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Purpose: In the research and development of dedicated tomographic breast imaging systems, digital
breast object models, also known as digital phantoms, are useful tools. While various digital breast
phantoms do exist, the purpose of this study was to develop a realistic high-resolution model suitable
for simulating three-dimensional (3D) breast imaging modalities. The primary goal was to design a
model capable of producing simulations with realistic breast tissue structure.

Methods: The methodology for generating an ensemble of digital breast phantoms was based on
imaging surgical mastectomy specimens using a benchtop, cone-beam computed tomography system.
This approach allowed low-noise, high-resolution projection views of the mastectomy specimens
at each angular position. Reconstructions of these projection sets were processed using correction
techniques and diffusion filtering prior to segmentation into breast tissue types in order to generate
phantoms.

Results: Eight compressed digital phantoms and 20 uncompressed phantoms from which an addi-
tional 96 pseudocompressed digital phantoms with voxel dimensions of 0.2 mm?® were generated.
Two distinct tissue classification models were used in forming breast phantoms. The binary model
classified each tissue voxel as either adipose or fibroglandular. A multivalue scaled model classi-
fied each tissue voxel as percentage of adipose tissue (range 1%—-99%). Power spectral analysis was
performed to compare simulated reconstructions using the breast phantoms to the original breast
specimen reconstruction, and fits were observed to be similar.

Conclusions: The digital breast phantoms developed herein provide a high-resolution anthropomor-
phic model of the 3D uncompressed and compressed breast that are suitable for use in evaluating and
optimizing tomographic breast imaging modalities. The authors believe that other research groups
might find the phantoms useful, and therefore they offer to make them available for wider use.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4795758]
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. INTRODUCTION

Enabled by the emergence of digital flat-panel detectors
(FPDs), industry and academic research groups including
ours at the University of Massachusetts Medical School
(UMMS), are actively investigating dedicated breast com-
puted tomography (BCT).'® Along with this novel breast
imaging modality another technique, breast tomosynthesis
(BT) can also provide tomographic information and has been
approved for clinical use in the United States. There will in-
evitably be interest in continuing the improvement and op-
timization of both modalities. As suggested by Barrett and
Myers,’ any meaningful approach to optimizing an imaging

041915-1 Med. Phys. 40 (4), April 2013

0094-2405/2013/40(4)/041915/12/$30.00

system must include a definition of: (1) the specific task to
be performed, (2) the observer (i.e., human or numerical), (3)
an object model representing the objects to be imaged, and
(4) a figure-of-merit used to evaluate task performance. This
paper focuses on the third item; more specifically, the devel-
opment of digital breast object models, commonly known as
phantoms, for both BCT and BT.

A number of breast object phantoms have been previ-
ously proposed.'®!> Such phantoms have been used to eval-
uate a wide range of tasks, including the optimization and
development of imaging modalities,'® evaluation of acquisi-
tion and reconstruction methods,'”'® the study of human ob-
server performance,'”?° the development of mammography

© 2013 Am. Assoc. Phys. Med.  041915-1
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computer aided detection (CAD) algorithms,”! dosimetry
calculations,?? and quality control/training.* Previous digi-
tal phantoms were generated either by numerical techniques
or synthesis from existing clinical images, as well as a hy-
brid of those two fundamental techniques. During the devel-
opment of 2D mammography some of the earliest object ana-
lytical models synthesized 2D nonuniform breast background
using numerical techniques such as power-law noise,'®?*
lumpy background,? and clustered lumpy background.?® All
these computationally tractable models could produce nu-
merous independent simulated projections with variable, sta-
tistically modeled tissue structures similar to typical mam-
mograms. A second approach was based on digitizing film
mammograms.'® This approach resulted in libraries devel-
oped by individual researchers and at least one widely
available shared library, the Digital Database for Screening
Mammograms (DDSM) maintained at the University of South
Florida.?” However, these 2D models and methods are some-
what inadequate as tools to optimize three-dimensional (3D)
breast imaging modalities; therefore, it was natural that 3D
models have been developed. One of earliest 3D breast mod-
els discussed in the literature was a mathematical model of
a breast for use in the study of stereo-mammography.'® Tay-
lor et al.'" introduced another 3D model of the breast and a
model of the x-ray formation process in order to create a tool
to test automated breast segmentation. Bakic et al.'>'* de-
scribed a method for simulating mammograms based on 3D
breast tissue distributions observed from histological breast
slices. The Bakic model allows for variable parameteriza-
tion of adipose structures and glandular ducts. Bliznakova
et al."” presented another methodology for producing a non-
compressed 3D breast model. All of the aforementioned 3D
breast object models have useful properties; yet, their visual
realism, when compared to actual patient tomographic breast
reconstructions, can be lacking. Li et al.?® have developed a
methodology for generating 3D breast phantoms based on pa-
tient breast CT images acquired in a recent clinical trial. This
approach produces very realistic breast phantoms, however,
we speculate that due to radiation dose constraints, patient
breast CT images may likely be noisy and thus it may be chal-
lenging to accurately define small structures within the breast.

In this paper, we discuss our efforts to generate an en-
semble of voxelized breast phantoms based on low-noise CT
scans of surgical mastectomy specimens using a benchtop
breast CT scanner.

Il. METHODS
Il.LA. Description of benchtop BCT system

A prototype, benchtop CT breast imaging (CTBI) sys-
tem shown in Fig. 1 has been utilized for several years at
the UMMS Tomographic Breast Imaging Lab (TBIL). The
system was assembled with standard, commercially available
hardware components. These include a FPD, an x-ray source
and a rotary-stage. The FPD is a PaxScan 2520C (Varian
Medical Systems, Salt Lake City, UT). This indirect con-
version detector consists of a thallium-doped cesium iodide
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FI1G. 1. University of Massachusetts Medical School (UMMS) prototype
breast imaging system.

(CsI:TI) scintillator coupled to a large amorphous silicon (a-
Si) pixelated array. In the unbinned configuration, the frame
size is 1536 x 1920 pixels with pixel pitch dimension of
0.127 mm?. The maximum acquisition rate of the FPD in
this full-frame configuration is 7.5 frames per second. The
specified output range is from 0 to 4095 [12 bit range in
integer 16 data format referred to as Digital Units (DU)].
A vendor acknowledged anomaly in our early version FPD
(Ref. 29) renders the most significant bit ambiguous; there-
fore, any DU value greater than 11 bits (DU 2047) might in-
dicate saturation. This anomaly reduced the reliable dynamic
range of the FPD and therefore limited the x-ray technique be-
low the maximum specification. For this research, the 11 bit
dynamic range of the FPD was the limiting factor in acquiring
ultra low-noise CT acquisitions.

The x-ray source is a model Rad-94 tube enclosed in a Sap-
phire housing (Varian Medical Systems, Salt Lake City, UT)
with a 100 mm, 150 kV, 450 kJ rotating anode, and a 14° tung-
sten rhenium molybdenum graphite target. While the x-ray
tube initially had the capability of operating at focal spot size
of either 0.4 or 0.8 mm, during our research the smaller fila-
ment became inoperable; therefore, a number of acquisitions
were made with the larger focal spot size. The x-ray tube of
the system is well suited to operate at lower kVp settings (e.g.,
40-50 kVp) under CT workload. A 50 kW radiographic gen-
erator controlled by an Indico 100 Rad Panel (CPI, George-
town, ON, Canada) powered the x-ray source.

A VXM-2 rotary table with stepping motor controller
(Velmex, Bloomfield, NY) precisely controlled the rotation
of the object. Instead of rotating the source and detector as
would be typical in clinical CT systems, the CTBI system ro-
tates the object on the table. The rotary table is mounted on
X-Y positioning UniSlide assemblies (Velmex) for precision
adjustment of the axis of rotation (AOR).

The FPD receptor panel, x-ray source, and rotary table
were attached to an optical table (Vere, Inc., New Kensing-
ton, PA). The FPD receptor panel was mounted on two preci-
sion control BiSlide (Velmex) assemblies for control of hor-
izontal and vertical position of the detector panel. The x-ray
source was mounted on a separate BiSlide assembly for pre-
cise vertical source positioning. A lead rear shield was placed
on the external side of the enclosure wall behind the FPD
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receptor panel to provide additional attenuation of any x rays
that might penetrate the enclosure.

The entire CTBI system is controlled by a PC worksta-
tion (Optiplex model, Dell, Round Rock, TX). There are two
special purpose PCI-bus boards installed in the PC: a PIXCI
imaging board (EPIX, Inc., Buffalo Grove, IL) and an op-
tically isolated Input/Output (I/O) board (KPCI-PIO32IOA,
Keithley, Cleveland, OH). The PIXCI imaging board is used
to “grab” and buffer frames from the FPD command proces-
sor. The I/O board interfaces signals between the PC and both
the FPD command processor and the x-ray controller.

All of the necessary application software, which will be
subsequently described, for image acquisition and reconstruc-
tion was developed by our research group. The characteriza-
tion of our benchtop CT system was previously reported.

II.B. Acquisition of mastectomy specimens

Our image acquisition software was written in C++4 us-
ing Microsoft Foundation Class (MFC) in Visual Studio.NET
(Microsoft, Redmond, WA). The software integrates and syn-
chronizes x-ray triggering, FPD image capture, stepping of
the rotary stage, and image storage in order to acquire an an-
gular projection sequence suitable for later CT reconstruction.

We have previously reported the early stages of our
methodology.?!:3> This ensuing discussion focuses only on
the best methodology ultimately used during the project. Un-
der an institutional review board (IRB) approved protocol?
and with patients’ informed consent, fresh mastectomy speci-
mens were obtained immediately following surgery and prior
to tissue gross pathology. Each specimen was imaged in an
appropriate sized holder, shaped so that the specimen was
maintained in either a pendant position modeling uncom-
pressed CT or in a compressed geometry to model tomosyn-
thesis and/or mammography. Imaging a mastectomy in a
holder cannot preserve realistic gross anatomical position of
a breast but it does permit reconstruction of reasonably large
tissue regions. The general goal for all specimen acquisitions
was to capture the highest resolution, lowest noise projection
set. High resolution was obtained by operating the PaxScan
2520C FPD in an unbinned mode with an x-ray technique
that gave the highest exposure without saturating the detector.
Because patient safety was not a consideration, acquisition
at high exposures was constrained only by the FPD dynamic
range, x-ray tube heat loading, and acquisition time (our re-
search group was generally allowed 2-3 h to complete imag-
ing of the mastectomy specimen). Since the first specimen
was imaged, various x-ray techniques were used in order to
improve image quality. Early on in the study, it was thought
that maximization of detector dynamic range was best accom-
plished through use of a bowtie filter to “shape” the x-ray
beam. The acquisition protocol evolved to acquiring multi-
ple projection images at each angle using the highest expo-
sure obtainable without use of a bowtie filter, while using
the lowest attenuating holder needed to hold the specimen
rigidly in place. Typical acquisition parameters were 40 kVp,
0.5 mAs for 300 projection angles over a full 360° rotation
with a range of 3—10 exposures averaged at each acquisition
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angle. Thus, the primary method to minimize image noise was
to acquire a number of projections at each tomographic angle
and then average those projections. According to theory and
ignoring FPD electronic noise, projection averaging should
reduce pixel noise by a factor of 1/+/N, where N = number
of projections averaged at each projection angle. To transform
the raw projections prior to reconstruction, the following steps
were implemented in separate MATLAB (Mathworks, Natick,
MA) software: (1) flat field correction (FFC), (2) averaging of
all projections acquired at each angle, (3) log normalization of
the averaged image, and (4) 2 x 2 binning. The projection set
is thereby transformed into a format required by our recon-
struction software.

Il.C. Image reconstruction

A module within our Cone Beam Simulation Software
(CBSS) was used for image reconstruction. CBSS was im-
plemented in C++ for the Linux operating system, and has
been previously described.** The reconstruction algorithm
used was filtered backprojection (FBP) based on the analyt-
ical reconstruction algorithm introduced by Feldkamp, Davis,
and Kress.* FBP reconstruction requires an accurate descrip-
tion of the acquisition geometry in order to reconstruct an ob-
ject from a set of projection images. Calibration of our pro-
totype CTBI system followed the Noo calibration method.*®
Briefly, Noo’s* analytic methodology uses a limited number
of projections of small spherical objects acquired at equally
spaced angular positions in one circular rotation of the spher-
ical objects. In our implementation, the calibration objects
were two 2 mm steel spheres separated by a known distance.
The projections allow for an estimation of analytic parameters
of two ellipses from which the prototype’s scanning geometry
can be accurately determined.

I.D. Processing steps prior to segmentation

A number of processing steps were applied to the recon-
structed slices prior to tissue type classification of each voxel
using segmentation. These operations are discussed below
and include: (1) removal of specimen holder from the recon-
structed image, (2) correction for cupping or inverse-cupping
artifacts, and (3) reduction of noise using anisotropic diffu-
sion filtering.

II.D.1. Defining breast phantom boundaries

Postreconstruction processing was performed to digitally
remove the specimen holder from the reconstructed image
before further processing. When excised, mastectomy spec-
imens will not inherently retain their shape and thus without
support the specimen would flatten; therefore, it was neces-
sary to place the specimen in a holder prior to imaging. After
each specimen acquisition was completed, the specimen was
removed, and another CT acquisition was performed to esti-
mate the breast holder image. The reconstruction of the spec-
imen holder was transformed into a mask that was later used
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FIG. 2. Removal of holder. (a) Specimen in holder; a reconstruction of the
specimen holder was used to create a mask. (b) Specimen only; achieved by
masking out the holder.

to remove the specimen holder from the reconstructed image.
An illustration of this step is shown in Fig. 2.

Template masks are also useful following segmentation.
The outer surface of a reconstructed breast specimen was of-
ten irregularly shaped, especially so in the posterior breast
region (i.e., proximate to the chest wall). To generate breast
phantoms with smooth boundaries, breast templates were
used that defined a desired prone breast shape. The recon-
struction was digitally inserted into the defined template, and
missing tissue sections were “inpainted” with adipose tissue.
The size of “inpainted” tissue regions approximately varied
from several cubic centimeters in regions proximate to the
chest wall to a few cubic millimeters on the volume periph-
ery. In addition, small air pockets (approximately a few cubic
millimeters in size) were sometimes observed within the re-
constructed specimen images. These air pockets were defined
using thresholding, and then subsequently “inpainted” with
adipose equivalent voxels. An example of postcorrection in-
painting is shown is Fig. 3(a).

Another use of templates was to transform a specimen CT
reconstruction acquired using a prone (uncompressed) breast
holder into a pseudocompressed breast phantom. In this case,
the template was based on the CT reconstruction of a commer-
cial compressed breast phantom (CIRS, Norfolk, VA). To gen-
erate a pseudocompressed breast phantom, the specimen re-
construction (in the prone breast holder) was multiplied (pixel
x pixel) by the compressed breast template (all voxels in the

FIG. 3. Use of templates. (a) An uncompressed template created by morpho-
logical operations was used to fill-in or “inpaint” mastectomy regions that are
missing. (b) A compressed template used to “cut out” compressed phantoms.
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FIG. 4. (a) Slice prior to correction for cupping artifact. Note that the center
region was darker than periphery indicating cupping. (b) Same slice follow-
ing correction showing an adjusted center region.

template were equal to 1.0). An illustration of a compressed
mask template used to generate a pseudocompressed breast
phantom is shown in Fig. 3(b).

Note that this approach does not attempt to account for tis-
sue deformation from compression but simply “cuts” tissue
out of the uncompressed phantom and “inpaints” any miss-
ing section with adipose tissue. Since this procedure does not
model compression of the tissue, it will provide a less realis-
tic phantom hence we label these as pseudocompressed breast
phantoms. However, this procedure allowed for an increase
in the number of pseudocompressed breast phantoms gener-
ated. It is hypothesized that the resulting pseudocompressed
breast phantoms should still be useful for some optimization
problems.

Il.D.2. Correction of cupping or
inverse-cupping artifacts

Following FBP reconstruction, postreconstruction pro-
cessing was done to correct nonuniformities introduced by
scatter, beam hardening, and interslice variation inherent in
circular orbit, cone-beam CT using FBP.3” The methodology
used to reduce the effect of these nonuniformities follows
that from Altunbas et al.,’® with some minor modifications.
These modifications included an accommodation for reverse-
cupping when a polycarbonate resin bowtie filter was used, as
well as developing a glandular tissue profile rather than adi-
pose tissue profile for slices containing a majority of glandular
voxels, and using a slice histogram to guide the development
of each slice tissue profile. In Fig. 4, an example of a slice
before and after correction is shown.

II.D.3. Reduction of noise using anisotropic
diffusion filtering

Even though 3-10 exposures were averaged for each pro-
jection view, CT reconstructions still retained some noise.
This noise penalizes the accuracy of the segmentation pro-
cess, especially so for finer thin structures. To reduce
noise, without excessive blurring of edges, a nonlinear, 3D
anisotropic diffusion filter (ADF) (Refs. 39 and 40) was ap-
plied to the entire reconstruction volume. The anisotropic
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diffusion process is defined as

al
EZVC'VI“‘C()C,)),Z,I‘)AI, (1)

where VI is the gradient of the reconstructed image (I), and
Al is the Laplace operation on I over spatial variables. In this
study, we used the diffusivity function defined by Perona and
Malik* as

(V1) = e IVIE? )

where K is a user-defined conduction parameter that con-
trols the sensitivity to edges. The anisotropic diffusion equa-
tion [Eq. (1)] was implemented using the National Library
of Medicine’s open-source Insight Segmentation and Regis-
tration Toolkit (ITK) which discretizes Eq. (1) using a finite
difference approach. This diffusion filter is very useful as a
preprocessing step to segmentation because with properly se-
lected parameters it can successfully reduce noise from the
reconstructed images without substantial blurring of edges.

I.LE. Segmentation

After postreconstruction corrections were applied,
histogram-based segmentation was performed to classify
each voxel as adipose tissue, fibroglandular tissue, or some
combination of the two. Two methods were studied as
illustrated in Fig. 5; simple binary segmentation (voxels
are assigned to be either adipose or fibroglandular) or a
second method, referred to as the multivalue method. The
multivalue method calculated the peak histogram values for
adipose and fibroglandular tissue with the values between
the two peaks then linearly scaled as shown in Fig. 5. The
breast phantom voxel values are then encoded to indicate
to the simulation software whether each pixel is adipose,
fibroglandular, or some combination of both. This encoding
is based on our simulation software’s method for calculating
energy dependent attenuation coefficients. Each voxel value
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represents the fraction of adipose tissue by weight. The
simulation software can then convert this information to
an energy dependent linear attenuation coefficient. When
simulating breast tissue, the specified voxel attenuation is
then formed from a weighted combination of adipose (voxel
value) and glandular (1.0-voxel value) tissue fractions. These
coefficients were computed using the basis coefficients of
Lucite and Aluminum as suggested by Johns and Yaffe.*!

Il.F. Computer simulation using voxelized phantoms

We used our previously mentioned and described** CBSS
to generate projection data sets of an input voxelized breast
phantom, simulating either BCT or BT acquisition geometry.
In addition to modeling the imaging geometry of the benchtop
CT system, CBSS models polychromatic x-ray spectra, x-ray
filters, a user-defined mean glandular dose, energy-dependent
x-ray transmission through the breast model using Siddon’s
ray-tracing algorithm,*” as well as signal and noise propa-
gation through the FPD using a serial cascade model.*? De-
tector parameters were chosen to closely model our PaxS-
can 2520C detector. To compute energy-dependent attenu-
ation coefficients from the segmented object, the empirical
measurements of Johns and Yaffe*' were used.

After digital breast phantoms were generated, the simu-
lation software®* was then used to produce projection sets
based on those phantoms. Specifying simulation parameters
as close as possible to the parameters used for the actual speci-
men acquisition, simulated projections based on the voxelized
breast phantom were formed. This allowed for comparison
of reconstructions of the simulated projections with the orig-
inal specimen reconstruction from which the phantom was
generated.

Power spectrum analysis was used to objectively ana-
lyze breast phantoms. As noted by Metheany,* the anatom-
ical structure of the breast as observed on breast CT can be
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FIG. 5. Illustration of two methods for classifying voxel values. On the left is the binary method (voxels are classified as either adipose or fibroglandular). On
the right is the multivalue method in which all values to the left of the adipose peak are assigned as adipose tissue and all to the right of fibroglandular peak are
assigned as fibroglandular tissue. The values between the peaks are scaled linearly as some combination of adipose and fibroglandular tissue.
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described by a power law as

o
I

where f represents radial spatial frequency, o represents mag-
nitude, and S is the power-law exponent. To obtain 8 val-
ues, the following steps were followed. Within the CT volume
fifty 256 x 256 ROIs from slices in the midregion of the CT
stack were extracted. Each ROI was processed separately af-
ter subtracting the ensemble mean ROI. A Hanning window
was applied to the adjusted ROI, and a fast Fourier transform
(FFT) was performed on the windowed-adjusted ROIL. The
FFT results for the entire 50 ROIs were averaged and aligned
to the zero frequency in the spectrum center. This averaged
FFT ROI was squared to give an average 2D power spectrum.
Averaging over annuli for each radial frequency allows one
to compute a one-dimensional (1D) average power spectrum.
An analysis of the slope of the log-log plot of the average 1D
power versus radial frequency was used to estimate S.

S(fH) = &)

lll. RESULTS

Over 70 patients gave informed consent for their mastec-
tomies to be imaged on the prototype CT breast imaging sys-
tem. Not all mastectomy specimens could be imaged for var-
ious reasons; most often the reason was limitation in imaging
time in order for the mastectomy specimen to be delivered to
the UMMS Pathology Department. Not all imaging resulted
in specimen reconstructions that were suitable to generate
breast phantoms because of breast characteristics (i.e., high
percentage of adipose tissue with little glandular structure),
acquisition errors, or excessive reconstruction artifacts (e.g.,
due to biopsy markers). The current ensemble of breast phan-
toms includes 20 uncompressed phantoms and eight com-
pressed phantoms. There are 96 pseudocompressed phantoms
derived from the uncompressed phantoms.
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llLA. Postreconstruction processing

Figure 6 shows examples of the cupping effect
[Fig. 6(a)], and the inverse-cupping effect [Fig. 6(b)]
from two different specimen reconstructions. The cupping
effect results mainly from the effects of beam hardening
and scatter, whereas the inverse-cupping effect was typically
observed when using a polycarbonate resin bowtie filter. Cor-
rection for these variations was based on method described by
Altunbas et al.*® As stated in Sec. I1.D.2, slight modifications
were made to the Altunbas method to accommodate the
Lucite bowtie filter inverse-cupping and altering from a radial
adipose tissue profile (RATP) to a radial glandular tissue
profile (RGTP) whenever a slice had a majority of glandular
pixels.

While there was general similarity in the intraslice effects
among all the slices in an individual specimen (i.e., all slices
will be affected by either cupping or inverse-cupping), the
severity of the effect varied in different regions. Increased
variation occurred on either end of the specimen stack (i.e.,
near the chest wall on one end and near the areola on the
other). This was also true for the interslice variation. Signifi-
cant interslice differences can be explained by the known vari-
ation in count density in the axial direction due to Feldkamp
FBP. The FBP algorithm is not an exact solution*** and is
well known to produce significant slice variation in the re-
construction volume as the acquisition cone-angle increases.
Additionally, the tissue regions on either end of the “stack”
vary greatly in tissue composition. For example, the breast
areola region (nearest the x-ray central beam in our prototype
system) is typically mostly fibroglandular, while the region
farthest from the central beam (i.e., posterior breast) often
had significant tissue gaps as the result of the mastectomy
procedure. As an approximate guideline, 10% of slices on
either end of the reconstructed “stack” show significant dif-
ferences in attenuation values while attenuation between the
midslices (approximately 80% of slices) varies slowly over a
linear range.
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FIG. 6. (a) Example of cupping effect. (b) Example of inverse-cupping. RATP is radial adipose tissue profile [a term described in Altunbas et al. (Ref. 38)].

Medical Physics, Vol. 40, No. 4, April 2013



041915-7

FIG. 7. Tllustration of 25 different ADF treatments for one ROI. ROI images
are shown on a 5 x 5 selection panel. Row A is conductance = 0.1, Row B
is conductance = 0.5, Row C is conductance = 2, Row D is conductance
=5, and Row E is conductance = 10. Columns 1, 2, 3, 4, 5 correspond to
iterations 1, 5, 10, 15, 20, respectively. As an example B2 shows image ADF
with conductance of 0.5 and 5 iterations. While the ROIs are small, one can
see smoothing as one goes down and to the right.

lll.B. Anisotropic diffusion filtering

ADF was applied after corrections for slice nonuniformi-
ties. The ADF requires selection of three operating param-
eters, the time step, conductance (K), and the number of it-
erations. The online ITK class documentation states, ... the
time step is constrained at run-time to keep the solution stable.
In general, the time step should be at or below ZLN’ where N is
the dimensionality of the image.” Using a three-dimensional
ADF, a time step of 2% (0.125) was initially used but at run-
time an ITK informational message suggested using a time
step of 2—14 (0.0625). While there appeared to be little differ-
ence in the filter output between time step of 0.125 or 0.0625,
the lesser parameter was used without further investigation.
The conductance parameter defines the gradient norm value
for which there should be no diffusion (i.e., no filtering across
region boundaries). Thus, regions in the reconstruction with
gradient norm values below K will exhibit greater noise reduc-
tion, whereas the filter will preserve edges in regions where
the gradient norm values are higher than K. The ITK imple-
mentation allows the conductance to be specified with respect
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to the volume mean gradient magnitude. For example, if the
average gradient magnitude throughout the image is 0.0003,
then specifying the ITK input parameter value of 1.5 would
result in a conductance value of 0.00045. To determine the
filter parameters for use in preprocessing the reconstructed
data prior to segmentation, a range of various conductance
values and number of iterations were explored. The “best”
parameters were selected based on a subjective visual impres-
sion of ROIs selected from the reconstruction. Figure 7 shows
ROI images (25 images ordered in a 5 x 5 grid) filtered with
conductance values of 0.1, 0.5, 2.0, 5.0, and 10.0 (different
columns) with iterations of 1, 5, 10, 15, and 20 (different rows
from top to bottom). For this specific case, ROI B2 (conduc-
tance = 0.5 and iterations = 5) and ROI C2 (conductance
= 2 and iterations = 5) were subjectively selected based on
the tradeoff between noise reduction and the ability of the fil-
ter to retain edge information. Typically, a subjective impres-
sion would be determined using a coarser grid of parameter
space (as shown in Fig. 7), followed by a finer grid of ADF
parameters.

After examining several combinations of filter parameters,
the basic ADF parameters that were used in most cases were
time step = 0.625, conductance = 0.5, and iterations = 5.
This seemed to give good results for most specimens; how-
ever, specimens acquired at lower equivalent dose needed
more filtering. After evaluating a number of these noisier
specimen reconstructions, it was determined that the speci-
mens acquired at an estimated mean glandular dose less than
approximately 15 mGy required different ADF parameters.
The parameters selected for those were time step = 0.0625,
conductance = 1.5, and iterations = 7. Hence, there were two
sets of parameters used, depending on the estimated specimen
equivalent dose.

lll.C. Phantom generation

Shown in Fig. 8 are reconstructed slices obtained from ac-
quisition of a representative mastectomy specimen. The re-
construction geometry was 0.2 mm?>. The slice on the left
was reconstructed from an acquisition with low-dose, i.e.,
2.3 mGy MGD. The center slice was reconstructed from a
specimen that was acquired using ten exposures per projec-
tion view. Thus, the MGD for this acquisition was approxi-
mately 23 mGy. The image slice on the right shows this same

F1G. 8. Example coronal slice of specimen reconstructed with one projection per angle (left); slice reconstructed using ten projections per angle (center) and

after diffusion filter (right).
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FI1G. 9. Example histogram based on reconstruction of a representative spec-
imen. More separation of the peaks in the histogram is achieved after averag-
ing (i.e., equivalent to higher dose) with even more separation achieved after
diffusion filter.

reconstructed slice after postprocessing with ADF. Shown in
Fig. 9 are plots of the histogram for the three representative
images of Fig. 8. For maximum accuracy in the segmentation,
it is desired to have distinct histogram peaks representing adi-
pose (lower peak) and fibroglandular (higher peak) tissue. The
histogram plots of Fig. 9 show how the acquisition at higher
dose, and postprocessing with ADF can help distinguish adi-
pose and fibroglandular tissue.

Shown in Fig. 10 are examples of image slices through
various breast phantoms that were constructed with both the
binary and scaled methods.

lll.D. Simulations using voxelized phantoms

Once digital phantoms were generated, the simulation soft-
ware was used to generate cone-beam projections from the en-

Specimen Reconstruction
(a)

———

Generate Model

Simulation Reconstruction

(d) ‘ +

<—
CT Reconstruction
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FIG. 10. Sagittal slices of four phantoms illustrating binary model [left col-
umn (i.e., A, C, E, G)] and same slices as scaled model [right column (i.e., B,
D, F, H)].

semble of phantoms, and then to reconstruct these simulated
projections set using FBP. The original specimen reconstruc-
tion was then compared with the reconstruction made from
the simulated projections of the digital breast phantom. The
basic flowchart for this process is shown in Fig. 11.

Figure 12 illustrates a comparison between an original
specimen reconstruction and the simulated reconstruction

3D Breast Model

(©

Simulated Projections

FIG. 11. (a) The reconstructed mastectomy (basis of phantom) was processed as described in text to create a phantom (b). Using simulation software a simulated
projection set was generated [(c) — displays a few of 300 projections]. The simulated projection set was then reconstructed (d). Comparisons were made between

specimen reconstruction (a) and simulated reconstruction based on phantom (d).
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Coronal Slices (bottom)

FIG. 12. Representative sagittal (top) and coronal (bottom) slices. (a) and (d) are from a mastectomy specimen reconstruction (basis for digital phantom).
(b) and (e) show corresponding slices from resultant digital phantom (using the multivalue model). (c) and (f) show slices from a computer simulation made
using this digital phantom (i.e., generating simulated projections followed by FBP reconstruction). The simulation technique used was: 40 kVp, 4 mGy mean
glandular dose for 300 simulated projections with simulated detector characteristics similar to prototype detector. Note the visual similarity between simulated
reconstructions, (c) and (f) and the original specimen reconstruction, (a) and (d). A postreconstruction ADF was applied to the simulation. [Note: display

windows are not uniform.]

using the corresponding phantom. Both the experimental
and simulation acquisition technique were 40 kVp, 4 mGy
MGD, and 300 projections over 360°. Figures 12(a) and 12(d)
show sagittal and coronal slices from a mastectomy spec-
imen reconstruction. Figures 12(b) and 12(e) show slices
through the corresponding digital phantom generated using
the multivalue method, and Figs. 12(c) and 12(f) show simu-
lated reconstructions from the corresponding digital phantom.
Figure 13 shows three orthogonal slices through a represen-
tative compressed phantom, and the corresponding simulated
mammogram using a Mo/Mo 30 kVp spectra with 1.5 mGy
MGD. The simulated detector in this case had 100 pm? pix-
els, and modeled a CslI scintillator of thickness 100 pum.
Section IIL.LE describes an analysis method to compar-
ing structure in experimentally measured reconstructions to

FIG. 13. A, B, and C are coronal, axial, and sagittal slices, respectively,
of a pseudocompressed phantom. The phantom displayed as a “negative”
(i.e., adipose tissue values bright and glandular values dark). D is a simu-
lated mammogram using this pseudocompressed phantom. The simulation
technique used was Mo/Mo 30 kVp spectra at 1.5 mGy mean glandular dose
with simulated detector characteristics of 100 um? pixel and CsI detector
thickness of 100 pm.
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that simulated with the binary and multivalue breast phantom
models.

lll.LE. Power spectrum analysis

Power spectrum analysis was used to compare structural
similarity between the phantoms and the original specimen
reconstructions. In this study, g of Eq. (3) was used as the
figure of merit, where $ is the absolute value of the slope of
the power-law spectra. This value is determined by a fit to the
log-log plot of the radial power spectrum over the frequency
range 0.1-0.45 cycles/mm. Figure 14 shows an example com-
paring spectral fits for a specimen reconstruction and the sim-
ulated reconstruction based on the corresponding breast phan-
tom generated from that specimen.

B values for 20 uncompressed specimens were compared
with both the corresponding reconstructions based on the bi-
nary phantom and the reconstructions based on the multivalue
phantom. For those 20 cases, B values for the specimen recon-
struction were close to 8 values of the reconstructions based
on multivalue phantoms as well as to the 8 values for the
simulations based on the binary phantoms. Figure 15 shows
the ratio of  computed from simulated phantoms to the ratio
computed from specimen reconstructions. The average 8 for
all specimen reconstructions was 2.25 with standard deviation
0.25. The average B for simulated reconstructions based on
multivalue phantoms was 2.54, standard deviation 0.42. The
average § for simulated specimens based on binary phantoms
was 2.37, with standard deviation 0.37.

IV. DISCUSSION

Voxelized breast phantoms are and will be useful in the
development and optimization of tomographic breast imaging
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FIG. 14. Log-log plots of the average power versus radial frequency plotted with linear best fit (dashed line). The absolute value of the slope of the fitted line
was f. Panel (a) shows the power spectra of one specimen reconstruction (8 = 2.72), whereas (b) shows the power spectra of the corresponding multivalue

breast phantom (8 = 2.66).

modalities such as breast tomosynthesis and breast CT. The
phantoms could likewise be used for 2D breast imaging
research. A number of different breast phantoms have been
developed by previous researchers. All of these previous
phantoms have advantages and disadvantages. Ultimately, a
digital phantom should be selected based on its desired use.
The main advantage for the ensemble of breast phantoms de-
veloped in this study over computer generated phantoms is
that they provide anatomical realism, since they are based
on high dose acquisitions of fresh surgical mastectomy spec-
imens. While a fundamental advantage of this approach was
that acquisitions were not dose-limited for patient safety, there
were other constraints on the x-ray technique. These con-
straints were: (1) the amount of time available for imaging
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FIG. 15. Relative B comparison between specimens and simulations ex-
pressed as a ratio (simulations/specimen). A value of 1 would indicate a per-
fect match.
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between surgery and delivery of the specimen to pathology;
(2) the x-ray tube heat dissipation; and (3) as previously men-
tioned, the effective dynamic range of the detector (~400—
2047 Digital Units). Nonetheless, we developed a technique
for increasing equivalent dose by acquiring the maximum
number of projections at each tomographic angle as allowed
by tube-loading and the allotted imaging time and averaging
the results.

Another limitation of using breast specimens is that metal
markers were often encountered in the mastectomy speci-
mens. It is common when a suspected lesion is excised for cell
biopsy, that an interventional radiologist marks the lesion site
with a small metallic marker. Surgeons will also leave metal-
lic markers when they perform lumpectomies. Those mark-
ers will result in mastectomy reconstruction artifacts, such as
“spokes” that “radiate” from the marker over a number of re-
constructed slices. Such artifacts are easy for the diagnosti-
cian to visually discount but were difficult to remove during
postprocessing; therefore, some phantom slices were “con-
taminated” by such artifacts. These artifacts could probably
be removed by hand editing the few effected slices, but this
was not done.

While there were some advantages in imaging mastectomy
specimens, there were also disadvantages with the breast
being dissociated from normal gross anatomy. Specifically,
much of the skin layer is missing, the orientation of the spec-
imen within the holder could be problematic and obviously
there was no attachment to chest wall and axillary regions.
Additionally, at the time of imaging most breasts imaged had
malignant lesions or removed lesions and therefore might
have visible anomalies from either previous excisions or ex-
tant lesions; although some mastectomies were prophylactic.
Nonetheless, there was a variety of tissue breast structure ob-
served in the resulting phantoms.

The human breast is primarily composed of adipose tis-
sue, fibroglandular tissue, and skin. Thus, two different
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segmentation methods were used to classify voxels represent-
ing internal breast structure. The first approach, referred to as
the binary method classified each voxel as representing either
pure adipose or pure fibroglandular tissue. Since the phan-
tom voxels are of size 0.2 mm?, it could be possible that a
voxel should contain both adipose and fibroglandular tissue
(i.e., in a 0.2 mm?> volume, there could contain a mixture of
tissue types). To model this possibility, the second approach
allowed voxels to have a weighted combination of adipose and
fibroglandular tissue. The phantoms generated with this ap-
proach were referred to as multivalued. Power spectral anal-
ysis indicated little difference between these two approaches
for classifying phantom voxels, however, there was a distinct
visual difference. In an informal subjective evaluation by four
medical physicists in our laboratory, there was a clear pref-
erence for the multivalue phantom, primarily because of its
tissue texture and edge similarity to the specimen reconstruc-
tion. Nonetheless, there could be applications where the bi-
nary phantom is preferred.

V. CONCLUSIONS

An ensemble of breast phantoms have been created based
on low-noise CT reconstructions of mastectomy specimens.
These phantoms span a range of sizes, shapes, and compo-
sition. Phantom voxel values can be either binary or multi-
value and could be scaled to accommodate various simulation
environments. The phantoms have good spatial detail since
they are based on CT reconstructions of surgical breast spec-
imens with 0.2 mm? voxels. When necessary to have a finer
voxel dimensions in a phantom, we speculate that one could
transform the existing phantom to finer dimensions through
interpolation. We have shown that we can generate numer-
ous pseudocompressed phantoms from the uncompressed
phantoms.

The UMMS digital phantoms have been useful in research
conducted at our institution.'”- 1849752 If other researchers are
interested in using these phantoms, they are encouraged to
contact the corresponding author.
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