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Abstract
The eukaryotic cytoskeleton is a vulnerable target of many microbial pathogens during the course
of infection. Rearrangements of host cytoskeleton benefit microbes in various stages of their
infection cycle such as invasion, motility, and persistence. Bacterial pathogens deliver a number of
effector proteins into host cells for modulating the dynamics of actin and microtubule
cytoskeleton. Alteration of the actin cytoskeleton is generally achieved by bacterial effectors that
target the small GTPases of the host. Modulation of microtubule dynamics involves direct
interaction of effector proteins with the subunits of microtubules or recruiting cellular proteins that
affect microtubule dynamics. This review will discuss effector proteins from animal and human
bacterial pathogens that either destabilize or stabilize host micro-tubules to advance the infectious
process. A compilation of these research findings will provide an overview of known and
unknown strategies used by various bacterial effectors to modulate the host microtubule dynamics.
The present review will undoubtedly help direct future research to determine the mechanisms of
action of many bacterial effector proteins and contribute to understanding the survival strategies of
diverse adherent and invasive bacterial pathogens.
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Introduction
The cytoskeleton is a cytoplasmic scaffold that determines cell shape, enables cell
movement, and plays an essential role in intracellular organelle transport and cell division.
The cytoskeleton network consists of three types of protein filaments: actin filaments,
intermediate filaments, and microtubules. The eukaryotic cytoskeleton is targeted by a
variety of bacterial and viral pathogens during the course of infection, and dynamic changes
of the cytoskeleton influence the interaction of microbial pathogens with the host cells.
Consequently, successful microbial pathogens modulate cytoskeleton dynamics to facilitate
adherence to the cells, invasion, intra- and intercellular trafficking, and to prevent
intracellular killing (1–6). Microbial pathogens deliver a number of effector proteins to the
host cells to rearrange the cytoskeleton to benefit the infection process. These effector
proteins essentially target small GTPases to modulate the dynamics of the actin cytoskeleton
of host cells (3, 7–11). Rearrangement of the actin cytoskeleton by pathogenic
microorganisms has been extensively reviewed elsewhere (3, 8, 10, 12–19). This review will
focus on modulation of host microtubule dynamics by pathogenic bacteria.
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Microtubules are essential components of the eukaryotic cytoskeleton composed of
heterodimers of α- and β-tubulin. Tubulin dimers polymerize to form a microtubule that
consists of 13 linear protofilaments assembled around a hollow core (20, 21). Microtubules
are polar structures with a fast-growing plus end and a slow-growing minus end, and this
polarity determines the direction of movement along micro-tubules (22, 23). Important to
cell function, microtubules are dynamic structures that undergo continual assembly and
disassembly within the cell (24, 25). Many bacterial pathogens modulate this microtubule
dynamics by employing virulence proteins to promote infection (Table 1). This review will
discuss various bacterial effectors that destabilize or stabilize host microtubule networks.

Destabilization of host microtubule cytoskeleton by bacterial pathogens
Destabilization of host microtubules is a common strategy adopted by various bacterial
pathogens (Figure 1). Microtubule destabilization benefits these pathogens in many ways,
including the free movement of pathogens through the cytoplasm and modulation of actin
cytoskeleton through the activation of small GTPases. Rearrangement of the actin
cytoskeleton facilitates formation of membrane ruffles and pseudopodia that promotes
bacterial invasion and movement. Examples of major bacterial effectors that destabilize
micro-tubule networks are discussed below.

VirA of Shigella
Shigella flexneri, the causative agent of bacterial dysentery, harbors an important virulence
gene, VirA, that encodes a 45-kDa protein (26). Shigella delivers VirA into the host cells
using its type III secretion system (T3SS), and intracellular VirA modulates the cytoskeleton
dynamics to facilitate bacterial entry and intracellular movement (27, 28). Shigella spp.
deficient in the VirA gene are defective in intracellular movement and present an attenuated
phenotype in a mouse model of infection (29). Studies have established that the VirA
effector protein modulates host microtubule dynamics by acting as a destabilization factor
(29). Shigella destroys the microtubule network in the infected cells and creates a tunnel
through which the bacteria move smoothly. Infection studies using mutant bacteria indicated
that these properties are attributed to the VirA protein of Shigella.

VirA interacts with the subunits of the microtubule through an N-terminal domain that is
located between amino acid residues 224 and 315 (28). VirA can efficiently inhibit
microtubule polymerization and induce depolymerization of assembled microtubules in a
dose-dependent manner (28). However, the mechanism whereby VirA induces microtubule
destabilization remained controversial. More recently, VirA was reported as a cysteine
protease that specifically targets the α-subunit of the tubulin heterodimer (29). VirA is
capable of degrading purified human α-tubulin, and the protease activity is sensitive to the
protease inhibitors leupeptin and cystatin C. Mutation studies identified the catalytic
cysteine residue at the N-terminus of VirA (C34), and its mutation to serine (VirAC34S)
affects the activity of the protein (29). VirAC34S does not exhibit micro-tubule disruption in
COS-7 cells, and Shigella expressing the respective mutant presented a defective
intracellular movement (29). However, experimental data from two independent structural
and functional studies contradicted the identified VirA mechanism of action (30, 31). The
elucidated crystal structure of VirA reveals that it harbors two independently folded domains
that resemble the letter ‘V’ (30, 31). VirA represents a novel protein fold and does not show
any significant structural homology to papain-like cysteine proteases as indicated by
previous biochemical assays. However, the N-terminal domain of VirA exhibits limited
similarity to the inhibitors of cysteine proteases. The putative active site of VirA that
contains the catalytic residue Cys34 appears disordered in the crystal structure. Structural
analysis also pointed out that the N-terminal domain comprising the 224–315 amino acid
region of VirA is very likely involved in dimer formation rather than tubulin interaction (30,
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31). Nevertheless, there are conflicting reports on the existence of VirA as a monomer or
dimer. In contrast to the previous report (29), others could not identify any obvious
proteolytic activity or microtubule depolymerization properties by purified VirA protein (30,
31). VirA may act as a scaffold for a host papain-like cysteine protease, or recruits an
unidentified microtubule-destabilizing protein to facilitate the microtubule destruction.

In addition to creating a tunnel for bacterial movement by destroying microtubule networks,
VirA has the ability to induce membrane ruffles in various mammalian cells. VirA-induced
membrane ruffles are reported to be mediated by the activation of the small GTPase Rac1. It
has been hypothesized that microtubule regrowth after its depolymerization may activate
Rac1, resulting in the development of membrane ruffles and lamellipodial protrusions that
promote bacterial entry into host cells (28).

EspG of Escherichia coli
Enteropathogenic E. coli (EPEC) is a bacterial pathogen that causes gastroenteritis in
humans (32). EPEC adheres to the gastrointestinal mucosa and forms attaching and effacing
lesions that are characterized by localized destruction of the gastric microvillus brush
border, intimate adherence of bacteria to epithelial cells, and cytoskeleton reorganization
(32–34). EPEC injects a battery of effector proteins into intestinal epithelial cells through its
T3SS to subvert the host cell processes to benefit the extracellular bacterium (33, 35). EPEC
secretes effector proteins, EspG and EspG2, to destabilize microtubules. Importantly, EspG
and EspG2 share a striking similarity (40% and 38%, respectively) to the VirA protein of
Shigella, which is also a microtubule-destabilizing protein (36). There is a 62% similarity
between EspG and EspG2 (36). Interestingly, E. coli EspG as well as EspG2 can restore the
intracellular persistence of the Shigella VirA mutant, indicating a functional level similarity
of EspG/EspG2 and VirA (36). In vitro infection studies using EspG mutant EPEC did not
indicate any observable attenuated phenotype, whereas in vivo studies using a rabbit model
of diarrhea presented with attenuated gut colonization by an EspG mutant (36).

Wild-type EPEC caused localized microtubule destruction beneath the site of adherence
(37). Infection studies using mutant EPEC demonstrate that microtubule depletion is
attributed to the EspG and EspG2 or orf3 genes. However, a single mutant of EspG did not
exhibit microtubule destruction due to the functional redundancy of EspG and EspG2,
whereas a double mutant was defective in microtubule depletion (37). Both EspG and
EspG2 are capable of binding tubulins but not Taxol-stabilized microtubules (38). In vitro
studies also demonstrate that EspG and EspG2 can efficiently inhibit microtubule
polymerization as well as trigger the destabilization of polymerized microtubules (38). The
exact mechanism of EspG/EspG2-mediated microtubule destruction remains unknown.
Given the high similarity of VirA and EspG/EspG2, a cysteine protease activity has been
proposed as the mechanism of microtubule destruction by EspG/EspG2. However, the
protease activity of EspG/EspG2 has not been demonstrated. An alternative hypothesis
suggests that EspG/EspG2 acts similarly to the microtubule-destabilizing protein, stathmin,
which sequesters tubulins and reduces the concentration of tubulin available for microtubule
assembly (38–40).

Escherichia coli is an extracellular bacterium, and how EspG/EspG2-induced microtubule
destruction may benefit the pathogen remains largely unknown. EspG/EspG2-induced
microtubule destruction triggers the release and activation of a microtubule-associated
RhoA-specific guanine nucleotide exchange factor, GEF-H1. Activated GEF-H1 in turn
activates a RhoA-ROCK signaling pathway and induces actin stress fiber formation (38).
GEF-H1 associates with the epithelial tight junctions and regulates the paracellular
permeability by reorganizing the actin cytoskeleton (41). Therefore, it is assumed that the
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microtubule destruction by EspG/EspG2 leads to actin rearrangements and increased
paracellular permeability, which contributes to EPEC-induced diarrhea.

EspG of Citrobacter
Citrobacter rodentium is a murine attaching and effacing pathogen that causes mild diarrhea
and colonic hyperplasia in mice (42). EspG encoded by C. rodentium shares strong
homology with the EspG of EPEC (43, 44). EspG, secreted by T3SS, of C. rodentium also
binds to human tubulin and induces localized microtubule destruction and stimulates actin
stress fiber formation (45). Disrupting microtubules in colonocytes by EspG and potentially
with EspF, the various cell membrane aquaporin water channels that normally absorb water
from the gut are repositioned to the cell cytoplasm, contributing to diarrhea during bacterial
infection (46).

CopN of Chlamydia
The Chlamydiae are Gram-negative, obligate intracellular pathogens that cause a range of
human diseases, including genital, ocular, and respiratory infections (47). They undergo a
biphasic developmental cycle involving the infectious elementary body (EB), and the
replicative, non-infectious reticulate body (RB) (48). After entering their target eukaryotic
cells, EBs differentiate into RBs and replicate within an endosome-derived membranous
vacuole, termed ‘inclusion’ (48). Microtubules play an essential role in the intracellular
lifestyle of Chlamydia. Chlamydial inclusions are trafficked along microtubules toward the
minus ends and aggregate at the microtubule organizing center (MTOC) (49, 50). Disruption
of microtubules by nocodazole treatment in Cos-7 cells inhibited the characteristic
localization of Chlamydia inclusions. Studies have shown that inclusion body translocation
depends on the minus-end-directed microtubule motor complex dyenin (49).

Even though Chlamydia exploits the microtubule network for trafficking of inclusions, one
of the Chlamydia effectors, CopN, exhibits microtubule destabilization properties (51).
Heterologous expression of CopN in yeast and mammalian cells affected the formation of
microtubule structures and blocks cell division (52). Recently, CopN was shown to directly
bind non-polymerized α and β-tubulins but not to polymerized microtubules (53). CopN can
efficiently inhibit microtubule polymerization but cannot induce depolymerization due to its
inability to bind to the polymerized microtubules. On the basis of these observations, it is
hypothesized that CopN may act like stathmin and destabilize the microtubules by
sequestrating α- and β-tubulins (53). Chlamydia resides at the MTOC, and the microtubule
destabilization property of CopN may disrupt the mitotic spindles, leading to chromosomal
segregation defects and inhibition of cytokinesis.

EseG of Edwardsiella tarda
Edwardsiella tarda is an enteric pathogen that causes septicemia of fish and gastroenteritis of
humans (54). Edwardsiella tarda secretes an effector protein, EseG, to the host cells through
a T3SS. Overexpression of EseG in HeLa cells induces dramatic microtubule destruction
(55). EseG does not share any homology with other microtubule-destabilizing proteins such
as VirA and EspG. However, EseG does share a conserved domain with the SseF and SseG
proteins of Salmonella. A microtubule destabilization property has not been demonstrated
for SseF or SseG, and these effector proteins play an essential role in the perinuclear
localization of Salmonella-containing vacuoles. In fact, SseG co-localizes with microtubules
and exhibit microtubule-bundling properties (56). Nevertheless, the conserved domain is
reported to be essential for EseG to destabilize microtubules (55). EseG interacts with α-
tubulin through a separate domain at the N-terminus of the protein (55). The actual
mechanism of EseG-mediated microtubule destruction remains to be elucidated.
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ActA of Listeria
Listeria monocytogenes is an intracellular pathogenic bacterium that causes the severe food-
borne infection listeriosis (57). Listeria is capable of invading and replicating in a variety of
mammalian cells. After internalization, Listeria prevents phagosome-lysosome fusion and
escapes from the phagosome with the help of its virulence protein, LLO (58). Free bacteria
then replicate in the cells and spread to neighboring cells without inducing cell lysis (58–
60). Listeria encodes a number of virulence factors to facilitate its intra-cellular survival and
spread (61). Studies have shown that ActA is essential for inter- and intracellular movement
of Listeria. ActA induces a comet-shaped actin polymerization at the posterior pole of the
bacterium that generates unidirectional propulsion force to push the bacterium through the
cytoplasm. ActA mimics the C-terminal domain of Wiskott-Aldrich syndrome protein
(WASP) and activates actin-related protein (Arp) 2/3 complex to facilitate the comet
formation at the pole of the bacterium (62). The microtubule-binding protein dynamin-2 co-
localizes with the Listeria-induced actin comets. Dynamin-2 is a GTPase protein that is
ubiquitously expressed in mammals and plays key roles in various cellular processes,
including fission of clathrin-coated endocytic vesicles, vesicle trafficking, centrosome
cohesion, actin reorganization, and microtubule dynamics (63–67). Dynamin-2 polymerizes
the entire length around the microtubules and contributes to the correct bundling of
microtubules. Silencing of dynamin-2 by siRNA results in dynamic instability of
microtubules and induces accumulation of acetylated and stable microtubules (68). Infection
of dynamin-2-depleted HeLa cells with Listeria reduces actin comet tail formation and
diminishes the speed of bacterial movement (69). These studies imply that the alteration of
microtubule dynamics influences the Listeria-induced actin comet tail formation. A number
of actin regulatory proteins such as Rho family GTPases are associated with microtubules,
and microtubule dynamics regulate actin regulatory protein release and activation (70–72).
Therefore, alterations of microtubule dynamics likely affect the reorganization of actin
cytoskeleton and the formation of actin comets.

A high-throughput yeast two-hybrid screen identified a mammalian protein, LaXp180, that
interacts with ActA of Listeria (73). LaXp180 interacts with a well-characterized
microtubule-destabilizing protein, stathmin (74). Stathmin sequestrates tubulin dimers by
forming a complex and reduces the concentration of free tubulin available for
polymerization (39, 40, 75). In addition to the tubulin sequestration, stathmin also promotes
microtubule catastrophe or shortening through an unidentified mechanism (75). The role of
microtubules on the intracellular lifestyle of Listeria has not been investigated in detail.
However, stathmin-mediated microtubule depletion by Listeria proteins may lead to actin
rearrangement that promotes bacterial movement and spread. Studies have shown that the
microtubule destabilization property of stathmin is inactivated by its phosphorylation, and
the phosphorylated stathmin induces lamellipodia formation that is mediated by a
multiprotein complex termed WAVE-2 (76, 77). Whether the ActA-LaXp180-stathmin
interaction induces lamellipodia formation to promote the spread of Listeria is an area that
needs to be addressed.

Stabilization of host microtubule cytoskeleton by bacterial pathogens
Many invasive and adherent bacterial pathogens induce stabilization of host microtubules to
promote their survival and persistence (Figure 2). The mechanism by which bacterial
effector proteins induce the stabilization of host microtubules and the beneficial role of
stabilized microtubules for survival of certain pathogens in the host are poorly understood.
Major bacterial effector proteins that stabilize host microtubules are as follows.
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SifA of Salmonella
Salmonellae are gastrointestinal pathogens causing diseases ranging from enteritis to
typhoid fever (78). They are facultative intracellular pathogens and reside in membranous
compartments termed Salmonella-containing vacuoles (SCV). Salmonella possess two T3SS
to deliver its effector proteins to the host cytosol to modify the host cell processes to benefit
the pathogen. The Salmonella-secreted proteins SifA, SseF, and SseG have been reported to
affect micro-tubule dynamics (56). SifA is an important virulence protein of Salmonella and
induces tubular networks, termed as Salmonella-induced filaments (SIFs), that extend from
the SCVs (79). SIF formation is essential for pathogenicity as the SifA mutant Salmonella
presents an attenuated phenotype in mice and macrophages (80, 81). Intact microtubules are
required for the formation of SIFs, indicating that SIF structures are formed on the
scaffolding of microtubules (56, 79). Recent studies have shown that SIFs constitute the
tubular aggregates of phagosomes, and the tubular networks require the participation of host
SifA kinesin-interacting protein, SKIP, and the microtubule motor, kinesin-1 (82, 83). The
Salmonella effectors SseG and SseF interfere with microtubule organization and induce
massive microtubule bundling (56). It is hypothesized that microtubule reorganization may
reduce or block the vesicles that transport along the microtubules. Therefore, microtubule
bundling may bring the vesicles in close proximity, leading to their fusion and formation of
tubular networks along the microtubules (56) benefiting the Salmonella. The mechanism by
which these Salmonella effectors alter the microtubule organization remains obscure.

TcpB of Brucella spp
Brucella spp. are infectious intracellular pathogens causing brucellosis of animals and
humans (84). Brucella spp. encode a Toll/interleukin-like receptor domain(TIRdomain)-
containing protein termed TcpB/Bpt1. TcpB harbors a phosphoinositide-binding domain at
the N-terminus and a TIR domain at the C-terminus (85). TcpB inhibits host innate immune
responses meditated by TLR2 and TLR4 (85–87). Recent studies have shown that TcpB
targets a TLR adaptor protein, TIRAP, to inhibit TLRs by inducing the ubiquitination and
degradation of TIRAP (85, 88). Overexpression of TcpB in mammalian cells resulted in
dramatic cell shrinkage and rounding up, suggesting a potential interaction with
microtubules of the cell. Subcellular localization studies indicate that TcpB co-localizes
predominantly with the microtubules (Figure 3) (85). Microtubule localization is attributed
to the TIR domain of TcpB and a point mutation at the active site of TIR domain, i.e., BB-
loop, abolished the affinity for microtubules. TcpB-expressing cells display thickened and
bundled microtubule networks indicative of microtubule stabilization.

Polymerization of microtubules in the presence of purified TcpB reveals a robust
microtubule stabilization property of TcpB. TcpB acts like the microtubule-stabilizing drug
paclitaxel, and dramatically enhances the nucleation and growth phases of microtubule
polymerization (Figure 4) (89). In addition, TcpB can efficiently suppress the inhibition of
microtubule depolymerization by nocodazole or cold. In agreement with the subcellular
localization studies, a BB-loop mutant TcpB exhibits defective microtubule binding and
stabilization properties (89).

The significance of TcpB-microtubule interaction and microtubule stabilization remains
obscure. Potentially, TcpB induces microtubule bundling to interfere with the vesicular
transport along microtubule tracks that may benefit Brucellae to prevent phagosome-
lysosome fusion and subsequent phagosomal killing. However, experiments to demonstrate
the secretion of TcpB by Brucella have not yet been successful. As the intact BB-loop is
crucial for both microtubule stabilization as well as TLR inhibition, a correlation between
these two properties has also been hypothesized. Nevertheless, the role of microtubules in
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the regulation of TLR signaling remains enigmatic. Studies are in progress to address the
significance and mechanism of TcpB-induced microtubule stabilization.

CDT toxin of Clostridium difficile
Clostridium difficile is a major cause of chronic antibiotic-associated diarrhea and
pseudomembranous colitis (90). Hypervirulent strains of C. difficile produce the binary
actin-ADP ribosylating toxin, C. difficile transferase (CDT). CDT depolymerizes the actin
cytoskeleton using its actin-modifying ADP-ribosyltransferase property. Expression of CDT
in the human colon carcinoma cell line Caco-2 induced characteristic cell surface
projections that consist of microtubules (91). Subsequent analyses indicate that in the
presence of CDT, microtubules form bundles and grow along the cell cortex and project
from the cell surface. The microtubules that cross the cell borders are capped with a
microtubule plus-end-tracking protein, EB1, indicating that microtubule protrusions are the
result of tubulin polymerization rather than sliding of microtubules. In addition, CDT causes
redistribution of microtubule-capturing proteins, CLASP2 and ACF7, from the cell
periphery to the cell interior (91). The capture of growing microtubules at the cell cortex by
tip-associated proteins is an important process that regulates microtubule dynamics (92, 93).
Interfering with this capturing process by CDT may contribute to the growth of microtubules
beyond the cell borders. Induction of microtubule-derived cell protrusions increase
adherence and colonization of Clostridia on epithelial cells (91). The iota toxin of
Clostridium perfringes and C2 toxin of Clostridium botulinum also induce microtubule-
based protrusions on the surface of epithelial cells (91).

Pneumolysin of Streptococcus pneumonia
Streptococcus pneumoniae is a major causative agent of bacterial meningitis (94).
Streptococcus pneumoniae encodes pneumolysin (Ply), a member of the cholesterol-
dependent cytolysins that is essential for the virulence of the bacteria (95, 96). Microtubule
stabilization is observed in pneumococcal meningitis and is attributed to the pneumolysin of
S. pneumoniae (97). The expression of sublytic levels of pneumolysin in SH-SY5Y neuron
cells induces massive microtubule bundling and increased levels of acetylated tubulin and
stabilized microtubules (97). Ply-induced microtubule bundling is partially affected by the
addition of Src-kinase family inhibitors. As members of the tyrosine kinase family are
known to promote tubulin polymerization and stabilize microtubules, Ply-mediated
microtubule stabilization is thought to be mediated by tyrosine kinases (97–99). Ply-
mediated microtubule stability and bundling inhibits organelle transport as demonstrated for
defective mitochondrial transport in Chinese hamster ovary cells (97). Therefore, defective
organelle transport caused by microtubule stabilization may explain the neuronal
dysfunction in the course of pneumococcal meningitis. Streptococcus pneumoniae is not a
classic intracellular pathogen; however, it is capable of invading and propagating in host
cells (100, 101). Therefore, Ply-induced microtubule stabilization may help the intracellular
survival of the bacterium by interfering with the vesicular transport and inhibiting
phagosome killing.

Despite extensive research in the field of host-pathogen interaction, the mechanism of action
of many of the above-discussed effector proteins remains to be elucidated. Therefore, future
studies need to address various effector protein strategies that modulate the host microtubule
dynamics and its contribution to the survival and persistence of bacterial pathogens in the
host. Insights into the effector protein-micro-tubule interaction will undoubtedly provide an
opportunity to develop innovative therapeutic strategies, such as antivirulence drugs that
inhibit the specific functions of the effector protein. Future research should also focus on
identifying novel virulence proteins of pathogenic microorganisms that target the
organization of host microtubule networks.
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Conclusion
Microtubules are easy targets of pathogenic microorganisms for hijacking the cellular
processes to create a replication-permissive niche. Modulation of microtubule dynamics
benefits the pathogen in various ways, including promoting intracellular motility, interfering
with vesicular trafficking, and reorganizing the actin cytoskeleton. Therefore, detailed
studies on microtubule-pathogen interaction will undoubtedly contribute to our
understanding of pathogenicity and host adaptation of several infectious pathogens.
Additionally, the virulence proteins that affect microtubule dynamics constitute a handy tool
for dissecting various cellular processes that are regulated by microtubules. Similar studies
will also provide valuable insight into the influence of microtubules on the dynamics of the
actin cytoskeleton.
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Figure 1.
Bacterial effector proteins that destabilize host microtubules. The mechanism of action of
effector proteins that has been demonstrated or hypothesized is illustrated. The possible
benefits of host microtubule destruction for the pathogen have also been depicted in the
figure.
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Figure 2.
Bacterial effector proteins that stabilize host microtubules. The known mechanism of action
of effector proteins and the benefits of host microtubule stabilization for the pathogen have
been depicted in the figure. MT, microtubule; BCV, Brucella-containing vacuoles; SCV,
Salmonella-containing vacuole; Ply, pneumolysin; CDT, Clostridium difficile toxin.
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Figure 3.
TcpB co-localizes with host microtubules. HEK-293 cells were transfected with pCMV-HA-
TcpB plasmid and stained for HA-TcpB (A), tubulin (B), and merged (C). Scale bar, 5 μm.
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Figure 4.
TcpB enhances the rate of microtubule polymerization like paclitaxel (Taxol). In vitro
microtubule polymerization assay in the presence of purified TcpB (0.5 mg/ml) or paclitaxel
(5 μM). TcpB could efficiently enhance the nucleation and growth phases of microtubule
polymerization and the total amount of microtubules polymerized similar to the microtubule
stabilization drug paclitaxel. Adapted from ref. (87).
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Table 1

Bacterial effector proteins that modulate microtubule dynamics.

Pathogen Effector proteins References

Microtubule destabilizers

 Shigella flexneri VirA (29–31)

 Enteropathogenic EspG and EspG2 (36–38)

 Escherichia coli

 Citrobacter rodentium EspG (44)

 Chlamydia CopN (49–51)

 Edwardsiella tarda EseG (53)

 Listeria monocytogenes ActA (60, 67, 72)

Microtubule stabilizers

 Salmonella enterica SifA, SseF, SseG (54, 77)

 Brucella spp. TcpB/Bpt1 (83–85)

 Clostridium difficile CDT (89)

 Clostridium botulinum C2 (89)

 Clostridium perfringens Iota toxin (89)

 Streptococcus pneumonia Pneumolysin (95)
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