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Purpose: Multi-atlas segmentation has been shown to be highly robust and accurate across an ex-
traordinary range of potential applications. However, it is limited to the segmentation of structures
that are anatomically consistent across a large population of potential target subjects (i.e., multi-atlas
segmentation is limited to “in-atlas” applications). Herein, the authors propose a technique to deter-
mine the likelihood that a multi-atlas segmentation estimate is representative of the problem at hand,
and, therefore, identify anomalous regions that are not well represented within the atlases.
Methods: The authors derive a technique to estimate the out-of-atlas (OOA) likelihood for every
voxel in the target image. These estimated likelihoods can be used to determine and localize the
probability of an abnormality being present on the target image.
Results: Using a collection of manually labeled whole-brain datasets, the authors demonstrate the
efficacy of the proposed framework on two distinct applications. First, the authors demonstrate the
ability to accurately and robustly detect malignant gliomas in the human brain—an aggressive class
of central nervous system neoplasms. Second, the authors demonstrate how this OOA likelihood
estimation process can be used within a quality control context for diffusion tensor imaging datasets
to detect large-scale imaging artifacts (e.g., aliasing and image shading).
Conclusions: The proposed OOA likelihood estimation framework shows great promise for robust
and rapid identification of brain abnormalities and imaging artifacts using only weak dependencies
on anomaly morphometry and appearance. The authors envision that this approach would allow for
application-specific algorithms to focus directly on regions of high OOA likelihood, which would (1)
reduce the need for human intervention, and (2) reduce the propensity for false positives. Using the
dual perspective, this technique would allow for algorithms to focus on regions of normal anatomy to
ascertain image quality and adapt to image appearance characteristics. © 2013 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4794478]

Key words: out-of-atlas likelihood estimation, multi-atlas segmentation, cancer detection, quality
control

I. INTRODUCTION

The ability to detect abnormalities and anomalies in medical
images plays a critical role in the detection of diseases and
pathologies as well as maintaining image quality assurance. A
common way to detect abnormalities or anomalies is through
the use of a normal template (or atlas) and finding deviations
from that template in order to determine the likelihood of an
abnormality.1–6 However, the ability to discover these devia-
tions relies upon the definition of meaningful structure within
a target image so that inference can be made about the under-
lying anatomy. Thus, segmentation plays a critical role in the
discovery and quantification of abnormalities and anomalies
in medical images.

In multi-atlas segmentation,7, 8 multiple atlases are sepa-
rately registered to the target and the voxelwise label con-
flicts between the registered atlases are resolved using la-

bel fusion. In general, there are two primary fields of study
in label fusion: (1) voting-based strategies which include
a majority voting7, 9–11 and weighted voting strategies12–18

and (2) statistical fusion strategies based upon simulta-
neous truth and performance level estimation (STAPLE)
(Ref. 19) and the proposed extensions.8, 20–28 Multi-atlas seg-
mentation has been shown to be highly robust across an ex-
traordinary range of potential applications (e.g., segmentation
of the thyroid,27, 28 hippocampus,15 neonatal brain anatomy,29

and the optic nerve30).
Nevertheless, there are two primary concerns that limit the

generalizability of multi-atlas segmentation. First, we are lim-
ited to structures that are represented by the atlases—multi-
atlas segmentation cannot be used to segment structures that
are not present on the available atlases. Second, we are limited
to structures that are anatomically consistent across potential
target subjects. For example, regardless of whether there are
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atlases available, a direct multi-atlas segmentation procedure
cannot be used to segment malignant gliomas in the human
brain as tumor characteristics (e.g., location, size, shape) are
widely varying across a given target population. As a result,
the potential scope of multi-atlas segmentation applications is
limited, particularly in the case of anatomical abnormalities
(e.g., the detection of highly varying pathologies) and quality
control (e.g., the detection of imaging and quality-based arti-
facts). We enumerate this problem as the fact that multi-atlas
segmentation is limited to “in-atlas” applications (e.g., appli-
cations where the atlases are anatomically and structurally in-
dicative of the target image).

Herein, we propose a technique to estimate the out-of-
atlas (OOA) likelihood for every voxel in the target image
(Fig. 1). The OOA approach provides an intuitive and
fully general abnormality/outlier detection framework that (1)
overcomes several of the current limitations with multi-atlas
segmentation and (2) has the potential to dramatically in-
crease the scope of potential multi-atlas-based applications.

This manuscript is organized as follows. We begin by de-
riving the theoretical basis and the model parameters for the
proposed OOA likelihood estimation framework. Next, us-
ing a collection of manually labeled whole-brain datasets,

we demonstrate the efficacy of the proposed framework on
two distinct applications. First, we demonstrate the ability
to detect malignant gliomas in the human brain—an ag-
gressive class of central nervous system neoplasms. For this
application, we both quantitatively and qualitatively assess
the accuracy of the proposed algorithm and demonstrate its
sensitivity to the various model parameters and initializa-
tions. Second, we demonstrate how this OOA likelihood es-
timation framework can be used within a quality control
context for diffusion tensor imaging (DTI) datasets. Using
a clinically acquired dataset, we qualitatively demonstrate
that we can detect large-scale quality control issues (e.g.,
aliasing, shading artifacts) within the proposed estimation
framework.

II. OUT-OF-ATLAS LIKELIHOOD
ESTIMATION THEORY

In the following presentation of theory we derive the the-
oretical basis for the OOA likelihood estimation framework
and provide a brief overview of the model parameters and ini-
tialization procedure.

FIG. 1. Flowchart demonstrating the out-of-atlas likelihood estimation procedure. First the provided atlas information is used to both (1) perform a multi-atlas
segmentation estimate of the target image, and (2) estimate the per-label density functions. Next, these per-label density functions and the target information are
used to estimate the observed and expected density functions. These two density functions are then used to construct a voxelwise estimate of the out-of-atlas
likelihood. Finally, the background and edge effects are diminished through a postprocessing smoothing step.
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II.A. Problem definition

Consider an image of N voxels with unknown target la-
bels T, Ti ∈ {0, 1} (i.e., 0: “in-atlas” and 1: “out-of-atlas”). R
registered atlases (or “raters” in common fusion terminology)
each provide an observed delineation of all N voxels exactly
once. The set of labels on these atlases, L, represents the set of
possible values that an atlas can assign to all N voxels. Let D
be an N × R matrix that indicates the label decisions of the R
registered at all N voxels where each element Dij ∈ {0, 1, . . . ,
L − 1}. Let A be another N × R matrix that indicates the asso-
ciated postregistration atlas intensities for all R atlases and N
voxels where Aij ∈ R. Finally, let I : Ii ∈ R be the N-vector
representing the target intensities, and let �: � i ∈ L be the N-
vector representing the multi-atlas segmentation estimate of
the target image.

II.B. Construction of the expected
intensity distributions

We define the expected intensity distribution as the approx-
imate semilocal intensity distribution that would be observed
given the provided atlas label-intensity relationships and the
multi-atlas segmentation estimate at each voxel on the target
image. Herein, we define the “semilocal neighborhood” to be
a predefined collection of voxels surrounding and including
the directly corresponding voxel in the common atlas-target
coordinate space. This expected intensity distribution is ap-
proximated by summing the observed label-intensity relation-
ships from the atlases across the multi-atlas segmentation es-
timate of the target within the semilocal neighborhood around
the current voxel of interest. Thus, the first step is to construct
the label-intensity relationships that can be inferred from the
provided atlas information. In other words, we need to con-
struct p(γ |� i = l) which represents the probability of all pos-
sible intensities given that the estimated label is l. Note that
this distribution is a global measure with respect to each indi-
vidual label which limits the impact of shading artifacts and
spatial inhomogeneities. We infer this distribution fully from
the atlas intensities and labels using a nonparametric Kernel
density estimation (KDE) approach:

p(γ |�i = l) =
∑

j

∑
i:Dij =l K

(
γ−Aij

h

)

h
∑

j

∑
i δ(Dij , l)

, (1)

where γ is all possible intensities, K is a standard Gaussian
kernel, and h is the bandwidth associated with the Gaussian
kernel, and δ is the Kronecker delta function. Given Eq. (1),
which is an estimation of the complex label-intensity relation-
ships inferred from the atlases, the expected intensity distribu-
tion within a semilocal neighborhood can then be estimated
using the multi-atlas segmentation estimate of the underlying
target image:

pE
i (γ ) = 1

ZE
i

∑
i ′∈Ni

p(γ |�i ′), (2)

where Ni is the semilocal neighborhood surrounding the tar-
get voxel i and ZE

i is the partition function that enforces that
pE

i (γ ) is a valid probability density function across all poten-

tial image intensities. In other words, ZE
i enforces the con-

straint that∫ +∞

−∞
pE

i (γ )dγ = 1. (3)

As an aside, depending on the processing techniques and
imaging characteristics, the expected intensity-label distribu-
tions may or may not change as a result of the registration
procedure. Assuming they do not change as a result of the reg-
istration, these distributions could be directly calculated prior
to the registration. Additionally, if a very large number of rep-
resentative atlases were provided these distributions could be
fixed regardless of the desired target image and we could have
high confidence in their accuracy. Here, we calculate the dis-
tributions after registration for two primary reasons: (1) the
intensity normalization procedure provides a mechanism for
accounting for the variability of the intensity characteristics
between the targets (e.g., as a result of the contrast enhance-
ment), and (2) the calculation of these distributions only min-
imally affects the computation time of the approach.

II.C. Construction of the observed
intensity distributions

We define the observed intensity distribution at a given tar-
get voxel as simply the KDE of the intensities within a semilo-
cal neighborhood surrounding the current voxel of interest on
the target image. The observed intensity distribution is ap-
proximated using a similar approach to Eq. (1):

pO
i (γ ) =

∑
i∈Ni

K
(

γ−Ii

h

)

h |Ni | , (4)

where K and h are defined in the same way as Eqs. (1) and (2),
and |Ni | is the cardinality of the set Ni (i.e., the predefined
semilocal neighborhood surrounding the current voxel of
interest).

II.D. Estimation of the voxelwise
out-of-atlas likelihood

We define the out-of-atlas likelihood as the voxelwise dif-
ference between the expected and the observed intensity dis-
tributions. There are several potential techniques that could be
used to capture the difference between these two density func-
tions [e.g., Kullback–Leibler (KL) divergence31]. Due to the
proposed formulation of the expected/observed distributions,
we found that the KL divergence did not provide an appro-
priate mechanism for capturing OOA likelihood. As seen in
Eq. (1), the expected distribution can be viewed as a global
measure of the intensity-label relationships within the atlases.
Given its global nature, we would not expect the observed
distribution to match exactly at a semilocal level. Rather, we
would expect the observed distribution to be fully “covered”
by the expected distribution. As a result, we found that the
best way to capture the difference between these distribu-
tions is by integrating over the intensities by which pO

i (γ ) is
greater than pE

i (γ ) (i.e., the intensities for which the observed
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probabilities are greater than the expected probabilities).
Mathematically, this quantity is defined as

p (Ti = 1) = Li =
∫ +∞

−∞
I

(
pO

i (γ ) > pE
i (γ )

)

× [
pO

i (γ ) − pE
i (γ )

]
dγ (5)

where Li represents the OOA likelihood at target voxel i, and
I( · ) is the indicator function. This formulation of the OOA
likelihood has several benefits. First, it is guaranteed that the
value of Li ∈ [0, 1] given that pO

i (γ ) and pE
i (γ ) are properly

normalized density functions. Second, this formulation has an
easily understood probabilistic interpretation where Li = 1
indicates an out-of-atlas likelihood of unity, and Li = 0 in-
dicates an out-of-atlas likelihood of zero.

II.E. Model parameter initialization,
and implementation details

There are two primary model parameters that need to set
in order to use the OOA likelihood estimation framework:
(1) the neighborhood structure, Ni , and (2) the bandwidth for
the KDE formulation. First, for all presented experiments we
used an approximately 11 × 11 × 11 mm window centered at
the target voxel of interest for all voxels within the neighbor-
hood structure. For cases where this window size resulted in
fractional number of voxels in a given direction, the number
of voxels was rounded appropriately. It is important to note
that, in general, large semilocal neighborhoods result in more
accurate OOA likelihood estimations. However, as the neigh-
borhood size increases, so does the computation time of the
algorithm. Thus, we found that an 11 × 11 × 11 mm window
was consistently large enough to decrease the effects of local
noise, but still small enough to maintain a reasonable runtime.
Second, unless otherwise noted, the bandwidth parameter, h,
was set to 1.0. Note that this parameter is inherently related to
the variance of the observed data, and, thus, a function of the
intensity normalization process.

Additionally, one extremely important aspect of this algo-
rithm is the way in which the multi-atlas segmentation es-
timate is acquired. For all presented experiments, all atlases
were registered to the target image using a pairwise regis-
tration procedure (i.e., all atlases were independently regis-
tered to the target). After registration, the intensities between
the target and the atlas images were normalized in a two-step
process. First, both the target and the registered atlas images
were normalized so that the intensities are distributed as a unit
Gaussian distribution within the brain region (defined by the
union of the nonbackground registered atlas labels). Second, a
second order polynomial was fit to each atlas by finding a least
squares solution for the polynomial coefficients that map the
mean of each label on the target (via an initial majority vote)
to the corresponding labels on the atlases. The registered at-
lases were then fused using nonlocal STAPLE (NLS).27, 28 For
all presented experiments, NLS was initialized with perfor-
mance parameters equal to 0.95 along the diagonal and ran-
domly setting the off-diagonal elements to fulfill the required
constraints. For all presented results, the voxelwise label prior

was initialized using the probabilities from a “weak” log-odds
majority vote (i.e., decay coefficient set to 0.5),14 the search
neighborhood, Ns (i), was initialized to an 11 × 11 × 11 mm
window centered at the target voxel of interest, and the patch
neighborhood, Np(·), was initialized to a 3 × 3 × 3 mm win-
dow. The values of the standard deviation parameters, σ i and
σ d, were set to 0.1 and 3, respectively. Consensus voxels were
ignored during the estimation process. Convergence of NLS
was detected when the average change in the trace of the per-
formance level parameters fell below 10−4. For a full deriva-
tion of NLS and additional details on NLS initialization, we
refer the reader to Refs. 27 and 28.

Finally, there are a couple of important implementation de-
tails that need to be discussed. First, the OOA likelihood, Li ,
was only calculated on voxels for which the multi-atlas seg-
mentation estimate was nonbackground. Background voxels
were ignored because (1) as both of our empirical experiments
are for whole-brain analysis, it is assumed that we are only
interested in abnormalities that take place within the brain
region and (2) it dramatically decreases the runtime of the
algorithm. Second, a postprocessing step that decreased the
potential edge effects on the image was performed. Due to
the fact that we are ignoring background voxels, it is possible
that undesired likelihood estimates could be achieved along
the boundaries between background and nonbackground vox-
els. To alleviate this problem, we multiplied the final OOA
likelihood estimate by an inverse log-odds estimate [decay
coefficient set to 1.0 (Ref. 14)] of the background label (see
Fig. 1 for a visual representation of this process). While this
edge correction step limits the ability of the approach to detect
accurate abnormalities along the edge of the brain, it increases
the accuracy of the approach within the brain and limits the
effects of minor boundary errors in the multi-atlas segmen-
tation. If a desired application requires the inclusion of the
boundary of the brain (or is outside the brain entirely) then
this step would certainly not be desirable.

III. METHODS AND RESULTS

We present two starkly different whole-brain empirical ex-
periments in order to assess the efficacy of the proposed OOA
likelihood estimation framework. For our first experiment, we
both quantitatively and qualitatively assess the ability of our
framework to detect malignant gliomas in the human brain
based on clinically acquired MRI data. Additionally, we pro-
vide insight into the sensitivity of the proposed framework
with respect to the KDE bandwidth parameter and the accu-
racy of the multi-atlas segmentation estimate. For our sec-
ond experiment, we provide a qualitative example for how
this OOA model could be used to provide a quality control
framework for acquired DTI images and demonstrate the type
of imaging artifacts and quality control metrics that could be
performed.

III.A. Multi-atlas data

The collection of whole-brain atlases used in the follow-
ing experiments is a collection of 15 T1-weighted magnetic
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resonance (MR) images of the brain as part of the open ac-
cess series of imaging studies (OASIS) (Ref. 32) dataset.
These data were expertly labeled courtesy of Neuromorpho-
metrics, Inc. (Somerville, MA) and provided under a nondis-
closure agreement. A refined dataset (using the OASIS brains
and a subtly revised labeling protocol) has recently been
made available as part of the MICCAI 2012 workshop on
multi-atlas labeling. These data are available at the following
URL: https://masi.vuse.vanderbilt.edu/workshop2012/ or di-
rectly from Neuromorphometrics. For each atlas, a collection
of 26 labels (including background) were considered: rang-
ing from large structures (e.g., cortical gray matter) to smaller
deep brain structures. Note that all of the cortical surface la-
bels were combined to form left and right cortical gray matter
labels (see Ref. 28) for a description of the simplified label
set). All images are 1 mm isotropic resolution.

III.B. Detection of malignant gliomas

Thirty preoperative gadolinium-enhanced T1-weighted
brain MRI scans based on varied (but standard of care) imag-
ing protocols with malignant gliomas were obtained in anony-
mous form under Institutional Review Board (IRB) approval.
On average, the resolution of each of the patient image is 0.45
× 0.45 × 3 mm. All subjects exhibited high grade gliomas
(WHO grade III) with an average tumor volume of 29.67
± 20.18 cm3. The corresponding “ground truth” labels asso-
ciated with each of the tumor regions were manually drawn
by an experienced anatomist using the Medical Image Pro-
cessing And Visualization software.33

For each target image, all pairwise affine registrations
between the 15 labeled atlases and the target image were
performed using FLIRT (FMRIB, Oxford, UK). Note that
nonrigid registration was not performed due to the highly vari-
able imaging characteristics of the malignant gliomas on the
target subjects. Nevertheless, due to relatively small tumor-
to-brain size ratio, the global affine registration procedure
consistently provided enough correspondence to result in ac-
ceptable multi-atlas segmentations. Using an implementation
in C, the OOA likelihood estimation procedure took less than

two hours for each target brain. We assess the quantitative
accuracy of the proposed approach by analyzing the positive
predictive value (PPV), negative predictive value (NPV), and
the corresponding receiver operating characteristic (ROC) as-
sociated with each target image for varying threshold values
of the estimated OOA likelihood. All quantitative results are
presented in reference to the corresponding manual labels.
Additionally, we present the sensitivity of the approach to the
KDE bandwidth parameter, and various multi-atlas label fu-
sion approaches.

III.C. Glioma detection results

The quantitative results (Fig. 2) demonstrate the ability
of the proposed framework to detect large-scale abnormali-
ties in the human brain. The proposed framework can con-
sistently and reliably declare voxels to be cancerous in terms
of increasing declaration threshold [Fig. 2(a)]. For a decla-
ration threshold above approximately 0.7 the resulting PPV
was equal to unity (i.e., all voxels declared to be OOA were
cancerous voxels). To support these PPV values, the NPV val-
ues [Fig. 2(b)] show that, despite increasing the threshold, the
negative predictive value remains over 0.97. The per-subject
ROC curves [Fig. 2(c)] confirm that this performance is con-
sistent across the target population with an average area un-
der curve (AUC) value of greater than 0.95. Qualitative results
(Fig. 3) support the quantitative accuracy. While the resulting
likelihood estimates are far from perfect (e.g., “holes” in the
likelihood estimates), it is evident that the proposed frame-
work is consistently detecting the cancerous regions. The rep-
resentative example in the fifth column represents the worst-
case of the considered subjects, and it is shown that while
none of the images has an OOA likelihood of greater than
0.6, the values greater 0.3 are outside of the “core” of the
glioma. Note that this example is represented by the outlier
case in Fig. 2(c). Due to the known issues with strict ROC
analysis,34, 35 we provide additional quantitative evaluation for
the glioma detection (Table I) in which we present the false
negative rate (FNR), false positive rate (FPR), and dice sim-
ilarity coefficient (DSC) (Ref. 36) for declaration thresholds

FIG. 2. Quantitative results for the detection of malignant gliomas across 30 target subjects. The positive and negative predictive values for varying declaration
thresholds can be seen in (a) and (b), respectively. The “declaration threshold” indicates the threshold probability for which we declare a voxel to be anomalous
(in this case, a cancerous voxel). Finally, the per-subject ROC curves can be seen in (c) in the various thin lines, with the mean ROC curve across the subjects
represented with the thick black line.
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TABLE I. Quantitative glioma detection accuracy for varying OOA likelihood declaration thresholds.

Declaration threshold False negative rate False positive rate Dice similarity coefficient

0.2 0.0670 ± 0.0230 0.0901 ± 0.0230 0.5266 ± 0.2094
0.3 0.1522 ± 0.0333 0.0417 ± 0.0310 0.5470 ± 0.2220

of 0.2 and 0.3 on the OOA likelihood estimates. Interestingly,
despite the relatively small size of the gliomas, the FNR for
both thresholds is consistently below 20% which is a strong
indicator that we are largely capturing the extent of the tu-
mor’s core. Likewise, the FPR consistently remains below
10% which supports the qualitative results seen in Fig. 3. Fi-
nally, the mean DSC values for both thresholds are above 0.5.
This distribution of DSC values is perhaps surprisingly high
considering the fact that the proposed model is not a segmen-
tation algorithm in a traditional sense as it makes no assump-
tions about tumor size, location, appearance, or morphology.

The OOA approach is not particularly sensitive to the
bandwidth parameter (Fig. 4), with the optimal setting being
approximately 1.0. Note that this value is not particularly sur-
prising as the atlas and target images were normalized to a
unit Gaussian distribution as part of the preprocessing steps.
The qualitative results in Figs. 4(b) and 4(g) demonstrate the
effect of the various bandwidth values. For values that are
too small (e.g., 0.5) largely normal regions of the anatomy

are declared OOA, while, for values that are too large (e.g.,
1.5), the OOA likelihoods are not strict enough and fail to
discover a large portion of the malignant glioma. Fusion of
multiple atlases consistently outperforms using the best indi-
vidual atlas (in terms of the mean ROC curve across the target
population—Fig. 5). NLS (which utilizes the intensity infor-
mation of the atlas–target relationships) consistently results
in more accurate labels, and, thus, more accurate OOA likeli-
hood estimates than traditional STAPLE and a majority vote
fusion approaches. While a slight deviation from the focus
of this manuscript, Fig. 5 demonstrates (1) the importance of
using multiple atlases, and (2) the quality of the underlying
OOA likelihood estimation is tightly coupled to the quality of
the structural representation of the target.

III.D. DTI quality control

For our second experiment, we demonstrate the ability of
the proposed algorithm to be used in a DTI quality control

FIG. 3. Qualitative results for the detection of malignant gliomas. Five representative examples are presented. For each example, the target volume, expert
labeling, label fusion estimate, and the out-of-atlas likelihood are presented. The first four examples represent cases where the tumor region is correctly identified.
The last example represents the outlier case [seen in Fig. 2(c)] in which the cancerous region was almost completely missed.
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FIG. 4. Sensitivity of the approach to the bandwidth parameter. The spread of AUC values across the 30 subjects for various bandwidth values is seen in (a).
Note that the optimal value is approximately 1.0, which is not surprising given the intensity normalization procedure. (b)–(g) Qualitative results are presented
with various out-of-atlas likelihood estimations for varying bandwidth values presented in (e)–(g).

framework. Here, a collection of 11 subjects consisting of
both a T1-weighted image and corresponding DTI images
were retrieved from an ongoing study in anonymous form un-
der IRB approval. The T1-weighted images were oriented ax-
ially and consisted of 170 × 256 × 256 voxels at 1.0 mm
isotropic resolution. The DTI images contained a single B0

image and 92 diffusion weighted images, with all images con-
sisting of 96 × 96 × 52 voxels and 2.5 mm isotropic resolu-
tion mm. Due to the difficulty in acquiring consistent and ro-
bust DTI images, several of the images within these datasets
exhibit problems in terms of image quality (e.g., various de-
grees of aliasing and shading artifacts).

We employed a two-tier multi-atlas segmentation frame-
work to obtain labels for the DTI images (Fig. 6). The 15 at-
lases were registered to the T1-weighted subjects in a pairwise
fashion using the SyN nonrigid registration algorithm37 and

the corresponding label observations were fused using NLS.
Next, the T1-weighted labels were then transferred to the cor-
responding B0 image using an intrasubject rigid registration.
Finally, each of the diffusion weighted images was rigidly
registered to their corresponding B0 image to account for pa-
tient movement and to obtain consistent labels for all of the
images within each DTI dataset. To assess DTI quality, five
of the resulting DTI images were chosen as “atlases” so that
the OOA likelihood estimation framework could be applied to
the remaining six subjects. Note that the B0 images were nor-
malized to one another using the previously described inten-
sity normalization process and each of the diffusion weighted
images were normalized to their corresponding B0 images in
order to obtain consistent intensity values across subjects. For
all presented results, the OOA likelihood estimation was com-
pleted in less than one hour.

FIG. 5. Sensitivity of the approach to the label fusion algorithm. A comparison is made between four different fusion approaches: (1) best individual atlas, (2)
majority vote, (3) STAPLE, and (4) nonlocal STAPLE. Nonlocal STAPLE provides both quantitatively and qualitatively the best results due to the fact that it
incorporates both label and intensity information into the fusion process. Note that all of the multi-atlas fusion approaches outperform the best individual atlas
which highlights the importance of using multiple template images to account for atlas bias.
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FIG. 6. Flowchart demonstrating the multi-atlas labeling process for the DTI study. First, the provided atlases are used to label each subject’s T1-weighted
image. Next, this label information is transferred to all of the DTI datasets via an intrasubject rigid registration. Note that all of the diffusion weighted volumes
were rigidly registered to their associated B0 volume to account for patient movement.

III.E. DTI results

Qualitative results for this DTI quality control experiment
are presented in Fig. 7. Here, we show example slices for
the six subjects that exhibit varying degrees of image qual-
ity issues. The first two examples (the top two rows) represent
well controlled datasets and this is supported by the lack of
any OOA likelihoods greater than 0.3. The example in the
third row represents a B0 image that exhibits an aliasing is-
sue. Here, the OOA likelihood estimate catches this aliasing
issue and indicates this anomalous behavior in the appropriate
image location. The final three exemplars (the bottom three
rows) represent diffusion weighted images that exhibit vary-
ing degrees of aliasing and shading artifacts. For example, the
example in the bottom row represents an example that has
severe shading artifacts across more than half of the image.
The proposed algorithm clearly detects this large-scale issue
and provides consistently high OOA likelihoods across the
observed slice.

While the presented results represent a purely qualita-
tive assessment of DTI quality control, the proposed frame-
work presents numerous opportunities for large-scale DTI
quality control—a subject of increasing prevalence and
importance.38–40 For example, if the OOA likelihoods are ag-
gregated over subjects/diffusion weighted volumes, one could
quantify the OOA likelihood for a given subject/image for
fully automated quality control. Additionally, due to the huge
amount of data within a single DTI dataset, the proposed
framework could provide a mechanism for localizing the re-
gions/slices of high artifact likelihood. This could dramati-
cally lessen the need for large-scale manual inspection and
provide a mechanism for quickly quantifying quality control
metrics within an existing DTI quality control framework.
While further validation is certainly warranted (e.g., using

the existing quality control metrics41), the results in Fig. 7
indicate that the proposed general OOA likelihood estima-
tion framework provides a promising avenue of continuing
research.

IV. DISCUSSION

The proposed OOA framework extends the multi-atlas la-
beling paradigm to be sensitive to abnormalities present in
the medical images. Previous work on the problem of ab-
normality detection has primarily relied on a single atlas (or
template) (Refs. 1 and 6) and, as a result, has been largely
dependent on highly representative atlas characteristics (e.g.,
intensity/morphological properties, differences in contrast en-
hancement). Moreover, previous abnormality detection algo-
rithms have been highly tuned for specific applications (e.g.,
brain tumor segmentation,1–3, 6 lung nodule detection, and4

intestinal abnormalities5). The proposed method provides a
fully general framework that (1) uses multiple normal atlases
to limit the inherent bias of using a single atlas and avoid the
need for nonrigid registration, and (2) can be used in a large
number of potential applications.

Despite the promise of the OOA likelihood estimation
framework, there are limitations to the proposed approach.
First, we use a collection of normal (nongadolinium en-
hanced) T1-weighted atlases and use them to assess im-
ages that were acquired using clinical imaging protocols
(e.g., differing imaging sequence). As a result, the ability
to intensity normalize these images is limited and we are
forced to limit ourselves to applications where the inten-
sity profile of the desired abnormality is dramatically dif-
ferent than normal anatomy (e.g., malignant gliomas). The
use of the proposed framework for the detection of more
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FIG. 7. Qualitative results for the quality control framework for DTI im-
ages. Six representative examples are presented demonstrating the gamut of
potential image qualities in the provided dataset. The first two examples (top
two rows) represent examples where no abnormalities are present and the
out-of-atlas likelihood estimate supports this observation. The final four ex-
amples demonstrate images with varying degrees of aliasing and shading ar-
tifacts, and the out-of-atlas likelihood estimate consistently detects and local-
izes these image quality issues.

subtle anatomical pathologies would be inherently limited un-
less the atlases were constructed using the appropriate imag-
ing characteristics. Additionally, we used a global intensity
normalization procedure that, for the provided examples, has
consistently resulted in robust normalized intensities. How-
ever, if (1) the size of the tumor region is particularly large,
or (2) the contrast enhancement results in highly nonlinear
mapping of the image intensities, the considered intensity
normalization procedure could result in undesired intensity
mappings. Thus, for more complicated OOA likelihood es-
timation procedures (e.g., intermodality modeling) different,
less intensity-dependent techniques may be desirable to cal-

culate the difference between the expected and observed dis-
tributions (e.g., correlation coefficient, mutual information).

Along the same lines, the proposed framework is lim-
ited in its ability to detect anomalies that have similar
intensity profiles to normal anatomy. For example, differenti-
ating between areas with edema and normal gray matter (e.g.,
Fig. 3) represents a limitation within the proposed frame-
work as the edema regions “look like” normal gray matter
from an intensity perspective. Thus, incorporation of more so-
phisticated comparison techniques (e.g., local difference es-
timation, entropy of the joint atlas-target histogram) and/or
feature vectors would be a promising area of investigation.
Direct modeling of texture and shape characteristics into the
OOA model, for example, could improve the potential appli-
cations by which the model could be applied. Additionally,
direct incorporation of label constraints (e.g., topology, sym-
metry across the cerebral hemispheres) could enable the OOA
likelihood estimation framework to use both intensity and la-
bel information simultaneously. Regardless of the approach,
however, the proposed framework provides a natural mecha-
nism for estimating local OOA likelihoods by utilizing robust
multi-atlas segmentations.

In conclusion, the out-of-atlas likelihood estimation frame-
work shows great promise for robust and rapid identification
of brain abnormalities and imaging artifacts. Using only weak
dependencies on anomaly morphometry and appearance, we
demonstrate the ability to (1) detect malignant gliomas on T1-
weighted images and (2) identify quality control issues for
DTI images. We envision that this approach would allow for
application-specific algorithms to focus directly on regions of
high OOA likelihood, which would (1) reduce the need for
human intervention, and (2) reduce the propensity for false
positives. Alternatively, this technique may allow for algo-
rithms to focus on regions of relatively normal anatomy to
ascertain image quality or model/adapt to image appearance
characteristics.
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