has the same meaning (Carp et al, 2011).
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interest (Lange et al, 2010; Ingalhalikar et al, 2011). Recent work in this direction has even
been in performing meta analyses using large scale data from the published articles on the
web for extracting specific regions in the brain relevant for a given task in fMRI studies
(Yarkoni et al, 2011; Mitchell, 2011). (2) The second area involves developing various
classifier models such as multi-kernel, multi-modal learning (Hinrichs et al, 2011;
Batmanghelich et al, 2011; Zhang et al, 2012), incorporating spatial constraints to a linear
program based boosting model (Hinrichs et al, 2009) and even ensemble classifier models
(Liu et al, 2012).

However not much attention has been paid to analyzing the model-behavior beyond the
basic metrics such as average cross-validation accuracy and ROC curves, except for a few
upcoming articles such as Hinrichs et al (2011); Ingalhalikar et al (2011), which attempt to
interpret the classifier model parameters and prediction scores. Although this is promising,
to our best knowledge, there has been virtually no work conducted in careful risk assessment
of such models in neuroimaging studies by employing generalization risk theory available in
the statistical machine learning literature.

This paper has four main goals: (1) to unify the key aspects of the two main families of
neuroimage analysis, VBM and MVPA by using penalized likelihood modeling (PLM); (2)
to illustrate the fundamental differences of VBM and MVPA in terms of model selection
and risk assessment and introduce practical generalization risk bounds using results from
statistical learning theory; (3) to demonstrate that for obtaining statistical parametric maps
(SPM) using MVPA, one faces an issue similar to the multiple comparisons problem; and
(4) to show that there are critical conceptual level differences between the use of MVPA in
artificial intelligence applications and neuroimaging studies, including differences between
the challenges in state-detection (diagnosis) vs. trait-prediction (prognosis). We use DTI
data from two neuroimaging studies to illustrate the potential of the proposed approach. The
first study investigates the role of white matter in the autism spectrum disorders. The second
study addresses the question of white matter plasticity effects of long-term meditation
practice. We would like to note that PLM is not new to neuroimaging and has been used in
the form of sparse regression by applying the ℓ1 penalty (Carroll et al, 2009; Vounou et al,
2010; Ryali et al, 2010; Bunea et al, 2011). However, to our best knowledge, our work is the
first to use PLM in a global context for unifying VBM and MVPA, which enables us to
provide better contrast between and comparison of the two families of analysis.

The remainder of the article is organized as follows. Section 2 contains materials and
methods. Specifically, the mathematical and statistical concepts of penalized likelihood and
risk assessment for both VBM and MVPA are presented in Sections 2.1, 2.2 respectively.
Section 2.3 presents the neuroimaging data sets discussed in this paper and Section 2.4
describes the statistical hypotheses that are examined in connection to the proposed
penalized likelihood phenotyping. The experimental results are presented in Section 3.
Section 4 contains a discussion of the presented work and directions for future research in
related areas. The Appendix presents an alternative approach for risk-assessment of MVPA,
specifically derived for support vector machines.

2 Materials and Methods
In this section, we first describe how penalized likelihood modeling can provide a unified
framework for voxel based morphometry (VBM) and the multi-voxel pattern analyses
(MVPA) in the Section 2.1. We then explain how the models can be assessed and interpreted
via risk assessment in Section 2.2.
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2.1 Loss and Penalty
Penalized likelihood modeling (PLM), and more generally regularization, is rooted in the
idea of inducing some selection bias for selecting parsimonious models in explaining the
data, without much loss in estimation performance. To set the notation, let us assume we
collect brain data (v number of voxels) and clinical covariates (p variables) on n subjects.
Typically, in an imaging data set v ≈ 105, n ≈ 102, and p ≈ 10. For instance, in our autism
study we have v = 41, 011, n = 154 and p = 4 (Age, Group, Social Responsiveness Scale
(SRS), IQ). For the meditation study, we have v = 57019, n = 49 and p = 3 (Group, Age and
Total Life Time Practice Hours (TLPH)).

We now explain how the data are modeled in VBM and classification, which is a canonical
example in MVPA. VBM fits the following regression model at each voxel

(1)

Y is the vector of outcome measures observed in the brain, X is the design matrix of the p
clinical variables and a column of constants, and β is a vector indicating the effect of each
variable on the signal. The error term (ε) is assumed to follow the standard normal
distribution, i.e. ε ~ (0, 1). In contrast, consider the classification problem where the data
are typically modeled as

(2)

In this setting, X is a matrix of vectorized brain signals also commonly known as the feature
matrix. Y is the diagnostic or group-label information. Here, each brain is treated as a high-
dimensional vector. Hence, a key difference between VBM and classification in data
modeling is in the size of β. Specifically, in the classification setting β is a high-dimensional
object (v ≫ n), while in the VBM setting it is not (p ≪ n). In addition to classification which
translates to computer aided diagnosis, one can also model a high-dimensional regression in
MVPA where Y ∈ ℝn×1. Such an MVPA regression model translates to computer aided
prognosis4.

The key idea behind estimating such models, for both VBM and MVPA, is to balance data
fidelity (using a loss/fitness function) and over-fitting (using a penalty). We would like to
quickly note that over-fitting of a model should not be confused with precise estimation of a
model. Precise estimation can lead to over-fitting when the model chosen a priori is not a
complete description of the “reality” under consideration. Hence the goal under PLM, is to
estimate the respective model parameters β by minimizing

(3)

where L is a loss function, P is a penalty which controls the complexity of the model, and λ
≥ 0 is a tuning parameter which controls the amount of penalization. This parameter can be
thought to reflect the uncertainty in modeling the reality: smaller values reflect more
confidence in the modeling. Typically, the loss function can be viewed as a negative log-
likelihood of the model, hence the objective function in (3) is commonly known as a
penalized likelihood function. Naturally different combinations of loss and penalty would

4We also note that in both VBM and MVPA, Y can also belong to ℝn×k for k > 1 but we shall not consider that class of models in
this manuscript.
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result in different biases, optimization challenges and model behaviors. In VBM, the most
commonly implemented loss function in popular neuroimaging packages such as SPM,
AFNI, FSL, SurfStat, fMRIStat, is the following ordinary least squares (OLS) loss

(4)

Let us take a closer look at the above loss function. If we expand and re-group the terms, it
can be upper bounded by

(5)

we can notice that the OLS loss function has an implicit penalty on ||β||2. Of course one
could introduce additional penalty to the OLS resulting in for example, ridge regression
(Marquardt and Snee, 1975). We can also use other robust loss functions such as the ε-
insensitive ℓ1-loss function in combination with a ||β||1 as penalty (Adluru et al, 2012). The
ε-insensitive ℓ1-loss used in the popular support-vector regression (SVR) is defined as

(6)

This loss-penalty combination also is very useful for computer-aided prognosis in the class
of MVPA. In the Table 1, below we present some commonly used loss and penalty
combinations in the family of VBM and MVPA. Different loss and penalty functions require
different optimization routines to estimate β. For example, OLS has a closed form solution
of β̂=(XTX)−1 XTY. Fortunately, the other combinations in the Table 1 are convex and
computationally tractable and the optimization details have been analyzed, implemented and
improved over time (Park and Hastie, 2007; Hastie et al, 2009; Friedman et al, 2010; Yuan
et al, 2011).

We would like to note that typically in MVPA models, each brain image is vectorized and
treated as a single high-dimensional vector (as shown in Eq. (2)), that is the 3D volume
structure of the brain scans is ignored. Hence the most commonly used penalties (shown in
the Table 1 above) are vector norms such as ||β||1, ||β||2. Such vector norms take into account
the high-dimensionality issue by taking into account the first order interactions but not
products between different βis.

However one can devise classification models by keeping the full 3D volume structure of
the brain images and treating them as tensors5, so that higher-order interactions between the
βis can be accounted for in the norms. Such interactions might very well be relevant for
analyzing patterns in these data. Tensors offer much richer variety of operations but for
simplicity of understanding one can model the data for ith sample as

(7)

5The tensors in this case are 3rd order, i.e. their elements are indexed by three numbers, while a diffusion tensor (introduced in
Section 2.3) is of 2nd order and can be treated as a regular matrix.
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and vx, vy, vz are the number of voxels in the three directions. 〈·, ·〉 denotes the tensorial dot
product which numerically is identical to vector dot product by vectorizing the two tensors
(Signoretto et al, 2011). The main advantage of such tensorial view comes from the ability

to add structural norms such as the Frobenius norm ( ), rank, Schatten {p, q}-
norms (||β||p,q) or nuclear p-norms (||β||p,1), whose definitions using advanced singular value
decompositions of tensors can be found in Kolda and Bader (2009); Signoretto et al (2011).
Penalizing with some of these norms (Frobenius, nuclear 1-norm) has convex optimization
routines while with some others (Schatten {p, q}-norms with p < 1) is computationally hard.
Furthermore justifying these norms would require stronger a priori assumptions on the 3D
structures of the βis such as having low-rank or other spectral-gap related assumptions.

Some such ideas have been applied in 2D natural image analysis such as face and gait
detection by treating images as matrices and image sequences as tensors rather than vectors
(Wolf et al, 2007; Kotsia et al, 2012), in tensor classification for online learning (Shi et al,
2011). Tensorial extensions have also been proposed for independent component analyses in
brain fMRI analyses (Beckmann and Smith, 2005). But since the main goals of this
manuscript are to unify the VBM and MVPA and present novel risk analysis approaches for
the estimated models regardless of the loss-penalty combination, our experimental results
focus on the most commonly used combinations (such as the ones presented in Table 1) and
focus on test-set bounds and cost-function based examination of the ROC curves.

2.2 Risk Assessment
In the previous section we saw how penalized likelihood modeling helps us unify the models
explored in VBM and MVPA as different combinations of loss and penalty in different
vector (or possibly tensor) spaces. One of the key distinctions between VBM and MVPA
will arise in the risk assessment of the estimated models. In each setting there are two-levels
of risk assessment that correspond to performance and interpretation. These are summarized
in Table 2 and will be described in detail in the following text.

Voxel Based Morphometry (Level 1 Risk)—In VBM, the model selection process is
based on domain specific knowledge. First, a certain set of null and alternate hypotheses are
formulated. Then after identifying a set of variables of interest and potential nuisance
variables, a control experiment is conducted to collect the data by randomizing on the
nuisance variables. Power analysis (Mumford and Nichols, 2008) is usually (but not always
and frequently enough) performed to calculate the amount of data that needs to be collected
in order to be able to confidently reject the formulated null-hypotheses. Hence the focus of
risk assessment is more on false rejection of null-hypotheses and less on model selection,
interpretation and generalization. This a priori model selection, preferably based on other
non-imaging data, results in a clear notion of outcome measures (dependent variables) and
experimental design measures (independent variables). As discussed in Section 1, the
relationship between dependent and independent variables is typically modeled as a linear
model (LM).

A fixed LM is estimated using OLS (Eq. (4)) with data from each voxel and the risk of false-
rejection of null-hypothesis at a voxel is based on a test statistic such as a p-value. The p-
value is characterized by a tail bound on a null-distribution which typically is a student-t, F
or χ2 distribution in asymptotics. The assumptions of asymptotic behavior are expected to
be satisfied with sufficient number of samples. Generally one wants to test if a linear
combination of the βs is statistically significant. That is, at each voxel, the following
hypothesis testing is performed
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(8)

where H0,i, H1,i are the null and alternate hypotheses respectively at ith voxel and  is an m
× p matrix typically called a contrast matrix. This method of using contrast matrices
provides a general way of representing null-hypotheses. To assess the risk of false-rejection
of the null hypotheses, we need to compute the following null-conditioned probability as the
test-statistic

(9)

The null-hypotheses can then be rejected with at least 1 − α confidence level or at most α
risk, if . Typically α is set to 0.05 in practice for various legendary and empirical
reasons. Below show how Eq. (9) is computed typically using p-values. Let

(10)

(11)

β̂ denotes the estimated β using the data. Now, under the asymptotic and standard normality
of residuals assumptions

(12)

(13)

where df = n − rank(X), is the degrees-of-freedom parameter for the two distributions. Thus
t-distribution can be used if we rely on the precision in the estimated parameters and χ2

distribution can be used if we rely on the residuals of the estimated models. Assuming the
above t and χ2 are the null-distributions, the probability of false rejection can then be
computed as

(14)

where

(15)

(16)
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and ft and fχ2 are the probability density functions for the t and χ2 distributions respectively.
Testing significance of contrasts of βs using residuals involves using ratios of residuals of
nested models resulting in F-tests (please see Adluru et al (2012) for examples and details).
Adluru et al (2012) also show that more effective (data-driven) definitions of the df can be
used to obtain better sensitivity in rejecting the null-hypotheses.

Thus the first level of risk assessment in VBM involves computing the p-values using a test

statistic such as t0,  or F0 and comparing those with α, at each voxel. The collection of the
test-statistics at each voxel results in the so called statistical parametric maps (SPMs) which
form the basis for image based phenotyping in the brain.

Image Phenotyping using VBM (Level 2 Risk)—The second level of risk arises
because we will have tested v hypotheses (one at each voxel) in order to produce an SPM.
To control the overall risk (also known as family wise error (FWER) control) we need to
control

(17)

Although the risk at individual voxel level can be controlled by computing p-values, the
joint probability is typically very hard to compute exactly since it is hard to know the
interactions between the hypotheses explicitly. But assuming there is α risk of false-
rejection at each voxel, it can be upper bounded using the union bound as

(18)

This upper bound, which is well known as Bonferonni bound or Boole’s inequality, says that
the risk of false-rejection is linearly inflated with the number of hypothesis tests in a given
experiment. This bound can be very loose in many neuroimaging studies and tends to be
overly conservative. One can also use the following (slightly tighter) inequality, based on De
Morgan’s law, also commonly known as Sídak bound

(19)

Naturally α ≤ 1 − (1 − α)v ≤ αv for α ∈ (0, 1]. Hence to control for false rejections with at
most α risk at the family level (17), we need to control the individual voxel level risk much
more strictly. Specifically as follows,

(20)

We can also observe that if  is not controlled at low values, the bounds would be
trivial and practically un-useful. For instance, they would result in statements such as the
family-wise risk is less than 1.0 and 2500 at α = 0.05, v = 50000 when applying Eqs. (19)
and (18), respectively6. Such methods however do not take into account the amount of

6We will observe similar statements arising in level 1 risk assessment of the MVPA models where the voxels are treated jointly.
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spatial smoothing performed on Y or smoothness present in the SPMs. From Eq. (14), we

can see that  essentially involves computing probabilities like P (ξ0,i ≷ x), where ξ0,i
is the test statistic at ith voxel in the SPM. By treating an SPM as a random field, the Eq.
(17) can be approximated using random field theory (RFT) as follows (Worsley et al, 2004;
Taylor and Worsley, 2008)

(21)

where Reselsd are the resels (resolution elements) of the search region (S) and ECd is the
Euler characteristic density of the excursion set of the SPM (thresholded SPM) in d
dimensions. The expressions for these can be found in Worsley et al (1996). We use the
implementations are available in the SurfStat software package (Worsley et al, 2009) in our
experiments. The RFT correction is very similar in spirit and in fact can be used to motivate
the cluster-based corrections (Smith and Nichols, 2009). Permutations-based correction
(Nichols and Holmes, 2002) controls the overall risk by Monte-Carlo simulations of the
null-distributions rather than assuming any parametric form (such as t, χ2 or F) for them or
clusterwise thresholding of the test statistics in the SPM. Finally, instead of controlling
FWER one can also control for proportions of false rejections also known as false discovery
rate (FDR) control (Benjamini and Hochberg, 1995).

The key thing to be observed is that the multiple comparisons issue in VBM arises mainly
when trying to obtain image phenotyping information by controlling the overall risk of false-
rejection of null-hypotheses at the neuroanatomical level. Furthermore, predictions at an
individual subject level is not a concern in VBM hence there is no explicit assessment of
generalization of the model performance on “unseen” or “uncollected” data.

Multi-voxel Pattern Analysis (Level 1 Risk)—As in the case of VBM there are two-
levels of risk assessment in MVPA, except the treatment of the voxels is reversed as shown
in Table 2. Here the data are typically not collected with a priori hypotheses as in the case of
VBM. Hence the notion of independent and dependent measures is less clear and not
relevant in this family of analyses. The idea is to discover flexible enough models, using
already collected data, to be able to perform well on the future/unseen data. In VBM, either
the precision of the estimated parameters or the residuals of the estimated models are used to
assess the first level risk. Since the model selection is not performed a priori as in VBM and
since p ≫ n, the risk assessment is necessarily different from that in VBM. The focus
becomes more on generalization, model selection and interpretation, rather than testing to
reject any null-hypotheses at an α risk level.

It is important to first understand some historical context of the MVPA in neuroimaging
based neuroscience, for careful risk assessment of MVPA models. MVPA in neuroimaging
studies is mainly an off-spring of machine learning models used primarily in imaging based
artificial intelligence (AI) applications such as computer vision and robotics7. The goal in
imaging based AI applications is fundamentally different from imaging based neuroscience
applications. In the former, the goal is to endow machines with models that potentially

7MVPA are quite prevalent and span applications beyond just those based on imaging data.
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mimic human capabilities such as object recognition, autonomous navigation and text
classification. For example it is easy (easy to learn) for humans to walk around
autonomously, summarize textual images, parse natural scenes. While in neuroimaging the
goal of mimicking humans, except in specific degenerative cases like Alzheimer’s disease
with gray matter atrophy and stroke, is ill-defined since it is essentially impossible (yet) for
even an expert neuro-scientist to look at brain imaging data and decide, for example,
whether a person has autism. Although theoretical work on assessing generalization risk in
machine learning has been addressed by many researchers, the status-quo of many of the
results are unsatisfactory in the practical setting leading to findings such as “generalization
risk is less than 0.9” (Langford and Shawe-taylor, 2002)8. This is a less critical issue in
human-mimicking AI applications, since in those applications one can have a strong control
on the risk by having a human in the loop9.

There are several approaches one can take in analyzing the risk of an estimated multivariate
model such as using probably approximately correct (PAC)-learnability (Valiant, 1984),
defining the “capacity” or “effective dimensions/degrees of freedom” of the models using
VC-theory (Vapnik and Chervonenkis, 1971), prediction error/mistake-bounds (Langford
and Shawe-taylor, 2002), cross-validation based analysis (Kearns and Ron, 1999). Although
these different frameworks are related to one another, we will mainly focus on employing
the prediction error bounds. This is due to practical implications of the different approaches.
The other frameworks are useful in general purpose understanding and designing models of
MVPA. For example, SVM estimation can be interpreted as minimizing empirical risk, since
the norm of the weights (||β||) is related to VC-dimension of the class of SVMs. However,
the bounds using such analogy are either very loose are hard to compute in practice.
Prediction error bounds on the other hand are easier to compute for practical application of
the prediction theory (Kääriäinen and Langford, 2005). Hence we propose those as an
extension to the routinely reported metrics such as average accuracies and receiver operating
characteristic (ROC) curves.

The most commonly used cross-validation (either leave-one-out or k-fold) can provide a
reasonable sense of the model performance but when computing the risk bounds, notions
like algorithm stability and hypothesis stability come into play. We do not go into details of
such results in this article but refer the interested readers to an excellent article (Kearns and
Ron, 1999). We will however use the cross-validation data for dissecting the ROC curves to
report confidence intervals of the true-positive rate (TPR) at various optimal operating
regions (please see section 3 for details on this).

Before we introduce basic quantities needed to compute the prediction error bounds, we
would like to highlight the difference between (1) MVPA regression models used for
predicting continuous variables known in neuroscience as traits or individual differences or
symptom severities, and (2) classification models used for predicting discrete variables
called as state, class or group prediction. The notion of robustness, although can be defined
using heuristics such as ℓ1 loss (Huber, 1981) in the case of trait prediction, can be more
crisply captured in the state prediction using variants of the 0/1 loss (Valiant, 1984). This
also amounts to additional challenges in risk assessment of the estimated models. Hence in
this manuscript we will primarily focus on computing state prediction error bounds. With
these bounds the risk that we are assessing, is on the underestimation of the errors made by
the classifier models (false positiveness in prediction accuracies).

8Compare this with the typical p-values in VBM that allow us to control the first level risk under 0.05 and the multiple comparisons
potentially resulting in similar practically un-useful statements.
9Humans can quickly (in one pass) isolate wrong findings such as misclassification of cats as dogs.
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The empirical (or estimated) prediction error of an MVPA classifier model (β̂) on a test-set
DTest, is defined as

(22)

Since we do not know parametric forms of the distribution of ε̂, the best we can hope for is
to model its distribution using the hypothetical true prediction error defined as

(23)

where D is the “true” multivariate high-dimensional distribution from which the data is
sampled.

The empirical error rate (ε̂) then follows a hypothetical (since ε is not known) binomial
distribution of heads/tails of biased coin flips with a bias of ε

(24)

which characterizes the probability of observing k empirical errors in n predictions when the
true error rate is ε. The tail probability, which is the probability of observing up to k errors
in classification, can then be defined as

(25)

However since we do not have access to ε, we cannot compute the above probability
exactly. In other words we do not know which binomial distribution the empirical error rate
(ε̂) follows10. Hence the risk assessment is modeled as the probability of deviation of ε̂ from
ε at a pre-determined confidence (1− α) or risk (α) levels.

Now, using standard properties of the binomial distribution one can obtain (Kääriäinen and
Langford, 2005),

(26)

where

(27)

is the Binomial tail inversion representing the largest bias (true error rate), such that we can
observe up to ε̂ in n prediction attempts, with at least α probability. This is known as the

10As a comparison, imagine a setting in which one is given an estimated mean which is expected to follow a student-t distribution, but
is not given the degrees of freedom to know which t-distribution to be used for computing the tail-probability.
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test-set upper bound which states that the chance of large deviation of true error above the
tail inversion obtained using the test-set error rate, is bounded by α. Similarly a lower bound
can be obtained as (Kääriäinen and Langford, 2005)

(28)

where

(29)

is the opposite of Eq. (27) reflecting the smallest bias, such that we can observe at least ε̂
errors i.e. ε̂ or more number of errors in n prediction attempts, with at least α probability.
These upper and lower bounds can provide us binomial confidence intervals on the
prediction error rates thus allowing us to state the following about the true error rate. With 1
− α confidence,

(30)

This is a tighter interval compared to the following interval that is sometimes reported in
literature (assuming α ≤ 0.05),

(31)

where

Although at higher error rates binomial can approximate the normal distribution, for lower
error rates (30) is tighter (tightest possible) compared to (31).

We now discuss the practical issues encountered when reporting (30). Computing this
interval requires an independent test-set for evaluating the model. That is ε̂ has be to be
replaced by

(32)

and n by ntest. In our experimental results we split the data into various training/test sets as
shown in Table 4. In typical neuroimaging studies however, there is insufficient data for
training multivariate models. Hence, researchers tend to use all of the data without holding
an independent test set. Furthermore the test-set bounds are agnostic to the specific loss-
penalty combination and work purely based on the mistakes made by the model. This
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naturally leads to a discussion of the so called training set bounds which can allow us to use
all the available data as well as take into account specific class of the MVPA models.
Classes of MVPA models are characterized by their “effective power” in prediction. The
more powerful a class is the looser the training set bound would be, for a fixed amount of
training data. One can draw an analogy to the degrees of freedom of a LM used in VBM, the
larger the rank(X), the less are the df the power to reject a null-hypothesis, for a fixed α and
n. The flip-side of taking class into account is that the bounds are derived for the families of
classifier models rather than the specific learned/estimated model. Although there are
techniques to “de-randomize” the bounds, from a data analysis perspective the focus in this
paper is computing the test-set intervals (please see the numerical results for the two studies
are reported in Section 3). Please see Section 4 and the Appendix for further discussion of
the training set bounds for support vector machines.

Image Phenotyping using MVPA (Level 2 Risk)—The second level of risk
assessment specifically involves the model selection rather than model performance
although both can be addressed jointly in some situations as discussed in Table 2.
Summarizing the model parameters (β) in the MVPA to produce a SPM is a challenging
open problem. The main challenges that need to be addressed are (1) the fact that βis are
estimated jointly and we need to take into account the inter-dependencies and (2) that the
estimation is performed using disproportionately small amounts of data and hence the
precision and stability in the estimated βis need to be carefully defined. A typical approach
is to perform some basic normalization of the β̂is and define a significance threshold for
declaring some of the voxels as critical. We take a more principled approach of computing

z-scores for qualitatively approximating a significance map. Let  be the average of the
estimated parameter that corresponds to the voxel i across all cross-validation folds which
serve as a bootstrap for the estimation. zi is then simply the normalized score defined as

(33)

where u and s are the functions for sample means and standard deviations. We can then
work with the assumption zi ~ (0, 1) and can threshold for an appropriate α significance
level. Note that although we do not explicitly face the multiple comparisons problem as in
the case of VBM, we are still faced with another challenge of robust model selection using
limited data known commonly as variable selection problem in statistics and machine
learning communities. Some loss-penalty combinations, such as the LASSO (Tibshirani,
1996), induce sparse solutions and allow for simultaneous variable selection and parameter
estimation. For more details we refer the reader to Bickel et al (2006), Hesterberg et al
(2008), and Fraley and Hesterberg (2009).

2.3 Neuroimaging Data
We used data from two different neuroimaging studies. The first study investigates white
matter substrates of autism spectrum disorders (ASD). The second study investigates the
neuroplasticity effects of meditation practice on white matter. The sample characteristics of
both the studies are presented in Table 3. Both studies used diffusion tensor imaging (DTI)
data to investigate how white matter microstructure is affected. Briefly, DTI is a modality of
magnetic resonance imaging that is exquisitely sensitive and non-invasively maps and
characterizes the microstructural properties and macroscopic organization of the white
matter (Basser et al, 1994; Jones et al, 1999; Mori et al, 2002). This is achieved by
sensitizing MR signal to the diffusion of the water molecules (protons in them). Specifically
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the diffusion of the protons causes exponential attentuation in the signal proportional to their
apparent diffusion coefficient (ADC) and the MR acquisition parameter known as b-value or
b-factor (Le Bihan et al, 2001). That is S = S0e−bADC, where S is the measured MR signal,
S0 is the signal without diffusion weighting or b = 0. The b-value represents the magnitude,
duration, shape of the applied magnetic field gradients and time between the paired
gradients used to flip the precessing protons and has units of seconds per square millimeters
(s/mm2) (Le Bihan et al, 2001). By measuring the attenuated signal in atleast six different
directions one can estimate the diffusion pattern of the protons in the three orthogonal
Cartesian directions using a positive semi-definite covariance matrix also known as the
diffusion tensor.

In the brain white matter, which consists of packed axon fibers, the diffusion of water is
anisotropic, i.e., directionally dependent, because the movement of water molecules
perpendicular to the axon fibers is more hindered than in the parallel direction. From the
diffusion tensor one can obtain maps of the diffusion tensor trace, the three eigenvalues,
anisotropy and orientation (direction of the largest eigen vector) (Basser and Pierpaoli,
1996). Various such measures from DTI have been used to characterize differences in brain
microstructure for a broad spectrum of disease processes (e.g., demyelination, edema,
inflammation, neoplasia), injury, disorders, brain development and aging, and response to
therapy (Alexander et al, 2007). Fractional anisotropy (FA), the most commonly used
measure of diffusion anisotropy, is a normalized standard deviation of the eigenvalues that
ranges between 0 and 1. Although FA can be effected by many factors, empirically different
studies have indicated that the higher the value, the more organized (in a primary direction)
and the greater is the white matter integrity.

Autism Study—DTI data from a total of 154 male subjects were used in this study. The
data were acquired on a Siemens Trio 3.0 Tesla Scanner with an 8-channel, receive-only
head coil using a single-shot, spin-echo, echo planar imaging (EPI) pulse sequence and
sensitivity encoding (SENSE) based parallel imaging (undersampling factor of 2).
Diffusion-weighted images were acquired in twelve non-collinear diffusion encoding
directions with diffusion weighting factor b = 1000s/mm2 in addition to a single reference
image (b = 0). Other acquisition parameters included the following: contiguous (no-gap)
fifty 2.5mm thick axial slices with an acquisition matrix of 128 × 128 over a field of view
(FOV) of 256mm, 4 averages, repetition time (TR)=7000ms, and echo time (TE)=84ms.

Meditation Study—DTI data from 49 subjects were used in this study. The diffusion
weighted images were acquired on a GE 3.0 Tesla scanner using 48 non-collinear diffusion
encoding directions with diffusion weighting factor of b = 1000s/mm2 in addition to eight b
= 0 images.

Image Pre-processing—For both the studies, eddy current related distortion and head
motion of each data set were corrected using FSL software package (Smith et al, 2004). The
brain region was extracted using the brain extraction tool (BET), also part of the FSL. Field
inhomogeneity distortions were corrected using field maps acquired in the meditation study.
The tensor elements were calculated using non-linear estimation using CAMINO11. It is
important to establish spatial correspondence of voxels among all the subjects before
performing VBM. State-of-the-art diffusion tensor image registration DTI-TK12 was used
for spatial normalization of the subjects. It performs white matter alignment using a non-
parametric, highly deformable, diffeomorphic (topology preserving) registration method that

11Camino is an open-source Diffusion-MRI processing software library.
12http://www.nitrc.org/projects/dtitk
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incrementally estimates its displacement field using a tensor-based registration formulation
(Zhang et al, 2006).

Features—For MVPA models, extracting features from the DTI data can be very
sophisticated. For example, Lange et al (2010) uses various diffusion tensor invariants such
as FA in combination with other geometric properties in highly specific regions chosen a
priori. While such efforts are extremely critical and useful for improving classification
accuracies (Chu et al, 2012), we aim at keeping the features to be simple for two key
reasons: (1) we have limited data to learn a classifier and by having a complex combination
of features we risk generalizability; (2) we want to be able to interpret the features used in
the classifier so that we can obtain image phenotypical information from the MVPA. In this
study we perform both VBM and MVPA using fractional anisotropy (FA) in the white
matter defined as the voxels with mean FA > 0.2 resulting in approximately 50000 voxels in
each study. Furthermore, we restrict ourselves only to linear kernels, where the estimated
parameters (learned weights) can be interpreted using z-scores. The data is smoothed for
full-width half-maximum (FWHM) of Gaussian 4mm to account for mis-registrations during
spatial normalization. Following the empirically chosen defaults from DTI-TK, the final set
of spatially normalized images are resampled to 96 × 112 × 72 voxels with 2 × 2 × 2mm3

size per voxel. Hence, the FWHM 4mm smoothing roughly accounts for misalignment up to
1.5 voxels.

2.4 Hypotheses Examined
In this section, we present the hypotheses that are examined (estimated and tested for
significance) for the penalized likelihood phenotyping i.e. VBM and MVPA. We would first
like to note that the ‘addition of covariates’ approach is not a substitute to a clean
randomization of a population study. In the case of VBM nuisance variables can lead to (a)
either artificially reducing the sample size (by forcing to use only ‘controlled’ subset of the
full sample) or (b) adding those variables into the models, both of which result in a reduction
of statistical power of hypotheses testing essentially due to decrease in degrees of freedom
of error. Furthermore finding a controlled sub-sample from the full-sample could be tricky
because (1) there could be a large number of subsets to examine, (2) one has to either verify
if the sub-samples follow known parametric distributions (such as normal) on the nuisance
variables or perform permutation testing using each of the sub-division, and (3) one has to
choose the subset that can maximize the statistical power. Satisfying all the three could be
computationally very demanding.

Since in most realistic-population studies there always are a few nuisance variables and
since choosing ‘controlled’ subsets is very challenging, addition of nuisance variables to the
models is often used as a remedy. In the case of MVPA however, there is a stronger reason
for not using only subsets of data. MVPA models are orders of magnitude higher in
dimensionality compared to VBM models and larger models need more data for accuracy in
estimation. Hence say by adding one or two nuisance variables to a model already
containing 50,000 variables we can salvage about 100 samples, the cost to benefit ratio
would be low at least in building an accurate predictive model.

Although fundamentally the idea of adding covariates into a model to control for the
nuisance variables is similar in both VBM and MVPA, the control in MVPA is obtained at
the phenotyping stage (using their relative importance compared to imaging covariates) and
not in the predictive stage.

With these notes in mind, we examine the following set of hypotheses in the VBM category
at each voxel in the white matter.

Adluru et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Autism Study (VBM Models)
1. Group effect on fractional anisotropy (FA). Here we test if the null-hypothesis that

there is no difference in group-means of FA between autism spectrum disorders
(ASD) group and typically developing control (TDC) group, can be rejected. Since
the groups are not matched on IQ distributions, we regress out the effect of IQ on
FA, the outcome measure in this case. The corresponding linear model (LM) can be
expressed using MATLAB terms (Worsley et al, 2009) as

For experiments, we estimate the over-parameterized version of the above LM as

where ASD and TDC are the indicator variables. The contrast matrix used is  = [0

− 1 1 0], i.e. the null-hypothesis is .

2. Effect of Social Reciprocity/Responsiveness Scale (SRS) on FA. SRS is a
quantitative, dimensional measure of social functioning across the entire
distribution from normal to severely impaired functioning (Constantino et al,
2000). In this hypothesis we measure the effect of SRS on FA above and beyond
IQ and Age. That is we want to measure how important SRS is in predicting FA in
the context of using IQ and Age jointly. The corresponding LM is

The contrast matrix is  = [0 1 0 0], i.e. the null-hypothesis is β1 = 0. We test this
hypothesis only using the ASD group (n = 93) since the variance in the measured
SRS for the TDC group is limited.

Meditation Study (VBM Models)
1. Group effect on FA. In this hypothesis we are interested if the group-means of FA

are different between long term meditation practitioners (LTM)s and wait-list
controls (WL)s. The WL group sometimes is also referred to as meditation näive
practitioners (MNP). The corresponding over-parameterized LM is

where LTM and WL are the indicator variables and the contrast matrix is  = [0 −1

1] representing the null-hypothesis .

2. Here we are interested in the neuroplasticity effect of meditation practice. Here
meditation is conceptualized as a form of mental training cultivated for various
ends, including emotional balanced and well-being. In the present study, meditators
have been trained in standard Buddhist meditation techniques. These techniques
lead to the cultivation of emotion regulation and attention control. The amount of
formal meditation in life is used in the present study to interrogate the effect of
meditation on the FA. Although this is cross-sectional data we can still hope to
measure the effect of life time practice hours (TLPH) on the FA. TLPH is
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computed using self-report measures of the number of retreats and number of hours
at those retreats. The corresponding LM is

and the contrast matrix is  = [0 1 0 0].

We estimate all of the above LMs using ordinary least squares loss implementation available
in SurfStat (Worsley et al, 2009) and produce t-statistic maps.

Besides the VBM based hypotheses, we explore the following MVPA based hypotheses for
phenotyping. We perform the following two types of MVPA: (1) classification, most
commonly performed in the spirit of computer aided diagnosis; and (2) high-dimensional
regression in the spirit of computer aided prognosis.

Autism Study (MVPA Models)
1. Here we ask the question of how well the FA in the white matter voxels jointly can

predict the group label of an individual. The MVPA model for this can be
expressed as

(34)

Here the Group variable is treated as a binary variable. We include IQ in the model
since the samples in the two groups are not perfectly matched for it and could be a
predictive feature. We would like to highlight a key difference between the MVPA
and VBM is that there is no explicit randomization performed on the model
parameters when the data is being collected and hence the MVPA models are also
known as “data-driven”. Hence, as discussed in the beginning of this section, to
maximize the training data available we can be agnostic to the randomizations and
can include such non-imaging parameters as well in these models. The z-score
phenotyping will then show the relative importance of the imaging parameters as
compared to such variables which are typically labeled as confounding or nuisance
variables in VBM.

2. We then examine if SRS in the ASD group can be predicted using white matter FA
in the context of using IQ and Age as predictors. The corresponding MVPA model
is

(35)

Meditation Study (MVPA Models)—The following correspondingly similar MVPA
models are estimated

1. Group = β0 + β1FA1 + β2FA2 + … + βvFAv,

2. TLPH = β0 + β1FA1 + β2FA2 + … + βvFAv + βv+1Age + βv+2Gender.

We estimate the above multivariate models using support vector machine (SVM) and
support vector regression (SVR) loss-penalty combinations (see Table 1). We use the
implementations available via LIBSVM (Chang and Lin, 2001) and GLMNet (Friedman et
al, 2010; Yuan et al, 2011). We report both the model performance as well as the image
phenotyping information.
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3 Experimental Results
In this section we will present and discuss the results of the models discussed in the previous
section both for VBM and MVPA. Fig. 1 presents the distribution the t-statistics and the
thresholds (FWER ≤ 0.05) based on Bonferonni correction and random field theory. We can
observe that the t-statistics do not quite reach those correction thresholds. Hence we present
the corresponding statistical parametric maps (SPMs) thresholded at a significance of α =
0.005 which is called “uncorrected” significance. Fig. 2 shows SPMs and sample cluster
data in corpus callosum and brain stem from the VBM hypotheses examined in the autism
study. Similar results for the meditation study are shown in Fig. 3. The corresponding figure
captions provide more detailed discussions of these results.

In the following, we show the results of MVPA for both classification and regression in both
the studies. First, we present the test-set bounds or binomial confidence intervals
(Kääriäinen and Langford, 2005) for the prediction performance of the linear SVM classifier
in Table 4. We then show the classifier and regression performance across the 100 iterations
of 10-fold cross-validation in Fig. 4, as distributions of the test-set prediction accuracies of
the binary group labels and mean squared errors of prognosis prediction.

For classifier models, we show the receiver operating characteristic (ROC) curves. ROC
curves plot false positive rate (FPR) vs. true positive rate (TPR) as shown in Figs. 5 and 6.
Typically only the area under the curve (AUC) is reported, and the closer it is to 1 the better
is the performance of a classifier. However, it is important to understand the various
operating regions in the ROC curve, which determine a trade-off between FPR and TPR. To
define an operating region, we need user-defined costs for the confusion matrix as shown in
Table 5.

These user-defined costs allow us to identify optimal regions on the ROC curves by moving
a line with slope

(36)

from top-left (FPR=0,TPR=1) inward until it meets the ROC curve. In addition to the costs
of making mistakes, Eq. (36) also takes into account the imbalance in the training data using
the ratio N/P which is the ratio of the total number of trainining examples in the “negative”
class to the that in the “positive” class. If these costs can be set a priori they can also
potentially be used in choosing the MVPA model itself so that one can obtain a model with
appropriate trade-off between TPR and FPR on the ROC curves. The costs chosen a
posteriori can also be useful in providing a more detailed assessment of the ROC curves
using their curvatures at various points rather than just using a summary feature of the curve
like AUC.

Although choosing these costs precisely (either a priori or a posteriori) will require strong
knowledge from the domain (and sometimes might even be infeasible), we can observe that
the slope m is proportional to the ratio of false-postive cost to the false-negative cost if the
training data is well balanced. That is,

(37)
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if N/P = 1 and c(P|P) = 0, c(N|N) = 0. Hence one can choose the ratios of the costs rather
than the individual costs themselves. If the ratio is chosen to be greater than 1, the line is
more likely to touch the ROC curve towards stricter (lower) FPR regime. If a particular
application demands the cost of a miss (false-negative) to be higher than the cost of a false
alarm (false-positive) then the slope would be smaller than 1 and the optimal operating
region would towards higher FPR regime. The confidence intervals for the corresponding
TPR at such optimal points can be computed via any reasonable bootstrapping method. In
this paper they are computed using the bias-corrected accelerated (BCa) method (Efron,
1987; Diciccio and Romano, 1988).

For our experiments, we set and define three different optimal points using In our
experiments we demonstrate the optimal region calculation (Figs. 5 and 6) using three
simple values of m by setting c(N|N) = c(P|P) = 0 and arbitrarily setting c(P|N) as

(38)

Hence in this case the c(N|P)s are calculated retrospectively according to Eq. (36). The
Table 6 shows the values of c(N|P) for the two different studies.

Finally, Figs. 7 (autism study) and 8 (meditation study) show the z-score SPMs to obtain
image phenotyping using the MVPA classifiers and regressors. The z-score maps are
obtained using average weight vector estimated from the cross-validation folds as described
in section 2.2. We can observe that estimated MVPA models in both the studies produce
biologically plausible findings. The maps for autism study shown in Fig. 7 also display an
interhemispheric asymmetry in significance of the weights, which is consistent with the
findings in the autism literature. For example, Lange et al (2010) show that asymmetry is
atypical in ASD and serves as a good predictor of the group.

4 Discussion and Future Directions
In this paper we presented a unifying treatment of the two major families of neuroimage
analyses, namely, the standard voxelwise analysis (VBM) and the emerging multi-voxel
pattern analysis (MVPA). Penalized likelihood modeling provides us a natural way to view
the models estimated in both families as different combinations of loss and penalty. Hence
we call this unified framework as penalized likelihood phenotyping. Although it is
increasingly well known that VBM involves estimating a massive number of univariate
models and MVPA estimates one massive multivariate model, the proposed unification
naturally allows us to identify two, practically relevant, levels of risk assessment of the
models in both the families. Such an assessment provides insight into some of the
fundamental commonalities and differences between VBM and MVPA and also the
challenges in the latter. The first level is concerned with explanatory or predictive power of
the models, while the second level of risk arises due to the need for interpretations of the
model parameters (MVPA) or collections of models (VBM). In both cases essentially this
involves computing tail bounds of various probability distributions or deviation bounds
essentially relying on Chernoff type inequalities (Chernoff, 1952).

The first level of risk of the VBM models at individual voxels can be analyzed in a relatively
straightforward manner using parametric (such as t or F) or non-parametric distributions
(using Monte-Carlo simulations). But for interpreting these models at the neuroanatomical
level one needs to analyze the joint risk of all the models to obtain phenotypical information
of important regions in the brain. This second level of risk assessment is more complicated
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and, in fact, this problem, in the general statistical framework of multiple comparisons or
familywise error rate, still represents a fertile area of open research in the statistics
community. There is no optimal method for solving these problems and the “best” solution
is typically a choice from Bonferroni/Sídak type corrections, cluster-based corrections
(sometimes invoking results from random field theory) or controlling false discovery rates,
depending on the specific instance of the VBM.

In MVPA only one model is estimated; however, it is a large multivariate model (the
dimension is on the order of 50,000). Therefore, although MVPA avoids the multiple
comparisons problem in the second level, the first level of risk assessment is considerably
more challenging. By drawing the fundamental differences between the use of MVPA in
artificial intelligence applications versus neuroimaging studies, we demonstrated the need
for using metrics beyond the traditional cross-validation accuracies and ROC curves for
assessing the risk in prediction power of the models. When using MVPA to extract image
based phenotyping information, for interpretation of the brain regions, one still is susceptible
to a “multiple comparisons-type” problem since one has to test the significance of each
parameter of the massive model. In fact, this is studied in statistics and machine learning as
the variable selection problem, which is particularly challenging in the high dimensional low
sample size setting (Hesterberg et al, 2008).

For the first level analysis in MVPA, we presented prediction error bounds for the linear
SVM classifier models that give us more precise sense of risk in the prediction power of the
classifiers. Rather than reporting the usual sample mean and variance of the empirical
prediction error rates, which assumes normality of their distribution, we reported precise
binomial confidence intervals using a test-set bound. Although normal and binomial
distributions behave similarly when the error rates are high, the approximation is not
accurate for lower error rates. We also showed how one can define optimal operating
regions on the ROC curves using user-defined costs of mistakes/errors and compute
confidence intervals on the true detection rates at those regions. We note that the importance
of reporting confidence intervals, in addition to test-statistics such as p-values, has also been
highlighted elsewhere in cognitive science field (Cohen, 1994). For interpretation of the
classifier and regression MVPA models we described a principled way to produce z-statistic
maps using z-scores that reflect the relative significance of the parameters in the estimated
models. Such a technique also lets us to include non-imaging parameters in the models, thus
allowing us to maximize the use of available training data in learning (model estimation).

In this paper we mainly evaluated linear models both for VBM and MVPA which have an
advantage in terms of interpretability. One can develop non-parametric as well as implicit
non-linear models via kernel methods both for VBM and MVPA(Scholkopf and Smola,
2001; Jäkel et al, 2009; Arthur et al, 2012). Reporting first level risk in these types of
models would be similar to the case of linear models. But the interpretation risk analysis
becomes harder since, besides having additional estimation challenges, we do not explicitly
have access to the parameters of the model. Furthermore, the primary focus of the paper has
been on model evaluation via risk assessment and not in obtaining better classification
accuracies by using sophisticated feature selection or advanced tensor norm based
classifiers. We still would like to note that feature selection can be very useful in
neuroimaging since the parameter selection of the model would be based on domain specific
knowledge. Such efforts not only can improve the performance in prediction (Chu et al,
2012) but also reduce the risk of false interpretations once the model is trained.

Importance of modeling (including machine learning models) and their careful evaluation
has also been highlighted in cognitive science (Shiffrin et al, 2008; Shiffrin, 2010).
Computational modeling is not only expanding in neuroimaging but also being embraced in
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behavioral phenotyping of psychiatric illness (Montague et al, 2012). Hence it becomes
important to be cognizant of the model evaluation frameworks and the limits of validatory
conclusions one obtains when using MVPA models in neuroscience. In the spirit of
understanding the relevance and importance of MVPA in neuroscience, there has also been
increasing demand on the empirical validation of MVPA models across studies resulting in
upcoming packages like PyMVPA (Hanke et al, 2009b,c) which can facilitate neuroimaging
researchers to perform cross-center analyses. To the best of our knowledge, this paper is the
first to bring the theoretical prediction risk bounds into practice in neuroimaging settings.
Our original contribution is in that this is the first work that addresses the problem of risk
assessment and image phenotyping in a principled way when applying MVPA for
neuroimaging based neuroscience applications by jointly studying VBM and MVPA.

There are several potential avenues of future research along the lines presented in this paper.
(1) The test set bounds provide useful information about the prediction error rates of the
MVPA classifier models, however they are not tuned for specific models like support vector
machines (used in this paper), decision trees and various other variants. We presented a
training set based framework for obtaining bounds for specific families of models. But the
main challenge is in coming up with clever de-randomization techniques. This is needed so
that confidence intervals can be applicable for the specific learned model rather than the
family of the learned model. Although there are some techniques such as using unlabeled
training data for de-randomization (Kääriäinen and Langford, 2005), incorporating domain
specific information from neuroscience and neuroimaging to improve the existing error
bounds would be a great direction to pursue. (2) Additionally, computing these error-bounds
in a cross-validation setting by taking into account issues like algorithmic stability is of
potential interest (Kearns and Ron, 1999). Currently there are no practically applicable
results in that direction. (3) Finally, instead of focusing on designing complex MVPA
models (i.e. different loss-penalty combinations and non-parametric forms) which could be
harder to visualize and interpret, one could focus on sample complexity (Sivan et al, 2012)
results for simple linear models and develop experimental design techniques of new studies
for achieving computational learnability. This would result in an MVPA analog for power-
analyses used for VBM in neuroimaging (Mumford and Nichols, 2008). Such perspectives
and techniques introduced in this paper will hopefully allow neuroscientists and neuroimage
researchers to use computational modeling to address increasingly sophisticated questions
about the brain-behavior relationships in a powerful and rigorous way.
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Appendix
For completeness and contrasting with the test-set bounds we derive the training-set bounds
for support vector machines (SVMs) in this appendix. First, we need to define a special
notion of deviation between ε̂ and ε for analytical reasons. The following provides a notion
of “KL-divergence” between two variables p, q ∈ [0, 1],

(39)

When , the Chernoff bound (Chernoff, 1952) relates Eq. (39) and the binomial tail (25)
as

(40)

Now if we restrict the tail probability to α then we have

(41)

The above inequality implies (Langford and Shawe-taylor, 2002),

(42)
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This can be interpreted as the chance that the “deviation” between ε̂ and ε is greater than 
is less than α.

This bound is also a test-set bound. Although it is looser than Eqs. (26) and (29) it has an
analytic form since we approximate FBin by Eq. (40). This analytic test-set bound can then
be modified into a practical training-set bounds known as PAC-Bayesian bounds, since these
bounds are based on the “priors” on the class of MVPA models.

We need to define two quantities (1) the “prior” ( ) on the MVPA models in the class
being considered (here SVMs). The prior can capture descriptive complexity of the models.
(2) The second quantity called “posterior” ( ) of the estimated/trained/learnt MVPA model
that can capture the stability in the estimated parameters of the model. For SVMs we can use

(43)

which is an isotropic multivariate Gaussian distribution in p − 1 dimensions (since we
exclude the bias in these derivations). The posterior distribution could be defined as

(44)

The PAC-Bayes risk assessment depends on the following two expected/stochastic error
rates

(45)

(46)

With these quantities at hand Langford and Shawe-taylor (2002) show the following bound

(47)

This bound can be interpreted as, the chance of divergence/deviation between expected
empirical error rate and expected true error rate (of a given class of MVPA models - SVMs
here) being large can be constrained. Notice the key difference between the above PAC-
Bayes bound and Eq. (42). In the case of PAC-Bayes we are assessing risk in terms of the
expected error rates rather than the observed error rates. Further the bound says there exists
an MVPA model that satisfies the inequality and is dependent on the posterior . Depending
on the concentration/peakiness of  this can be used to reflect the risk of the specific model
estimated. We can note that the bound on deviation is dependent on μ in addition to the
user-set α. In practice a search needs to be performed for μ in some range to find the tightest
possible bound. Thus we can observe that although training-set bounds can be specifically
derived and computed for a particular class of MVPA models, there is a trade-off in practice
by a need to set additional tuning parameters.
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Fig. 1.
Distribution of the voxelwise t-statistics on the four VBM hypotheses examined. The
corresponding LMs are shown in the titles of the plots. The uncorrected, Bonferroni and
random-field theory (RFT) based t thresholds at α = 0.005 and FWER ≤ 0.05 respectively,
are shown as well. The Bonferroni and RFT thresholds although plotted with different color
are very close and hence are visually coinciding.
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Fig. 2.
t-statistic maps and distributions of measures for VBM hypotheses in the autism study. The
two groups in this study are individuals with autism spectrum disorders (ASD) and typically
developing controls (TDC). Left: The left figure displays a voxelwise t-statistic map for
group effect in the autism study, thresholded at a significance of p < 0.005 (uncorrected).
The insert displays the distributions of mean FA in the cluster in the corpus callosum for the
two groups. The figure clearly displays that the mean FA (adjusted for confounds) in the
ASD group is shifted to the left, which indicates a decrease in FA relative to the TDC group.
Right: The right figure displays a similar map for measuring the effect of SRS on FA in the
ASD group. We observe that the average FA (adjusted for confounds) of a cluster in the
cerebellum decreases as SRS increases. Not surprisingly, ASD individuals tend to have
higher SRS than TDC individuals. The insert demonstrates that, even within the ASD group,
higher SRS is associated with a decrease in FA.
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Fig. 3.
t-statistic maps and distributions of measures for VBM hypotheses in the meditation study
with long-term meditators (LTM) and meditation näive practitioners (MNP) as the two
groups. Left: The SPM for group effect thresholded at a significance of p < 0.005
(uncorrected). The insert shows that the distributions of mean FA in the cluster in the
inferior part of cortico-spinal tract for the two groups. The LTM group mean FA is shifted to
the left indicating a decrease in FA. Right: The effect of TLPH on FA in the LTM group.
We can observe a positive correlation between the average FA in the cluster (adjusted for
confounds) and TLPH.
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Fig. 4.
Distributions of the model-performance metrics for the MVPA hypotheses. We can observe
that there is more variance in predicting the group labels in the meditation study compared
to the autism study. This is expected because the dichotomy of LTM vs. MNP may not be as
strong as those of psychiatric conditions such as ASD vs. TDC. The mean squared error
performance also has higher variance in the meditation study.
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Fig. 5.
ROC curve for classification in the autism study. The figure includes confidence intervals
for TPR at three different optimal points. As expected, the confidence intervals for TPR
become tighter as FPR increases.
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Fig. 6.
ROC curve for classification in the meditation study. The figure includes confidence
intervals for TPR at three different optimal points. We can observe that at the optimal point
with lower FPR, the TPR is much lower compared to that in the autism study again
suggesting more difficulty in classifying LTM from MNP than classifying ASD from TDC.
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Fig. 7.
z-score maps thresholded at a significance of p < 0.05 (uncorrected) for MVPA in the autism
study. Left: Classification results. Observe that voxels in the cingulum region have
significant weight in the classifier model. Right: Regression results of predicting SRS using
FA. In both cases, the z-score maps demonstrate that the selected weights are contiguous;
we emphasize that this is achieved without using an explicit spatial prior. This result
suggests that the estimated MVPA models produce biologically plausible phenotyping
information which also shows interhemispheric asymmetry in the importance of the
voxels.
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Fig. 8.
z-score maps thresholded at a significance of p < 0.05 (uncorrected) for MVPA in the
meditation study. Left: Classification results. We note that voxels in similar regions as
identified by SPMs in VBM (Fig. 3) are found to have significant weights in the classifier
model as well. Right: Regression results for predicting TLPH. The z-score maps show that
the weights are selected are again contiguous as in Fig. 7 reflecting biological plausibility.
We observe bi-lateral significance in both the VBM (Fig. 3) and MVPA phenotyping; this is
contrasted with the asymmetry observed in the autism study.
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Table 1

Different loss-penalty combinations resulting in different types of models which fall under either VBM or
MVPA. Such a penalized likelihood modeling point of view allows us to tie the two families of analysis into a
unified analytic framework. This will also allow to us compare and contrast the differences and similarities in
a principled way. Yi and Xi denote the group label and the vectorized brain image of the ith sample
respectively. ||β||\0|| denotes the set of βs without the first coefficient β0, also known as bias.

L (Y, Xβ) λP(β) Family

ℓ2-SVM MVPA

ℓ1-SVM ||β||1 MVPA

ℓ1-logistic regression ||β||1 VBM and MVPA

OLS VBM

Ridge VBM and MVPA

SVR |Y−Xβ|ε VBM and MVPA
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Table 2

Summarization of the two levels of risk assessment in VBM and MVPA. The key technology needed for each
level is shown in the brackets. In both VBM and MVPA, these two levels can sometimes be jointly addressed
for example, multivariate hypothesis testing (Kanungo and Haralick, 1995) in VBM and LASSO type loss-
penalty combinations that allow simultaneous variable selection and model estimation (Tibshirani, 1996) in
MVPA.

Level VBM MVPA

1st Individual voxel level (type I error control via tail bounds) Joint set of voxels (prediction error control via deviation bounds)

2nd Joint set of voxels (multiple comparisons) Individual voxel level (variable selection)
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Table 3

Sample characteristics such as sample sizes, gender distribution, means(standard deviations) of the continuous
measures from the two studies. ASD stands for autism spectrum disorders group, TDC for typically
developing controls group. LTM - long term meditators group, MNP - meditation näive practitioners group.
TLPH - total lifetime practice hours. TLPH is computed using self-report measures of the number of retreats
and number of hours at those retreats. Social Reciprocity/Responsiveness Scale (SRS) is a quantitative,
dimensional measure of social functioning across the entire distribution from normal to severely impaired
functioning (Constantino et al, 2000).

Autism Meditation

Group TDC (n = 55) ASD (n = 99) MNP (n = 26) LTM (n = 23)

Age 15.25 (6.53) 13.73 (8.94) 49.7 (10.5) 50.73 (9.9)

Gender M=55, F=0 M=99, F=0 M=8, F=18 M=9, F=14

IQ 117.36 (15.30) 93.57 (22.31) N/A

SRS 16.12 (11.40) (n = 42) 101.65 (27.89) (n = 94) N/A

TLPH N/A N/A 9602.8 (7979.7)
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Table 4

Test-set bounds (Binomial confidence intervals) for various train/test splits for both neuroimaging studies. We
can observe that in several of these attempts even when accuracy reaches beyond chance level, the bounds are
quite loose, thus showing that one has to be careful in claiming generalization of the performance of the
classification.

Train/Test Proportions Autism Meditation

90/10 56.25% [45.17 86.79] 100% [0 54.93]

80/20 70.97% [54.81 83.94] 60% [30.35 85]

70/30 63.83% [50.82 75.48] 60% [35.96 80.91]

60/40 72.58% [61.76 81.71] 55% [34.69 74.13]

50/50 62.34% [52.36 71.58] 68% [49.64 82.97]
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Table 5

The user-defined costs of making mistakes (similar in spirit to Type I and Type II errors), allow one to identify
an optimal operating region on the ROC curve of a classifier.

True Positive True Negative

Predicted P c(P|P) c(P|N)

Predicted N c(N|P) c(N|N)
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Table 6

c (N|P) computed retrospectively using Eq. (36) for the three different settings presented in Eq. (38) and c(P|P)
= c(N|N) = 0. One can notice the dependence of the false-negative cost on the imbalance in the training data –
with increased N/P ratio the false-negative cost increases with all other factors held constant.

m, c(P|N) Autism Study (N/P= 0.5528) Meditation Study (N/P= 1.0942)

Setting A 0.1596 0.3159

Setting B 0.2764 0.5471

Setting C 0.7660 1.5162
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