
Universal distribution of component frequencies
in biological and technological systems
Tin Yau Panga,b and Sergei Maslova,1

aDepartment of Biosciences, Brookhaven National Laboratory, Upton, NY 11973; and bDepartment of Physics and Astronomy, Stony Brook University,
Stony Brook, NY 11794

Edited* by Ken A. Dill, Stony Brook University, Stony Brook, NY, and approved February 19, 2013 (received for review October 16, 2012)

Bacterial genomes and large-scale computer software projects both
consist of a large number of components (genes or software pack-
ages) connected via a network ofmutual dependencies. Components
can be easily added or removed from individual systems, and their
use frequencies vary over many orders of magnitude. We study this
frequency distribution in genomes of ∼500 bacterial species and in
over 2 million Linux computers and find that in both cases it is de-
scribed by the same scale-free power-law distribution with an addi-
tional peak near the tail of the distribution corresponding to nearly
universal components. We argue that the existence of a power law
distribution of frequencies of components is a general property of
any modular system with a multilayered dependency network. We
demonstrate that the frequency of a component is positively corre-
lated with its dependency degree given by the total number of
upstream components whose operation directly or indirectly
depends on the selected component. The observed frequency/
dependency degree distributions are reproduced in a simple math-
ematically tractable model introduced and analyzed in this study.

gene frequency | metabolic network | software dependency

Individual components of complex interconnected systems are
used with vastly different frequencies. Examples include the

frequency with which individual genes and their orthologs are
encoded in genomes of different species (1); the frequency of
local installations of individual software packages in multicom-
ponent software projects (2); broad power-law distributions of
the frequency of citations, visitations, or other measures of
popularity of individual publications, Web pages, YouTube vid-
eos, Facebook, and Twitter pages, etc. (3–5); and power-law
distribution of word use frequencies in text (6).
The explanations of the observed broad distribution of use

frequency (or popularity) of individual components generally fall
into two broad categories. The first category invokes random
multiplicative processes (7, 8) recently exemplified by the pref-
erential attachment model of growing networks (9, 10). These
models, recently invoked to explain frequency distribution of
genes in pan-genomes of bacterial species (11), largely ignore
functional differences between components so that the ultimate
popularity of a component is determined mostly by its age as well
as random events in early phases of growth of the system. The
second category of models invokes heterogeneity of functional
roles of individual components (12, 13). It is reasonable to as-
sume that the frequency of a component is mainly determined by
the breadth of its functional role in the system. This explanation
is especially applicable to biological and technological systems
subject to natural and artificial selection, respectively. Indeed,
the frequency of genes whose “popularity” is not matched by
their functional importance will be quickly corrected by the
evolution. In agreement with this explanation, genes encoding
certain core enzymes of central metabolism or ribosomal com-
ponents are present in genomes of virtually all species (figure 4
in ref. 14). However, genes encoding peripheral enzymes tend to
have much lower frequency of appearance in genomes (14). The
same rule applies to multicomponent software projects such as
Linux, where the most frequently installed components (e.g.,

Python and gzip) are also among the most functionally important
and reusable software libraries. Most other packages either di-
rectly or indirectly depend on these low-level components for their
operation. As a result, these packages end up being installed on
the vast majority (if not all) of individual Linux computers. In what
follows, we present empirical results supporting this second,
functional explanation of the power-law distribution of frequency
of components in complex biological and technological systems.

Results
Empirical Distribution of Component Frequencies. The eggNOG
database (15) provided us with information about the presence
or absence of genes from 45,000 orthologous gene families in
genomes of more than 500 bacterial species. The Ubuntu pop-
ularity contest project quantified the frequencies of installation
of about 200,000 Linux packages on more than 2 million in-
dividual computers (2) (see Materials and Methods for details).
We found the distributions of components’ frequencies fi in both
biological and technological systems to share multiple common
features, including a power-law scaling regime P(f) ∼ f−γ with γ ∼
1.5 (see Fig. 1B for genomes and Fig. 1E for Linux) terminating
with a peak at the maximal frequency f ∼ 1 (Fig. 1 A and D). This
peak, formed by components present in the vast majority of
systems, also manifests itself as a broad plateau at f ∼ 1 in Zipf’s
rank-frequency plots (Fig. 1 C and F). A broad distribution of
gene frequencies has been previously reported in biological lit-
erature (1, 16–19); however, this study reports and explains its
scaling exponent.
U-shaped P(f) distributions are sometimes plotted on semi-

logarithmic scale (1) with piecewise linear fit used to define three
types of components dubbed “core” (f > 0.95), “character”
(0.95 ≥ f > 0.1), and “accessory” (f ≤ 0.1) genes (16). In Fig. 1A
we validate these previous observations and demonstrate them
for Linux systems (Fig. 1D). We also confirm the existence and
explain the origins of a sharp cross-over separating the core com-
ponents with f ∼ 1 from the rest of the distribution. We math-
ematically predict the number of core components to be ∼

ffiffiffiffi
N

p
,

where N is the total number of components with nonzero fre-
quencies that are functionally connected to the core. The em-
pirical data are in approximate agreement with this prediction.
The separation between character and accessory genes is less
well defined. Indeed, when plotted in log-log coordinates, the
power-law scaling observed for f � 1 directly crosses over into
the core region at f ∼ 1 without an obvious intermediate region
corresponding to character genes. In what follows, we argue
that the power law is expected on purely theoretical grounds.
Thus, “fractal organization of the gene Universe” (20, pp. 71–75)

Author contributions: S.M. designed research; T.Y.P. and S.M. performed research; T.Y.P.
and S.M. analyzed data; and T.Y.P. and S.M. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.
1To whom correspondence should be addressed. E-mail: maslov@bnl.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1217795110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1217795110 PNAS | April 9, 2013 | vol. 110 | no. 15 | 6235–6239

SY
ST

EM
S
BI
O
LO

G
Y

CO
M
PU

TE
R
SC

IE
N
CE

S

mailto:maslov@bnl.gov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1217795110

manifests itself both in the scale-free distribution of component
frequencies (as reported in this study) as well as in qualitatively
similar shapes of P(f) at different evolutionary timescales (as
demonstrated in ref. 1).

Component’s Frequency Is Positively Correlated with Its Dependency
Degree. It is reasonable to expect the frequency of a component
(a gene or a software package) to be influenced by its importance
or the breadth of its functional role in the system. For a given
component, we quantify the latter by the number of other
components whose operation critically depends on it either di-
rectly (referred to as the direct dependency degree kdep) or di-
rectly + indirectly (referred to as the total dependency degree
Kdep). The difference between kdep and Kdep can be easily un-
derstood in the dependency network of Linux packages (21).
Edges of this directed network connect a given package to pack-
ages it requests to install during its own installation process. Some
of these packages have direct dependencies of their own. For
example, Fig. S1 visualizes direct and indirect dependencies of
the Firefox browser. This cascade of sequential installations con-
tinues until all downstream packages required for the operation

of the chosen package are installed. So, though kdep(i) counts the
packages that require installation of the package i at the first
step of this multistep process, Kdep(i) counts the packages that
do so at any step.
Though a similar interdependence of individual genes on each

other certainly exists in biological systems, it is more difficult to
quantify. Using the algorithm described in ref. 13, we calculated
the dependency network for a subset of all gene families corre-
sponding to metabolic enzymes (see Materials and Methods for
details). Briefly, our algorithm derives upstream/downstream
relations of enzymes reflecting their relative positions in meta-
bolic pathways. The functioning of an anabolic enzyme requires
the presence of enzymes in the smallest pathway necessary to
synthesize all of its substrates from the minimal set of core
metabolites (see Materials and Methods for our algorithm search-
ing for such minimal pathway). The total dependency degree
Kdep(i) of the enzyme i is given by the total number of enzymes in
this minimal pathway located downstream from it for anabolic
enzymes (or upstream from it for catabolic enzymes). However,
the direct dependency degree, kdep(i), counts enzymes located one
step below (or above) it in this hierarchy. The direct dependency
degree of an enzyme is closely related to its degree in the adja-
cency matrix of the metabolic network previously studied in refs.
10 and 22. Fig. S2 visualizes dependencies among enzymes in
a particular metabolic pathway.
The scatter plot of the frequency of a component vs. its total

(direct + indirect) dependency degree Kdep clearly shows positive
correlation between the two variables. The Spearman rank cor-
relation 0.3 (metabolic enzymes) and 0.47 (Linux packages) is
highly statistically significant (P < 10−16). A somewhat weaker
correlation for metabolic enzymes can be attributed to an im-
portant difference between dependency networks in biological
and computer systems. The dependencies of software packages
in Linux are explicitly specified by their designers and thus totally
unambiguous. The biological systems are designed in a more
robust fashion and allow some flexibility in dependencies among
their components. For example, in metabolic networks there is
often more than one enzyme synthesizing a metabolite used by

Fig. 1. The histogram P(f) of the frequency f of bacterial genes present in
genomes (A) or Linux software packages installed on computers (D) in
semilogarithmic coordinates. Dashed lines show a piecewise linear fit used to
define core (f > 0.95), character (0.95 ≥ f > 0.1), and accessory (f ≤ 0.1)
components (1, 16). When plotted in log-log coordinates (B for genes and E
for Linux), the histogram is consistent with the power law P(f) ∼ f−γ with the
exponents γGenomes = 1.62, and γLinux = 1.42 (solid lines in B and E). In rank-
frequency Zipf’s plots (C for genes and F for Linux), core components man-
ifest themselves as plateaus at f ∼ 1. Straight lines in C and F are the best
power-law fits used to determine γGenomes,γLinux, and the arrows point toffiffiffiffi
N

p
—the mathematically predicted number of core components.

Fig. 2. Components’ frequencies f (y axis) are positively correlated with
their total (direct + indirect) dependency degrees Kdep (x axis) for both
metabolic enzymes (A) (Spearman’s rs = 0.30) and Linux packages (B)
(Spearman’s rs = 0.47). The black lines and symbols show the geometric
averages of f in each logarithmic bin of Kdep.

6236 | www.pnas.org/cgi/doi/10.1073/pnas.1217795110 Pang and Maslov

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1217795110

another enzyme, which makes the definition of dependency de-
gree of an enzyme more ambiguous and weakens its correlation
with its frequency. To verify this hypothesis, we constructed a
dependency network of metabolites instead of metabolic enzymes
and recomputed their use frequencies in metabolic networks
of different organisms (Fig. S3). The correlation coefficient
(0.45) was considerably better than for metabolic enzymes (0.3)
and just slightly lower than that observed for Linux packages
(0.47) (Fig. 2).

Dependency Degrees Follow Power-Law Distributions. The dis-
tributions of direct (kdep) and total (Kdep) dependency degrees
for the metabolic enzymes as well as Linux packages are shown
in Fig. 3; both have a power-law scaling region with exponents
around −2 (kdep shown in Fig. 3A) and −1.5 (Kdep shown in Fig.
3B), correspondingly. In addition to the power-law region, Zipf’s
rank degree plots of Kdep (Fig. 4 A and B), but not of kdep, have
plateaus formed by the core components with the largest Kdep

(compare with frequency plateaus Fig. 1 C and E). Direct de-
pendency degrees in a variety of large software projects have
been previously reported to have scale-free distribution with
exponents around −2 (see ref. 23 for Linux as well as in-degree
exponents in table 1 of ref. 24).

Discussion
One of the intriguing results presented above is a remarkable
similarity of distributions of frequencies (Fig. 1) as well as to-
pological properties of dependency networks in biological (Fig.
3, red circles) and technological (Fig. 3, blue diamonds) systems.
It is rather surprising to see near-perfect overlap of distributions
in these two systems of very different origins: one is optimized by
nature over billions of years of evolution, whereas the other is
designed by a distributed population of human software engi-
neers over the past several decades. In fact, we argue below that
the functional form of P(Kdep) and P(f) observed in this study is
a universal property of any multicomponent and multilayered
complex system. Such systems grow by gradually acquiring new
components whose operation extends the functions performed
by previously acquired components. Dependency networks con-
necting components to each other in such systems tend to be
multilayered as a direct consequence of the long history of
growth and evolution (25). Metabolic and software dependency
networks used in this study with 34 and >40 layers, respectively,
are indeed multilayered. A slightly different version of the uni-
versal metabolic network has been estimated (25) to have up to
60 layers of enzymes gradually acquired over billions of years of
biological evolution (see figures 6 and 7 in ref. 25).
One mathematically tractable example of a multilayered de-

pendency network is provided by a critical random branching
tree (26)—namely, a tree with the branching ratio b close to 1.
Here the branching ratio b ≤ 〈kdep〉 counts nodes that directly
depend on a given node and are located one layer above it. In-
deed, in a branching tree with b significantly larger or smaller
than 1, either the number of layers is logarithmically small (b �
1) or the branches terminate prematurely (b � 1), rendering
a multilayered network impossible.
For a critical branching tree, one can show that PðKdepÞ∼K−γ

dep
with γ = 1.5. Indeed, the part of the tree located upstream of
a given node itself constitutes an instance of a critical branching
process that is independent from the rest of the tree; therefore,
its size is distributed with the Galton–Watson exponent γ = 1.5
(see ref. 26 for the mathematical derivation). Because no subtree
can be larger than the parent tree, in a tree of sizeN, one expects to
find N ·PðKdep ≥NÞ=N ·N1−γ =

ffiffiffiffi
N

p
subtrees with sizes about N.

Therefore, about
ffiffiffiffi
N

p
nodes located at the lowest layers of the

dependency network will have the largest possible dependency
degree Kdep ∼ N (see Materials and Methods for more details).
These nodes constitute the plateau in Zipf’s plots (Figs. 1 C and
E and 4 A and B) and the large-X peak in the U-shaped distri-
bution of dependency degrees or frequencies of system’s com-
ponents (Fig. 1 A and D).
Though the distribution of dependency degrees in a critical

branching tree is in excellent agreement with the empirically
observed data, there is a conceptual difference between real-life
dependency networks and trees. In a tree, each component di-
rectly depends on one, and only one, downstream component.
However, in real-life networks this number, D, is certainly larger
than one; it varies from component to component, but averages
∼2 for both metabolic networks and Linux packages. To describe
real-life dependency networks with D > 1, we introduced and
studied the following simple model. In our model, dependency
networks start to grow from a few seed components. At each
evolutionary time-step, one adds a new component depending on
Di randomly selected existing components. For simplicity we
assume Di to have a Poisson distribution with average 〈Di〉 = D.
However, as shown in SI Materials and Methods, our results depend
only on the average value of Di. We mathematically derive (see SI
Materials and Methods for step-by-step calculations) that the total
dependency degree Kdep in a dependency network of size N
generated by this model has a power-law tail PðKdepÞ∼K−ð1+1=DÞ

dep as
well as a plateau in the Zipf’s plot composed of N(D−1)/D

Fig. 3. Probability distributions of direct (kdep; A) and total (Kdep; B) de-
pendency degrees for metabolic enzymes (blue diamonds) and Linux pack-
ages (red circles). Power-law fits to direct degree cumulative distribution
give −2.08 for metabolic enzymes and −1.91 for Linux packages, and are
both consistent with the −2.0 scaling law (solid line in A). Power-law fits to
direct degree cumulative distribution give −1.5 for metabolic enzymes and
−1.56 for Linux packages, consistent with the mathematically derived −1.5
scaling (solid line in B).

Pang and Maslov PNAS | April 9, 2013 | vol. 110 | no. 15 | 6237

SY
ST

EM
S
BI
O
LO

G
Y

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=STXT

nearly universal components. Simulations of the model with
D = 2 and n = 1,500 (green line in Fig. 4A) provides a reason-
able fit to the metabolic dependency degree distribution (blue
diamonds in Fig. 4A), whereas D = 2 and n = 10,000 (green line
in Fig. 4B) is an excellent fit to the Linux dependency degree
distribution (red circles in Fig. 4B).
We see that the model with D ∼ 2 provides a rather good fit to

dependency networks in both biological and technological sys-
tems. Metabolic enzymes usually have two substrates, and rarely
one or three and more substrates. Hence in this case there is
a good biophysical explanation for the observed value of Dmet =
1.7 ∼ 2. The situation is more complicated for the Linux de-
pendency network where there are no geometrical limitations on
the number of direct dependencies of a software package. This
network is characterized by a large number of direct links be-
tween packages already indirectly connected on each other. Such
shortcuts (known as feed-forward loops in the network jargon)
do not change the overall (direct + indirect) network of package
dependencies. Because our model does not contain feed-forward
loops beyond those created by pure chance, we pruned them
from the Linux direct dependency network as well. After re-
moving all direct links short-circuiting any chain of direct links in
the Linux dependency network, we were left with a direct de-
pendency network with DLinux = 2.4 ∼ 2 and the same set of
direct + indirect package dependency links as the original net-
work. Admittedly in the case of Linux packages we have no ready
explanation for this particular value of D beyond a vague notion
that the easiest way to make a new package is to combine the
outputs of two already existing ones.
The similarity between real-life dependency networks and

those generated by our model with D = 2 extends beyond the
shape of the total dependency degree distribution with the

exponent γ = 1 + 1/D = 1.5 and Nc =NðD−1Þ=D =
ffiffiffiffi
N

p
of the best-

connected components forming the plateau in Zipf’s plots. Our
model makes very specific predictions about how the dependency
degree of a component depends on the time when it was first
added to the dependency network. Unfortunately, obtaining
system-wide information about these “creation” times is not easy
for Linux, and downright impossible for metabolic enzymes. As
advocated in ref. 25, the time of appearance of a metabolic en-
zyme in the metabolic pan-network can be estimated from its
layer number obtained by the scope expansion algorithm. Using
the layer number of a node in a real-life dependency network as
a proxy of its acquisition/creation time, we investigated its cor-
relations with its total dependency degree. It stands to reason
that older nodes located at bottom layers will tend to have
a systematically larger dependency degree both in model and
real networks; this is indeed what was observed and shown
Fig. 4 C–E.
An important caveat in applying the Nc =

ffiffiffiffi
N

p
relationship is

that N counts only those components that are directly or indirectly
connected to the core by the functional dependency network; for
biological systems, this allows us to reconcile the apparent para-
dox. Indeed, the pan-genome of all bacterial species is believed to
be open (16). That is to say, N continues to increase without any
hint at saturation as we sequence genomes of new bacterial species
or even new strains of the same species (figure 1 in ref. 27). At the
same time, the core bacterial genome remains relatively stable.
Different methods result in somewhat different estimates of Nc,
ranging from 250 in ref. 16 to 400 in refs. 17–19. To reconcile the
apparent stability of Nc with unlimited growth of N, one recalls
that continuing expansion of N is caused by either nonfunctional
(prophages or transposable elements) or extremely niche-specific
gene families—both are likely to be disconnected from the core
and hence will not contribute to growth of Nc. Assuming Nc ≤ 500,
one gets the upper bound on the number of gene families con-
nected to the core at ∼250,000.
The frequency of a given component is expected to be strongly

correlated with its total dependency degree. Indeed, the system
using any of Kdep components located upstream of a given com-
ponent is guaranteed to include this component itself. Hence, if
every software package (metabolic enzyme) was equally likely to
be initially selected (with probability pi = 1

N) for local installation
on a computer (incorporation into a bacterial genome), one

would have fi =
PKdepðiÞ

j= 1 pj =
PKdepðiÞ

j= 1
1
N
∼KdepðiÞ. Deviations from

this idealized linear relationship between fi and kdep(i) in real
data reflect among other things a nonuniform frequency of initial
selection or installation of upstream components. Indeed, idio-
syncratic differences in popularity pi of higher-level components
will be translated into differences in installation frequencies of
lower-level components required for their operation. By adjust-
ing the values of pi—the initial popularity of components—we
were able to increase the correlation coefficient between fi and
PKdepðiÞ

j= 1 pj ≡ ~KdepðiÞ to 0.8 up from ∼0.5.
Comparison between biological and technological networks

has been previously performed by Yan et al. (28), and a number
of similarities as well as significant differences were reported.
However, the biological and technological systems studied were
rather different from the ones we used in this study. The focus of
the analysis performed in ref. 28 was on regulation and control
represented by transcriptional regulatory network in Escherichia
coli and the call graph between subroutines within the Linux
kernel. However, in this article we compare biological and
technological systems with independently installable components
represented by metabolic enzymes encoded in bacterial genomes
and software packages installed on top of the Linux kernel. A
more systematic analysis of similarities and differences between

Fig. 4. Zipf’s plots of total dependency degree in real metabolic (blue
symbols in A) and Linux (red symbols in B) systems fitted with a random
dependency model with D = 2 and n = 1,500 (green symbols in A) or n =
10,000 (green symbols in B), respectively. C and E show Kdep vs. the layer
number in the metabolic network and the best-fitting random model, re-
spectively. D and F do the same for Linux dependency network and its best
approximation with random model. Black dots show scatter plots of in-
dividual nodes, and color lines are binned averages.

6238 | www.pnas.org/cgi/doi/10.1073/pnas.1217795110 Pang and Maslov

www.pnas.org/cgi/doi/10.1073/pnas.1217795110

different versions of biological and technological complex sys-
tems will have to await future studies.

Materials and Methods
Our methods are briefly summarized here, and a more detailed description is
provided in SI Materials and Methods.

Empirical Data for Frequencies of Use of Bacterial Genes. The eggNOG data-
base v3.0 (15) contains the mapping of orthologous gene families to 630
species with fully sequenced genomes. We included in our analysis 529
bacterial genomes and their gene families assigned based on the clusters of
orthologous genes and universal nonsupervised orthologous groups, which
together cover 44,283 prokaryotic orthologous gene families. The resulting
table showing the presence or absence of individual gene families in
genomes was then processed to obtain the gene frequency f, defined as the
fraction of 529 genomes the family is represented by at least one gene.

Empirical Data for Frequencies and Mutual Dependencies of Linux Packages.
The package dependency network of Linux distribution Ubuntu 11.04 Natty
was obtained by first getting a complete list of packages from http://
packages.ubuntu.com/, and then running the command apt-rdepends to find
all of the direct and indirect requirements for each package. The resulting
network contains 33,473 packages, 157,667 direct, and 2,439,011 total (direct +
indirect) dependency relations. The installation frequency data for 192,392

packages on 2,047,796 computers were downloaded from the package
popularity contest project (http://popcon.ubuntu.com). In our analysis we
used statistics for the whole archive sorted by the field institution.

Construction of the Dependency Matrices for the Metabolic Network. We used
the union of all reactions in the Kyoto Encyclopedia of Genes and Genomes
database (29) to construct upstream/downstream relations between enzymes
using the following algorithm related to the scope expansion algorithm of
ref. 25. For every enzyme, the minimal metabolic pathway connecting the
product(s) of this enzyme to the set of five core metabolites was constructed
as described in ref. 13. The direct dependency links were then drawn between
the selected enzyme and enzymes in the top layer of this pathway, and direct +
indirect links connect it to all enzymes in the minimal pathway. The resulting
dependency network contains 1,832 reactions/enzymes connected to each
other by 3,118 direct and 49,168 direct + indirect dependencies.

Power-Law Fits to the Data. Power-law fits to distributions were performed
usingMatLab package plfit.m developed by Aaron Clauset and collaborators,
and downloaded from http://tuvalu.santafe.edu/~aaronc/powerlaws.

ACKNOWLEDGMENTS. We thank P. Dixit for useful discussions, critical
reading, and editing of the manuscript; and K. Dill and J. Peterson for useful
comments and suggestions. This work was supported by US Department of
Energy Office of Biological Research Grant PM-031.

1. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: The emerging dynamic
view of the prokaryotic world. Nucleic Acids Res 36(21):6688–6719.

2. Pennarun A, Allombert B, Reinholdtsen P. Ubuntu Popularity Contest. Available at
http://popcon.ubuntu.com/. Accessed September 5, 2011.

3. Sala A, Zheng H, Zhao BY, Gaito S, Rossi GP (2010) Proceedings of the 29th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (Assoc for Com-
puting Machinery, New York), 400–401.

4. Price DJ (1965) Networks of scientific papers. Science 149(3683):510–515.
5. Java A, Song X, Finin T, Tseng B (2007) in Proceedings of the Ninth WebKDD and First

SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis (Assoc for
Computing Machinery, New York), pp 56–65.

6. Zipf GK (1932) Selected Studies of the Principle of Relative Frequency in Language
(Harvard Univ Press, Cambridge, MA), 1st Ed.

7. Yule U (1925) A mathematical theory of evolution, based on the conclusions of
Dr. J. C. Willis, F.R.S. Phil Trans R Soc B 213:21–87.

8. Simon HA (1955) On a class of skew distribution functions. Biometrika 42(3-4):
425–440.

9. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys
74(1):47–97.

10. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organi-
zation of metabolic networks. Nature 407(6804):651–654.

11. Haegeman B, Weitz JS (2012) A neutral theory of genome evolution and the fre-
quency distribution of genes. BMC Genomics 13:196.

12. Maslov S, Krishna S, Pang TY, Sneppen K (2009) Toolbox model of evolution of pro-
karyotic metabolic networks and their regulation. Proc Natl Acad Sci USA 106(24):
9743–9748.

13. Pang TY, Maslov S (2011) A toolbox model of evolution of metabolic pathways on
networks of arbitrary topology. PLOS Comput Biol 7(5):e1001137.

14. Yamada T, Kanehisa M, Goto S (2006) Extraction of phylogenetic network modules
from the metabolic network. BMC Bioinformatics 7:130.

15. Powell S, et al. (2012) eggNOG v3.0: Orthologous groups covering 1133 organisms at
41 different taxonomic ranges. Nucleic Acids Res 40(Database issue):D284–D289.

16. Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome.
Trends Genet 25(3):107–110.

17. Danchin A, Fang G, Noria S (2007) The extant core bacterial proteome is an archive of
the origin of life. Proteomics 7(6):875–889.

18. Fang G, Rocha EP, Danchin A (2008) Persistence drives gene clustering in bacterial
genomes. BMC Genomics 9:4.

19. Danchin A (2009) Bacteria as computers making computers. FEMSMicrobiol Rev 33(1):
3–26.

20. Koonin EV (2011) The Logic of Chance: The Nature and Origin of Biological Evolution
(FT Press, Upper Saddle River, NJ).

21. LaBelle N, Wallingford E (2004) Inter-package dependency networks in open-source
software. arXiv:cs/0411096.

22. Barabási A-L, Oltvai ZN (2004) Network biology: Understanding the cell’s functional
organization. Nat Rev Genet 5(2):101–113.

23. Maillart T, Sornette D, Spaeth S, von Krogh G (2008) Empirical tests of Zipf’s law
mechanism in open source Linux distribution. Phys Rev Lett 101(21):218701.

24. Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Trans Softw Eng
Methodol 18:2:1–2:26.

25. Handorf T, Ebenhöh O, Heinrich R (2005) Expanding metabolic networks: Scopes of
compounds, robustness, and evolution. J Mol Evol 61(4):498–512.

26. Athreya KB, Ney PE (2004) Branching Processes (Dover, New York).
27. Touchon M, et al. (2009) Organised genome dynamics in the Escherichia coli species

results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344.
28. Yan K-K, Fang G, Bhardwaj N, Alexander RP, Gerstein M (2010) Comparing genomes

to computer operating systems in terms of the topology and evolution of their reg-
ulatory control networks. Proc Natl Acad Sci USA 107(20):9186–9191.

29. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res 28(1):27–30.

Pang and Maslov PNAS | April 9, 2013 | vol. 110 | no. 15 | 6239

SY
ST

EM
S
BI
O
LO

G
Y

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217795110/-/DCSupplemental/pnas.201217795SI.pdf?targetid=nameddest=STXT
http://packages.ubuntu.com/
http://packages.ubuntu.com/
http://popcon.ubuntu.com
http://tuvalu.santafe.edu/~aaronc/powerlaws
http://popcon.ubuntu.com/

