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Fatty Acid Transport Protein 4 (FATP4) Prevents
Light-Induced Degeneration of Cone and Rod
Photoreceptors by Inhibiting RPE65 Isomerase

Songhua Li,' Jungsoo Lee,? Yongdong Zhou,' William C. Gordon,' James M. Hill,' Nicolas G. Bazan,' Jeffrey H. Miner,’
and Minghao Jin'
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Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65,
which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin
regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in
affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expres-
sion screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty
acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase
(VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis
of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11¢cROL. We further found that competition of FATP4 with RPE65 for
the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly
expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regen-
eration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice.
Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to
light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory

elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage.

Introduction

The visual cycle provides 11-cis-retinaldehyde (11¢RAL) chro-
mophore to photoreceptors to regenerate visual pigments that
sense light. Although the visual cycle is essential for sustaining
vision, its all-trans retinaldehyde (afRAL) intermediate possesses
a highly reactive aldehyde group and is toxic to photoreceptors
(Maeda et al., 2009). Mice with a slow visual cycle contain lower
amounts of cytotoxic byproducts of the visual cycle (Kim et al.,
2004). Pharmacological inhibition of the visual cycle protects
photoreceptors from degeneration in physiological and patho-
logical conditions (Sieving et al., 2001; Golczak et al., 2008), sug-
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gesting that the visual cycle needs to be controlled to provide
enough 11cRAL chromophore and to keep retinal health. How-
ever, the mechanisms that regulate the cycle remain unclear.
Identification and characterization of regulator(s) of the visual
cycle enzymes are critical for understanding these mechanisms.

RPE65 is a key enzyme that isomerizes all-trans retinyl esters
(atRE), such as all-trans retinyl palmitate (atRP), to 11-cis-retinol
(11¢ROL) (Jin et al., 2005; Moiseyev et al., 2005; Redmond et al.,
2005), which constitutes the rate-limiting step of the visual cycle
(Winston and Rando, 1998). The palmitic acyl moiety of atRP is
essential for its binding to RPE65 (Maiti et al., 2005) and may
facilitate substrate access to the catalytic site located inside a hy-
drophobic pocket of RPE65 (Kiser et al., 2009). These facts sug-
gest that protein(s) interacting with the fatty acyl moiety regulate
RPE65 function. A palmitoylation mechanism for regulation of
isomerase activity has been proposed (Xue et al., 2004), but this
mechanism is not consistent with results reported by later studies
(Redmond et al., 2005; Jin et al., 2007; Kiser et al., 2009; Yuan et
al., 2010).

Mutations in RPE65 are associated with blinding diseases (Gu
et al., 1997; Marlhens et al., 1997). Disease-causing mutations
severely reduce isomerase activity (Chen et al., 2006; Takahashi et
al., 2006; Philp et al., 2009). Mice with a null mutation in Rpe65
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cannot synthesize 11cROL and thereby lack functional rhodopsin
(Redmond et al., 1998; Pang et al., 2005). Rpe65*'~ mice show
slowing of 1 1cRAL and rhodopsin regeneration. Either the lack or
slowed regeneration of 11cRAL and rhodopsin protected photo-
receptors from apoptosis induced by light (Grimm et al., 2000;
Wengzel et al., 2001). In contrast, mice with higher expression
levels of RPE65 exhibited hypersusceptibility to light-induced
retinal degeneration (Wenzel et al., 2001).

RPE65 is highly abundant in the retinal pigment epithelium
(RPE), yet its activity is significantly lower than that of other
visual cycle enzymes. For instance, the V_,, for the lecithin:reti-
nol acyltransferase (LRAT) in bovine RPE was 103—199 nmol/
min/mg (Saari and Bredberg, 1988), whereas the V. for the
isomerase was 44.3 pmol/min/mg (Winston and Rando, 1998).
The mechanisms responsible for this low activity are poorly un-
derstood. One possible hypothesis is the existence of inhibitor(s)
of RPE65 in RPE. Here, we identified elongation of very long-
chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein
4 (FATP4) as inhibitors of RPE65. We further analyzed the inhib-
itory mechanisms of FATP4 and the phenotypes of mice lacking
FATP4 in RPE.

Materials and Methods

Animals. 129S2/Sv (Charles River Laboratories), C57BL/6] (The Jackson
Laboratory), and Fatp4 - 7;Ivl—Fatp4tg/ * (Moulson et al., 2007) mice were
maintained in 12 h cyclic light at 30 lux. Fatp4 '~ ;Ivl-Fatp4’®* mice
(shown as Fatp4 ~/~ hereafter) are transgenic/mutant mice expressing trans-
genic FATP4 in keratinocytes (via the involucrin promoter) of a FATP4-
deficient mouse line called wrinkle free, which has a spontaneous
retrotransposon insertion in a coding exon of Fatp4 (Moulson et al., 2003).
The skin defect-based neonatal lethality of Fatp4 '~ wrinkle free mice is
rescued by keratinocyte-specific expression of FATP4 (Moulson etal., 2007).
Because the original Fatp4 '~ mice were heterozygous for the Leu450Met
variation in Rpe65, we crossed them with 129S2/Sv and C57BL/6] mice, then
intercrossed the heterozygous offspring to yield Fatp4 ~/~ mice homozygous
for the Leu450 or Met450 allele. The Leu450 and Met450 alleles were verified
by DNA sequencing using Rpe65-specific primers (5'-CAGAAATTTGGA
GGGAAACC-3" and 5'-TACCATCATCTTCTTCCAGAGC-3"). The
Fatp4~'~ mutation was confirmed by PCR as described previously
(Moulson et al., 2007). 129S2/Sv and C57BL/6] mice were used as wild-type
(WT) controls against age-matched Fatp4 ~/~ mice with Leu450 or Met450
alleles, respectively. Two- to 3-month-old mice of either sex were used for the
experiments unless otherwise specified. All mouse experiments were ap-
proved by the Institutional Animal Care and Use Committee for LSUHSC
and performed according to guidelines established by the Association for
Research in Vision and Ophthalmology Statement for the Use of Animals in
Ophthalmic and Vision Research.

Cell culture and transfection. The 293T-LRC cells (Jin et al., 2005)
stably expressing LRAT (L), RPE65 (R), and the cellular retinaldehyde-
binding protein (C) were maintained in DMEM (Invitrogen) supple-
mented with 10% heat-inactivated FBS and antibiotics (100 U/ml
penicillin G and 100 ug/ml streptomycin) at 37°C <5% CO,. Transient
transfection of plasmid DNA into the cells was performed using the
PolyJet transfection reagent (SignaGen Laboratories).

Screening of the RPE expression library. Library screening was done as
described previously (Jin et al., 2005). The library pool #7:3 that pro-
duced the lowest amount of 11cROL in the transfected cells (Jin et al.,
2005) was split onto 32 dishes at an average density of 39 colonies per dish
for tertiary screening. Plasmid DNA was prepared using the PureLink
HiPure Plasmid Kit (Invitrogen). A total of 2 ug of library DNA from
each dish and 100 ng of pRPE65 were cotransfected into 293T-LRC cells
grown in 6-well dishes for the retinoid isomerase assay. Cells transfected
with 2 ug of pRKS5 mock vector and 100 ng of pRPE65 were used as a
control. Cotransfection of pRPE65 increased baseline of the isomerase
activity in the cells and thereby facilitated selection of a library pool with
the strongest inhibitory effect on the isomerase activity. For the final
round of screening, 0.5 ug of individual clones and the same amount of
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Table 1. Primer pairs used in the qRT-PCR

Primers Sequence (5'-3") Primers Sequence (5'-3")
FATP1-F gacaagctggatcaggeaag FATP1-R gtcttgcagacgatacgcaga
FATP2-F gccteggttectgaggatac FATP2-R atgttctcagtcatgggeaca
FATP3-F gagaacttgccaccgtatge FATP3-R ggcccctatatcttggteca
FATP4-F gattcteectgttgctectgt FATP4-R ccattgaagcaaacagcagg
FATP5-F tgccacaccteatttcatec FATP5-R acatctggcatcagactceg
FATP6-F aaccaagtggtgacatctctge FATP6-R tccataaagtaaagegggtcag
18S rRNA-F tttgttggttttcggaactga 18S rRNA-R cgtttatggtcggaactacga

PRPEG65 were cotransfected into the cells grown in 12-well dishes. Thirty
hours after transfection, cells were incubated with 5 um all-trans retinol
(atROL) for 16 h. Retinoids extracted from the cells were saponified and
analyzed by HPLC as described previously (Jin et al., 2005).

Expression of recombinant proteins in the Sf9 cells. Baculovirus-
mediated expression of recombinant RPE65, FATP4, and EGFP in Sf9
cells was performed as previously described (Jin et al., 2000). Briefly,
c¢DNAs for RPE65, FATP4, and EGFP were subcloned into pBAC-1 (No-
vagen). These transfer vectors were then cotransfected into Sf9 cells with
a triple-cut baculovirus DNA (Novagen) using Cellfectin (Invitrogen).
The recombinant baculovirus clones expressing FATP4, RPE65, or EGFP
were isolated by plaque purification. High-titer (10° plaque-forming
U/ml, PFU/ml) virus stocks were generated in the Sf9 cells. Three days
after infection with the recombinant viruses at the desired multiplicity of
infection (MOI), the cells were harvested and used for enzyme assays.
Expression levels of recombinant proteins were determined by immuno-
blot analysis.

In vitro retinoid isomerase assay. The assay mixtures contained 10 um
arROL (or 15 um all-trans retinyl palmitate), 6% BSA, and 100 pg of
mouse RPE homogenates or 500 pg of Sf9 cell homogenates in 20 mm
HEPES buffer. When atRP was used as a substrate, 6 mm sodium cholate
was added to the reaction mixture. For enzyme kinetic assays, Sf9 cells
containing a constant amount of RPE65 plus various amounts of FATP4
or EGFP were incubated with 0.5—-64 um atRP for 90 min. Retinoids were
extracted with hexane and were analyzed by HPLC, as described below.
The quantified data were then compared in the different inhibition mod-
els using the Enzyme Kinetics Module 1.3.

LRAT and retinol dehydrogenase 5 (RDHS5) assays in living cells. The
293T-LRC cells grown in a 12-well dish were cotransfected with pRPE65
plus either FATP4, ELOVLIL, RDHS5, or pRK5 (mock vector), and were
incubated with 10 um afROL for 0.5-4 h. To determine the activity of
LRAT, the amount of afRE synthesized in the cells was measured as
described previously (Jin et al., 2007). The activity of RDH5 was deter-
mined by measuring the synthesis of 11cRAL in the cells. We converted
11cRAL to syn- and anti-retinaloxime isomers using 150 mm hydroxyl-
amine before extraction of retinoids from the cells. Measurement of
11cRAL was done as described previously (Jin et al., 2009).

Analysis of retinoids. Retinoids were analyzed by normal-phase HPLC
as previously described (Mata et al., 2002). In brief, retinoids in hexane
extractions were evaporated, redissolved in 100 ul of hexane, and sepa-
rated on a silica column (Zorbax-Sil 5 wm, 250 X 4.6 mm, Agilent Tech-
nologies) by gradient (0.2-10% dioxane in hexane at 2.0 ml/min flow
rate) or nongradient (10% dioxane in hexane at 1.0 ml/min flow rate)
elution of mobile phase in an Agilent 1100 HPLC system.

Analysis of 11cRAL and atRAL contents in the retina. Overnight dark-
adapted mice were anesthetized with an intraperitoneal injection of
ketamine-xylazine mixture (200 mg of ketamine and 10 mg of xylazine
per kilogram body weight) and their pupils dilated with 1% tropicamide
ophthalmic solution. Mice were exposed to fluorescent light at 2000 lux
for 10 or 60 min, then transferred to darkness for the indicated times.
Mice were killed by cervical dislocation under anesthesia; retinoids in the
retinas and RPE were separately extracted with hexane and analyzed by
HPLC as described previously (Jin et al., 2009).

Immunoblot analysis. Proteins separated in a 10% or 12% polyacryl-
amide gel by SDS-PAGE were transferred to an Immobilon-P membrane
(Millipore). The membrane was incubated in blocking buffer, primary
antibody, and secondary antibody as described previously (Jin et al.,
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Figure 1.  Expression screening for inhibitor of RPE65. A, The visual cycle reactions taking place in RPE. LRAT esterifies atROL from photoreceptors and blood to atRE, such as atRP; RPE65
isomerohydrolyzes atRP to 11cROL, which is then oxidized by RDH to 11cRAL. B, Secondary screening of 30 subpools (24 shown) from a bovine RPE expression library pool #7 (Jin et al., 2005).
Amounts of 11cROL synthesized from atROL added into the media of 293T-LRC cells transfected with the indicated library pools were analyzed by HPLC. Cells transfected with subpool #3 (*) contained
the leastamount of 11¢cROL. C, Tertiary screening of 32 subpools (27 shown) of pool #7:3. Isomerase assays were performed as in B. Subpool #7:3:24 (*) was selected for the final screening. D, HPLC
chromatogram of retinoids extracted from the control cells transfected with pRPE65 and pRKS (mock) plasmids. The peak corresponding to 11¢ROL is indicated. E, UV spectrum acquired from the
11cROL peak in D. F, HPLC chromatogram of retinoids extracted from the cells transfected with subpool #7:3:24. G, Isomerase assays of 60 single clones (40 shown) from subpool #7:3:24. Clones for

ELOVLT (e), RDH5 (r), FATP4 (f), and PSMD13 (p) are indicated.

2005). Immunoblots were visualized with the enhanced ECL-Plus by
scanning the membrane in an ImageQuant LAS4000 (GE Healthcare).
The fluorescence intensity of each band was measured using ImageQuant
TL software.

Electroretinography (ERG). ERGs were recorded from the corneal sur-
face of the eye, after pupil dilation with 1% tropicamide ophthalmic
solution, using a silver-silver chloride wire electrode referenced to a sub-
cutaneous electrode in the forehead. A needle electrode in the tail served
as the ground. A drop of 2% methylcellulose was placed on the cornea to
prevent corneal desiccation. Scotopic ERG responses were elicited with
either short duration LED flashes or a Xenon strobe delivered in a Gan-
zfield dome (Espion, Diagnosys) with interstimulus intervals of 0.5-2
min, depending on the stimulus intensity. Flash intensities ranged from
0.0005 to 1000 cd-s/m? in 16 steps. Two to four responses were averaged
for each step. Responses were filtered using low-pass (0.15 Hz) and high-
pass (100 Hz) filters. Intensity—response amplitude data were displayed
on log-linear coordinates (SigmaPlot 11 software).

Light-induced retinal degeneration. 12952/Sv and Fatp4 ~'~ mice were
dark-adapted for 3 d. After dilation of the pupils under dim red light
(Kodak Wratten 1A), mice were exposed to 15,000 lux of white fluores-
centlight for 1.5 h and then kept in darkness for 5 d. Retinal degeneration
was observed by spectral domain optical coherence tomography
(SD-OCT) first and then analyzed by light microscopy.

SD-OCT. Retinas were imaged by SD-OCT along the vertical meridian
(from superior to inferior) through the optic disc using a Heidelberg
Spectralis HRA + OCT system (Heidelberg Engineering). Signal quality
was >20 db, and scan speed was 40000 A-scans per second. Eye motion
artifacts were eliminated by in-system eye tracking, and at least 25 frames
were averaged per B-scan to increase the signal-to-noise ratio (Zhou et
al., 2011).

Light microscopy. Retinas were prepared as described previously
(Knott etal., 2011). Care was taken to orient the eyecups so that sections
were obtained through the vertical meridian to insure sampling of both
the superior, green-sensitive cones and the inferior, blue-sensitive cones
(Szél et al., 1992). The 1-um-thick plastic sections were contrasted with
toluidine blue, coverslipped, and imaged with a Nikon DS-Ril digital
camera attached to a Nikon Optiphot-2 microscope using a Nikon Plan
40X oil-immersion lens and Nikon NIS Elements software version 3.0.

Immunohistochemistry. Retinal cryosections, made as described previ-
ously (Jin et al., 2009), were incubated in a blocking solution containing
DMEM, 10% FBS, 2% goat serum, and 0.1% Triton X-100 for 1 h, with
primary antibodies at 4°C overnight, and with secondary antibodies at
room temperature for 1 h, each followed by four washes with PBS con-
taining 0.1% Tween-20. The primary antibodies used include affinity-
purified rabbit antibodies against FATP4 (Newberry et al., 2003),
M-opsin, or S-opsin (Millipore) and mouse monoclonal antibodies
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Figure 2.

indicate SD (n = 4).

against RPE65 (Millipore) or KDEL (Abcam). The secondary antibodies
were AlexaFluor-488 or AlexaFluor-555 goat anti-rabbit or anti-mouse
IgG (Invitrogen). Nuclei were labeled with 4',6-diamidino-2-
phenylindole. Fluorescent signals were captured with a Zeiss LSM-510
Meta laser confocal microscope with a 40X oil-immersion objective.

Quantitation of numbers and lengths of cone outer segments. We
counted M-opsin positive outer segments (OS) along 500 wm linear
regions in the superior retinas and S-opsin-positive OS along 500 uwm
linear regions in the inferior retinas. In all cases, these 500 um linear
regions began at the optic nerve head and extended radially toward the
superior or inferior peripheral retina. We also measured cone OS lengths
in the same regions.

qRT-PCR. Total RNA was extracted from mouse RPE and retinas us-
ing the Absolutely RNA Miniprep kit (Stratagene) and was reverse-
transcribed to ¢cDNA using SuperScript III (Invitrogen). gPCR was
performed on an iCylcer thermocycler (Bio-Rad) using a two-step qRT-
PCRkit with SYBR Green (Invitrogen) and primer sets specific for FATPs
and 18S rRNA (Table 1). Three mice of each genotype were analyzed, and
all samples were run in duplicates. Starting templates were normalized
after determining 18S rRNA C, values for each sample. Relative FATP
mRNA levels were determined from the AC, values.

RPEGS- e amm

FATP4 had no effect on synthesis of atRE and 11cRAL but inhibited synthesis of 11cROL. A, RDH5, but not FATP4 or
ELOVLY, oxidized 11cROL to 11cRAL. The 293T-LRC cells transfected with the indicated plasmids were incubated with atROL. The
11cRAL in the cells was converted to syn- and anti-retinaloxime isomers by hydroxylamine treatment and was measured by HPLC.
B, LRAT assay showing synthesis of atRE from atROL incubated for the indicated times with the cells transfected with pRK5 (control)
or FATP4 plasmid. €, Dose-dependent inhibition of 11cROL synthesis by FATP4 in living cells. Synthesis of 11cROL (left y-axis) and
atRE (right y-axis) from atROL in 293T-LRC cells transfected with the indicated amounts of FATP4 plasmid were measured by HPLC.
A representative immunoblot shows expression levels of FATP4 in the transfected cells. D, In vitro isomerase assay showing
synthesis of 11cROL from atRP substrate incubated with homogenates of S cells infected with the indicated recombinant bacu-
loviruses. A representative immunoblot shows similar expression levels of RPE65 in the baculovirus-infected cells. Error bars

from the 32 subpools plus pRPE65 for the
next round of screening. We then mea-
sured the synthesis of 11cROL from
afROL added to the cell media. Cells
transfected with subpool #7:3:24 con-
tained the smallest amount of 11¢cROL
(Fig. 1C). We isolated 60 single clones
from this subpool for the final screening.
Cells transfected with 7 individual clones
contained relatively smaller amounts of
11cROL (Fig. 1G). DNA sequencing and
database search revealed that clones #4
and #35 were identical to the bovine
ELOVLI cDNA (gene ID: 540348) and the
bovine FATP4/SIc27a4 cDNA (gene ID: 781099), respectively;
clones #11 and #22 were identical to the bovine RDH5 (gene ID:
281448); and clones #7, #14, and #37 were identical to the bovine
26S proteasome non-ATPase regulatory subunit-13 (PSMD13,
gene ID: 513525).

FATP4 and ELOVLI had no effect on oxidation of 11cROL
and esterification of atfROL

Because RDHS5 has been shown to catalyze oxidation of 11cROL
to 11cRAL (Simon et al., 1995), we measured the amounts of
11cRAL and 11cROL in 293T-LRC cells cotransfected with
PRPEG65 plus either RDHS5, ELOVLI, FATP4, or pRKS5 (control)
plasmids. Consistent with the screening result (Fig. 1G), the
amount of 1 1cROL in the RDH5-cotransfected cells was ~10% of
those in the pRK5-cotransfected control cells. In contrast, the
amount of 11cRAL in the RDH5-cotransfected cells was nearly
ninefold higher than that in the control cells (Fig. 2A), indicating
that the small amount of 11cROL in the RDH5-cotransfected
cells was the result of oxidation of 11¢ROL to 11cRAL by RDH5.
On the other hand, the amounts of 11¢cRAL in the ELOVLI- or
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Figure3. FATP4functionsasamixed-typeinhibitor of RPE65. A, Synthesis of 11cROL from atROL added into the media of 293T-C cells transfected with the indicated amounts of LRAT and constant

amounts of RPE65 plus FATP4 or pRKS. A representative immunoblot shows similar expression levels of RPE65 in the transfected cells. B, Relative inhibition rate of 11cROL synthesis by FATP4in A.
Note that the inhibition rate was reduced as the amount of transfected LRAT increased. The immunoblot shows different expression levels of LRAT in the transfected cells. C, Synthesis of 11cROL from
varying concentrations of the atRP substrate incubated with homogenates of 59 cells expressing RPE65 plus EGFP or FATP4. D, Relative inhibition rate of RPE65 activity by FATP4 in C. Note that the
inhibition rate was reduced as the concentration of atRP substrate increased. E, Lineweaver—Burk plot for a dataset from a series of isomerase assays using varying concentrations of the atRP
substrate and 9 cells infected with RPE65 baculovirus (MOl = 4) and the indicated deferent MOI of FATP4 baculovirus. F, Immunoblots show expression levels of FATP4 and RPE65 in the
baculovirus-infected Sf9 cells that were used for isomerase assays in E. G, Effects of long-chain (palmitoyl; 16:0) and very long-chain (lignoceroyl; 24:0) fatty acyl-CoA on the synthesis of 11cROL in

an in vitro isomerase assay. Error bars indicate SD (n = 3).

FATP4-cotransfected cells were similar to those in the pRK5-
cotransfected control cells (Fig. 2A), indicating that neither
ELOVLI nor FATP4 catalyzed oxidation of 11¢cROL to 11¢cRAL.
Although arRP is a proven substrate of RPE65, its strong hy-
drophobicity prompted us to add atfROL into the media of 293T-
LRC cells as a substrate. Therefore, synthesis of 11cROL in this
assay consisted of two enzymatic reactions: the first was synthesis
of arREs, such as afRP, from afROL by LRAT; and the second
was the isomerization of atRP to 11cROL by RPE65 (Fig. 1A).
We therefore tested whether FATP4 inhibited LRAT activity.
As shown in Figure 2B, the amounts of atRE in the FATP4-
transfected cells were similar to those in the control cells trans-
fected with pRK5 mock plasmid. We then analyzed the
dose-dependent effect of FATP4 on the synthesis of 11cROL. As
shown in Figure 2C, synthesis of 11¢cROL in the cells decreased as
FATP4 expression levels increased (Fig. 2C, left y-axis), whereas
synthesis of afRE was not significantly changed as FATP4 in-
creased (Fig. 2C, right y-axis, p > 0.05). These results suggest that
FATP4 inhibited 11cROL synthesis catalyzed by RPE65. To con-
firm this result, we performed an in vitro isomerase assay using
arRP as the substrate. Homogenates of Sf9 cells expressing RPE65
plus EGFP synthesized ~11 pmol of 11cROL from atRP, whereas
homogenates of Sf9 cells expressing RPE65 plus FATP4 synthe-
sized only ~4.3 pmol of 11cROL (Fig. 2D). Expression levels of

RPE65 in these two groups of cells were similar (Fig. 2D), indi-
cating that FATP4 inhibited RPE65-catalyzed synthesis of
11cROL.

Substrate competition and VLCFA-ACS product are involved
in the FATP4-mediated inhibition of RPE65

To define the mechanisms by which FATP4 inhibits synthesis of
11cROL, we assayed isomerase activity in 293T-C cells trans-
fected with a combination of a series of LRAT amounts plus a
constant amount of RPE65 and either FATP4 or pRKS. Synthesis
of 11¢ROL in the cells expressing RPE65 and FATP4 was signifi-
cantly lower compared with that of the control cells (Fig. 3A).
Synthesis of 11cROL was reduced ~60% by FATP4 in the cells
transfected with 20 ng of LRAT, whereas it was reduced only
~35% by FATP4 in the cells transfected with 120 ng of LRAT
(Fig. 3B), suggesting that LRAT suppressed FATP4-mediated in-
hibition of RPE65. This result can be explained by a competition
between FATP4 and RPE65 for RPE65’s substrate, arRP, which is
synthesized by LRAT. To test this possibility, we performed an in
vitro assay using a series of increasing amounts of afRP and Sf9
cells expressing RPE65 plus EGFP or FATP4. As expected, the
inhibition of 11cROL synthesis by FATP4 was significantly re-
duced as atRP increased (Fig. 3C,D). These results suggest that
FATP4 competes with RPE65 for RPE65’s substrate.
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To further analyze the inhibitory mechanisms, we measured
the inhibition rate using Sf9 cell homogenates containing differ-
ent amounts of FATP4 (Fig. 3F) in the presence of varying
amounts of atRP substrate. Unexpectedly, the Lineweaver—Burk
plot for the assay data did not fit a typical competitive inhibition
model (Fig. 3E). Instead, the data showed that FATP4 functions
as a mixed-type inhibitor of RPE65.

Both FATP4 and ELOVLI have very long-chain fatty acid
acyl-CoA synthetase (VLCFA-ACS) activity, with the highest ac-
tivity toward saturated VLCFAs (22:0-24:0). We therefore tested
whether their products can inhibit isomerase activity. As shown
in Figure 3G, palmitoyl (C16:0)-CoA promoted synthesis of
11cROL, whereas lignoceroyl (C24:0)-CoA inhibited synthesis of
11cROL, suggesting that products of FATP4 and ELOVLI can
negatively regulate synthesis of 11cROL catalyzed by RPE65.

FATP4 is the predominant FATP in RPE

FATP4 is one of six-members (FATP1-FATP6) of an integral
transmembrane protein family, each of which shows different
tissue expression patterns. To begin to define the roles of FATP4
in regulation of the visual cycle in vivo, we analyzed expression of
FATP4 in the retina and RPE. Immunoblot analysis showed that

FATP4 was expressed strongly in the WT RPE but very weakly in
the retina (Fig. 4A). In contrast, FATP4 was undetectable in the
Fatp4 ~/~ RPE and retina (Fig. 4A). Immunohistochemistry con-
firmed that FATP4 was predominantly expressed in the WT
mouse RPE (Fig. 4B). Moreover, qRT-PCR demonstrated that
FATP4 is the predominant FATP in RPE (Fig. 4D).

To inhibit RPE65 in a competitive fashion, at least some FATP4 and
RPE65 proteins should colocalize in RPE. We therefore tested this pos-
sibility by immunohistochemistry using antibodies against FATP4 and
RPE65 and found that a majority of the FATP4 was colocalized with
RPE65 in the WT RPE (Fig. 4B). A previous study showed that RPE65 is
associated with the smooth ER (Sagaraand Hirosawa, 1991). FATP4 has
an ER localization signal and localizes to the ER in cultured cells (Milger
et al., 2006). We therefore tested whether FATP4 localizes to the ER of
mouse RPE. Immunocytochemistry and confocal microscopy revealed
that a majority of FATP4 colocalized with an ER marker (Fig. 4C), indi-
cating that FATP4 is associated with the ER.

Hyperisomerase activity and fast 11cRAL regeneration in
Fatp4™'~ mice

To test whether FATP4 inhibits RPE65 function in vivo, we com-
pared synthesis of 11¢cROL in RPE homogenates from WT and
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Fatp4~'~ mice. As shown in Figure 5A, B,
the amount of 11cROL synthesized by
Fatp4 ™'~ RPE was 24-30% higher than
that synthesized by WT RPE. We tested
whether this higher isomerase activity in
Fatp4~'~ RPE was the result of upregula-
tion of RPE65. Immunoblot analysis
showed that the expression level of RPE65
in Fatp4 '~ RPE was similar to that in the
WT RPE (Fig. 5C), indicating that FATP4
inhibited synthesis of 11cROL without
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impacting RPE65 expression. To deter-
mine whether FATP4 delays the regener-
ation rate of 11cRAL, we measured the
contents of 11¢RAL in the retinas of WT
and Fatp4 '~ mice kept in darkness for
different times after photobleaching their
visual pigments. The 11cRAL level in
Fatp4 '~ retinas increased more quickly
compared with that in WT (Fig. 5D), in-
dicating that FATP4 slows down the visual

cycle.

30

&

——— (LD UliN

Fast dark adaptation in Fatp4 ~/~ mice

To confirm the result shown in Figure 5,
we recorded the recovery rate of rod light
sensitivity in Fatp4 '~ mice. Overnight
dark-adapted C57BL/6] and Fatp4 '~
mice displayed similar ERG responses to a
series of flash stimuli (Fig. 6A—C). How-
ever, Fatp4 '~ mice kept in darkness for
short times after photobleaching dis-
played higher b-wave amplitudes com-
pared with WT mice (Fig. 6D). This result
is consistent with the finding that the
b-wave recovery in BALB/c mice with a higher expression level of
RPE65 was faster than that in c2] mice with a lower expression
level of RPE65 (Nusinowitz et al., 2003), indicating that FATP4
negatively regulates the recovery rate of rod function.

FATP4 is necessary to prevent rod and cone degeneration
induced by intense light
Previous studies have shown that RPE65 regulates light-induced
retina degeneration (Danciger et al., 2000; Wenzel et al., 2001).
We therefore tested whether Fatp4 '~ mice exhibit higher sus-
ceptibility to intense light. Before exposing to intense light,
129S2/Sv and Fatp4 '~ mice showed similar retinal structure
and thickness in SD-OCT imaging (Fig. 7A). After exposing to
15,000 lux light for 1.5 h, however, Fatp4 '~ mice, but not WT
mice, showed severe retinal (mainly rod) degeneration by both
SD-OCT and light microscopy (Fig. 7B, C). Superior outer nu-
clear layer in Fatp4 '~ retinas was reduced in thickness to 68
nuclei versus 9-11 nuclei in WT retinas (Fig. 7D). Immunoblot
analysis confirmed that rhodopsin content was reduced in Fatp4 /'~
mice after intense light exposure (Fig. 7E). Because afRAL is a cyto-
toxic effector in light-induced retinal degeneration (Maeda et al.,
2009), we measured the content of atfRAL in the retinas. As shown in
Figure 7F, retinas of Fatp4 '~ mice exposed to 2000 lux light for 1 h
contained ~26% higher afRAL compared with WT mice under the
same lighting condition.

Previous studies have shown that intense light triggers cone
photoreceptor death in rat (Cortina et al., 2003). To test whether
cones also degenerated in Fatp4 '~ mice exposed to intense
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Figure5. Hyperisomerase activity and faster regeneration of 11cRALin Fatp4 ~/~ mice. A, Retinoid isomerase (RI) activities in
WT and Fatp4 '~ RPE cells. Synthesis of 11cROL by WT and Fatp4 ~/~ RPE homogenates during the indicated incubation times
was measured by HPLC. *Statistically significant difference (p << 0.05). Error bars indicate SD (n = 4). B, Representative HPLC
chromatograms of retinoids from WT and Fatp4 ~'~ RPE homogenates assayed for 90 min in A. The peaks corresponding to
11cROL are marked (arrow). €, Immunoblot analysis showing similar expression levels of RPE65 in WT and Fatp4 '~ RPE cells. RPE
cells from RPE65-deficient rd72 mice were used as a negative control. D, Relative contents of 11cRAL in the retinas from mice
immediately after photobleaching (PB) of the visual pigment, or from mice kept in darkness for the indicated times after PB.

light, we stained retinal sections with antibodies against M-opsin
or S-opsin. Before intense light exposure, 12952/Svand Fatp4 ~'~
mice had similar numbers and structure of M- and S-cone pho-
toreceptor outer segments (Fig. 8A). Peanut agglutinin staining
confirmed that numbers and length of cone outer segment
sheathes in Fatp4 '~ retinas were similar to those in WT retina
(Fig. 8A). After exposing to intense light, however, Fatp4 '~
mice had a significantly smaller number of M- and S-opsin-
positive outer segments compared with WT mice (Fig. 8 B,C).
Lengths of M- and S-cone outer segments in Fatp4 '~ mice were
also shorter than those of WT mice (Fig. 8 B,D). Consistent with
these results, M- and S-opsin levels in Fatp4 '~ retinas were
~70% of those in WT retinas (Fig. 8E, F).

Discussion

The purpose of this study was to identify and characterize
previously unknown inhibitor(s) of RPE65, which controls
the rate-limiting step of the visual cycle and retinal suscepti-
bility to light-induced degeneration. Through an unbiased
screening of a bovine RPE ¢cDNA library, we isolated FATP4,
ELOVLI, PSMD13, and RDHS5 as candidate negative regula-
tors of RPE65 (Fig. 1G).

RDHS5 is a stereospecific RDH that catalyzes oxidation of
11cROL to 11¢RAL (Simon et al., 1995). As predicted, the re-
duced levels of 11cROL in the RDH5-transfected cells (Fig. 1G)
was the result of oxidation of 11¢ROL to 11cRAL by RDHS5 (Fig.
2A). We therefore conclude that RDH5 is not an inhibitor of
RPE65. Although RDHS5 is not an inhibitor of RPE65, our results
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mice to the indicated flash intensities. B, , Similar a- and b-wave amplitudes observed in overnight dark-adapted WT and Fatp4 ~

Faster recovery of rod light sensitivity in Fatp4 '~ mice. A, Representative raw scotopic ERG tracings show similar responses of overnight dark-adapted C57BL/6) (WT) and Fatp4 '~

/™ mice. Error bars indicate SD (n = 5). D, ERG responses to the

indicated flash intensities in WT and Fatp4 '~ mice kept in darkness for the indicated times after photobleaching. Error bars indicate SD (n = 5).

help to explain why the isomerase activity in bovine RPE micro-
somes is very low. RDH5 is a membrane-bound protein. A ma-
jority of bovine RDHS5 is associated with smooth ER in RPE
(Simon et al., 1999), indicating that RDHS5 should be present in
RPE microsomes. This subcellular localization suggests that the
low amount of 11cROL in the isomerase assay of bovine RPE
microsomes (Winston and Rando, 1998) is partially the result of
oxidation of 11¢cROL to 11¢RAL by RDH5.

PSMD13 is a non-ATPase regulatory subunit of proteasome
whose main function is to degrade proteins. PSMD13 promoted
degradation of RPE65 (our unpublished observations). There-
fore, PSMD13 might reduce the synthesis of 11cROL by promot-
ing degradation of RPE65.

Both FATP4 and ELOVLI are involved in the metabolism of
saturated and monounsaturated LCFA and VLCFA. FATP4 is a

72 kDa protein with an N-terminal transmembrane domain, an
ER localization signal, and ATP/AMP and FATP motifs. It medi-
ates uptake of LCFA and VLCFA and plays a central role in epi-
dermal barrier formation (Moulson et al., 2003). FATP4 exhibits
low palmitoyl-CoA and high lignoceroyl-CoA synthetase activi-
ties (Hall et al., 2005). ELOVLI1 is a 32 kDa protein with 5 putative
membrane-spanning domains and a C-terminal ER retrieval sig-
nal (Tvrdiketal., 2000). Like other elongases, ELOVLI catalysis is
the first of four steps in the VLCFA elongation cycle. It exhibits
activity toward saturated C18 to C26 acyl-CoA substrates, with
the highest activity toward C22:0 acyl-CoA. It is also essential for
synthesis of C24:0 and C24:1 sphingolipids.

Similar to the control cells transfected with pRKS5, cells trans-
fected with FATP4 or ELOVLI1 plasmids synthesized trace
amounts of 11cRAL (Fig. 2A), suggesting that these two proteins
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FATP4 prevents degeneration of rod photoreceptorsinduced by intense light. 4, SD-OCT shows similar structures of superior retinasin 12952/Sv (WT) and Fatp4 ~/~ mice beforeintense

light exposure (ILE). RPE, outer nuclear layer (ONL), and inner nuclear layer (INL) are indicated. B, €, OCT and light microscopy show retinal (mainly rods) degeneration in the superior retina of
Fatp4 ~'~ mice exposed to 15,000 lux for 1.5 h. D, Retinal outer nuclear layer thickness in WT and Fatp4 ~/~ mice exposed to intense light. Numbers on the x-axis indicate distance from optic nerve
head. Error bars indicate SD (n = 3). E, Immunoblots for hodopsin (Rho) in WT and Fatp4 /™ retinas exposed to intense light. Bands corresponding to Rho dimers and monomers are indicated.
F, Contents of atRAL in the retinas of WT and Fatp4 '~ mice exposed to 2000 lux light for 1 h. *Statistically significant difference (p < 0.05). Error bars indicate SD (n = 3).

did not catalyze oxidation of 11cROL to 11¢RAL. Also, these two
proteins did not inhibit synthesis of afRE (Fig. 2B, C). However,
synthesis of 11¢ROL was significantly inhibited by these two pro-
teins (Fig. 1G), suggesting that the action points of FATP4 and
ELOVL1 are on the RPE65-catalyzed all-trans to 11-cis-
isomerization. The in vitro isomerase assay with afRP substrate
confirmed that FATP4 inhibited isomerization of atRP to
11cROL (Fig. 3), indicating that FATP4 is a negative regulator of
RPE65.

Reportedly, the dissociation constants (Kj,) of RPE65 for
atRP, farnesyl palmitate, and all-trans retinyl acetate (atRAc) are
47 = 3 nM, 63 = 1 nM, and 1300 = 42 nwm, respectively (Maiti et
al., 2005), indicating that the palmitic acyl (PA) moiety of atRP
and farnesyl palmitate are important for their binding with
RPE65. FATP4 can bind PA and palmitoyl-CoA (Stahl et al.,
1999), suggesting that FATP4 may compete with RPE65 for bind-
ing to atRP, the substrate of RPE65. This explanation is consistent
with the results presented in Figure 3A—-D: the FATP4-mediated
inhibition of 11cROL synthesis was reduced as the amounts of
LRAT and arRP increased. On the other hand, the Lineweaver—
Burk plot for the dataset obtained from the kinetic assay (Fig. 3E)
indicated that FATP4 was a mixed-type inhibitor of RPE65.

Although both FATP4 and ELOVLI could inhibit synthesis of
11cROL (Fig. 1G), these two proteins share only 11% amino acid

homology. The common biochemical feature of FATP4 and
ELOVLI is their VLCFA-CoA synthetase activities, suggesting
that VLCFA-CoA may inhibit RPE65 activity. In support of this
hypothesis, lignoceroyl-CoA inhibited synthesis of 11cROL (Fig.
3G). Lignoceroyl-CoA itself or its all-trans retinyl ester (all-trans
retinyl lignocerate) synthesized by acyl CoA:retinol acyltrans-
ferase (Kaschula et al., 2006) may compete with atRP for binding
to RPE65. Because the fatty acyl moiety of all-trans retinyl lignoc-
erate is much longer than that of arRP, all-trans retinyl lignocer-
ate is not a preferred substrate for RPE65, but it could compete
with afRP for the hydrophobic pocket containing the catalytic
iron atom in RPE65 (Kiser et al., 2009). Therefore, FATP4-
mediated inhibition of RPE65 may include two mechanisms: (1)
FATP4 competes with RPE65 for the substrate of RPE65; and (2)
all-trans retinyl lignocerate and/or lignoceroyl-CoA synthesized
by FATP4 competes with afRP for the hydrophobic pocket of
RPE65. In any event, our findings suggest that FATP4, and
ELOVLI, and VLCFA comprise regulatory elements of the visual
cycle and could be new therapeutic targets for degenerative dis-
eases associated with an aberrant visual cycle.

Still, the significantly lower activity of the retinoid isomerase
in RPE microsomes cannot be explained completely by the results
presented above and may involve the following mechanisms.
First, all-frans to 11-cis-isomerization is a thermodynamically
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FATP4 prevents degeneration of cone photoreceptors induced by intense light. A, Immunohistochemistry with an antibody against M-opsin (M-o) or S-opsin (S-0) shows similar lengths

and numbers of cone outer segmentsin 12952/Sv (WT) and Fatp4 '~ superior retinas before intense light exposure (ILE). Fluorescein-peanut agglutinin (PNA) staining confirms similar lengths and
numbers of cone photoreceptor matrix sheathes in WT and Fatp4 ~~ superior retinas. B, Degeneration of M- and S-cone photoreceptors in Fatp4 ~/~ mice after intense light exposure (ILE). BT,
B2, Immunostaining of S- and M-opsin in the superior retinas of WT and Fatp4 ~/~ mice. B3, B4, Imunostaining of S- and M-opsin in the inferior retinas of WT and Fatp4 ~/~ mice. ONL, Outer
nuclear layer; INL, inner nuclear layer. C, Average numbers of M- or S-opsin-positive cells in a superior retinal region from the optic nerve to 500 pum. *Statistically significant difference (p << 0.05).
Error bars indicate SD (n = 4). D, Average length of M- and S-cone outer segments in the same retina regions described in €. E, Inmunoblot analysis of M- and S-opsin in WT and Fatp4 '~ retinas
exposed tointenselight. Tubulin (tub) was used to normalize sample loading. F, Densitometry analysis of the immunoblots in £ to quantitate relative contents of M-and S-opsinin WT and Fatp4 ~/~

retinas. *Statistically significant difference (p << 0.05). Error bars indicate SD (n = 3).

uphill reaction (Deigner et al., 1989). Second, other inhibitory
factors are present in RPE microsomes. The FATP and ELOVL
families contain 6 and 7 members, respectively. A previous
study showed that FATP1 inhibited synthesis of 11¢cROL
(Guignard et al., 2010). Although the effects of other family
members on the synthesis of 11cROL have not yet been stud-
ied, their similarities in subcellular location and enzymatic
nature suggest that at least some of the members may inhibit
synthesis of 11¢ROL. Last, a positive regulator(s) may be lost
from RPE microsomes. Lopes et al. (2011) recently found that
MYOT7A is required for normal localization and function of
RPE65. MYO7A is a cytoplasmic protein and thus may be not
present in the microsome fraction, although it is required for
RPE65 function.

A spontaneous mutant mouse line called wrinkle free (wrfr)
was identified by positional cloning to have a retrotransposon
insertion in the Fatp4 gene (Moulson et al., 2003). The wrfr mice
show neonatal death resulting from severe skin defects and as-
phyxia. Moulson et al. (2007) rescued the lethality by expressing
FATP4 solely in keratinocytes via a transgene. FATP4 was not
detectable in the rescued transgenic mouse retina and RPE (Fig.
4A), indicating that this transgenic mouse line (shown as
Fatp4 '~ in this study) is a good model for studying the role of
FATP4 in vision. The visual cycle phenotypes, including the
hyperisomerase activity, the faster chromophore regenera-
tion, and dark-adaptation rates in Fatp4 '~ mice (Figs. 5 and
6) demonstrate that FATP4 negatively regulates the visual cy-
cle by inhibiting RPE65. These results also indicate that our
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library screening is a useful method to identify new regula-
tor(s) of the visual cycle.

The rod and cone photoreceptors in Fatp4 '~ mice exhibited
significantly increased susceptibility to light-induced degenera-
tion (Figs. 7 and 8), indicating that FATP4 is essential for pre-
venting retinal degeneration induced by light damage. Distinct
susceptibilities of retinas to light damage were found in mice with
amutation in the Rpe65 gene (Danciger et al., 2000; Grimm et al.,
2000; Wenzel et al., 2001) and have identified rhodopsin, whose
regeneration rate depends on the visual cycle rate, as the mediator
of light-induced photoreceptor apoptosis (Grimm et al., 2000).
The 129/0la strain with the Leu450 allele of Rpe65 exhibits higher
susceptibility to light damage compared with C57BL/6] and B6;
129S (N2) mice harboring the Met450 allele of Rpe65 (Wenzel et
al., 2001). This hypersusceptibility in the 129/Ola strain reflects
its higher expression of RPE65 (Wenzel et al., 2001). Conversely,
many factors or treatments that reduce RPE65 activity or expres-
sion reduced photoreceptor degeneration induced by intense
light (Sieving et al., 2001; Maeda et al., 2006; Lopes et al., 2011).
Based on these previous studies and our results, we conclude that
the increased susceptibility of Fatp4 '~ photoreceptors to light-
induced degeneration was at least partially the result of the in-
creased activity of RPE65, which caused higher accumulation of
cytotoxic afRAL in the retina (Fig. 7F). Approximately 30% lon-
ger photoreceptor outer segments in the superior versus inferior
retinas (Battelle and LaVail, 1978) may be associated with the
increased susceptibility of the superior retina to light damage
(Fig. 8B) because longer outer segments would contain more
rhodopsin, which has been shown to mediate retinal degenera-
tion caused by intense light.

Recently, mutations in the human FATP4 gene have been
identified in patients with ichthyosis prematurity syndrome (Klar
et al., 2009; Sobol et al., 2011), a recessive disorder characterized
by premature birth, thick caseous desquamating epidermis, and
neonatal asphyxia (Bygum et al., 2008). These reports did not
mention visual problems in the patients. The lack of significant
vision impairment could be the result of (1) the functional re-
dundancy of FATP family members, (2) the relatively strong re-
sistance of human retina to light damage, and (3) the patients
described are newborn or children. Because A2E accumulates in
RPE with age and because the Fatp4 ~/~ retina contained a higher
content of afRAL (Fig. 7F), it is important to investigate whether
FATP4 mutations induce age-related vision impairment and ret-
inal degeneration.
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