-

Dimers of mitochondrial ATP synthase form the
permeability transition pore

Valentina Giorgio?, Sophia von Stockum?, Manuela Antoniel®, Astrid Fabbro®, Federico Fogolari, Michael Forted,
Gary D. Glick®, Valeria Petronilli?, Mario Zoratti?, lldiké Szabof, Giovanna Lippe®', and Paolo Bernardi®’

2Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences and fDepartment of Biology, University of
Padova, 35121 Padua, Italy; Departments of PFood Science and “Medical and Biological Sciences, University of Udine, 33100 Udine, Italy;
dVollum Institute, Oregon Health and Sciences University, Portland, OR 97239; and ®Department of Chemistry, Graduate Program in Immunology,

University of Michigan, Ann Arbor, Ml 48109

Edited* by Tullio Pozzan, Foundation for Advanced Biomedical Research, Padua, Italy, and approved March 4, 2013 (received for review October 12, 2012)

Here we define the molecular nature of the mitochondrial
permeability transition pore (PTP), a key effector of cell death.
The PTP is regulated by matrix cyclophilin D (CyPD), which also
binds the lateral stalk of the FoF, ATP synthase. We show that CyPD
binds the oligomycin sensitivity-conferring protein subunit of the
enzyme at the same site as the ATP synthase inhibitor benzodiaz-
epine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2* like CyPD
itself, and that decreasing oligomycin sensitivity-conferring protein
expression by RNAI increases the sensitivity of the PTP to Ca®*.
Purified dimers of the ATP synthase, which did not contain volt-
age-dependent anion channel or adenine nucleotide translocator,
were reconstituted into lipid bilayers. In the presence of Ca?*, ad-
dition of Bz-423 triggered opening of a channel with currents that
were typical of the mitochondrial megachannel, which is the PTP
electrophysiological equivalent. Channel openings were inhibited
by the ATP synthase inhibitor AMP-PNP (y-imino ATP, a nonhydrolyz-
able ATP analog) and Mg?*/ADP. These results indicate that the PTP
forms from dimers of the ATP synthase.

he permeability transition (PT) defines an increased perme-

ability of the inner mitochondrial membrane to ions and
solutes triggered by matrix Ca®* in the presence of specific
inducers, the most classical being Pi and thiol oxidants (1). The
sensitivity to Ca®" is decreased by several compounds, including
Mg**, adenine nucleotides, and cyclosporin A (CsA) (2). In vitro
at least, the PT is accompanied by swelling of mitochondria,
which has long been known to prevent ATP synthesis (3). The
idea that swelling could be mediated by a Ca™"-regulated pore
was advanced in the 1970s (4, 5), and its basic regulatory features
were defined in a series of seminal studies in 1979 (6-8). The PT
is mediated by opening of a high-conductance channel, the PT
pore (PTP), which was identified by patch-clamping of the inner
membrane and called mitochondrial megachannel (MMC) (9-
12). Opening of the PTP is causally involved in cell death asso-
ciated with many diseases, including heart ischemia (13), and
its role is particularly well-documented in muscular dystrophy
caused by defects of collagen VI (14). The molecular nature of
the channel(s) involved remains a mystery. The long-standing
idea that the PTP forms at contact sites of the inner and outer
membranes through voltage-dependent anion channel (VDAC)
and the adenine nucleotide translocator (ANT) (15) proved in-
correct, because VDAC- and ANT-null mitochondria still dis-
play a CsA-sensitive PT (16-18).

A well-characterized protein regulator of the PTP is cyclo-
philin D (CyPD), which in the mouse is encoded by the Ppif
gene. CyPD sensitizes the PTP to Ca®*, as deduced from
experiments in mitochondria from Ppif”~ mice where the PT
required higher loads of matrix Ca®* (19-22), a behavior that is
perfectly matched by the MMC (23). CyPD binds the FoF; ATP
synthase (complex V), the rotary enzyme that synthesizes the
vast majority of ATP in respiring cells (24). This complex is
formed by the catalytic F;, the membrane-bound proton-trans-
locating Fo, and a lateral stalk linking F; and Fo. CyPD binds
the lateral stalk, which acts as a stator to counter the tendency of
the asps-subcomplex of the Fy-catalytic domain to rotate with the
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rotor containing the F; subunits-y, -5, and -¢ and a ring of Fo
subunits ¢ (25). CyPD binding requires Pi and results in partial
inhibition of ATP synthase activity, whereas CsA displaces CyPD,
resulting in enzyme reactivation (24). Despite the striking analogy
with PTP regulation, whether these interactions are relevant for
the PT remains unknown. Here, we show that dimers of the FoF;
ATP synthase incorporated into lipid bilayers form Ca®*-activated
channels with the key features of the MMC-PTP (10-12).

Results

CyPD Binds Oligomycin Sensitivity-Conferring Protein Subunit of ATP
Synthase. We identified potential binding site(s) of CyPD to the
FoF; ATP synthase in the b, d, and oligomycin sensitivity-con-
ferring protein (OSCP) subunits of the lateral stalk (24). To
more precisely define the specific partner(s) of CyPD within this
complex, we devised conditions optimizing its binding to the
ATP synthase, while separating the subunits of the peripheral
stalk. The first condition was met by using 10 mM Pi and low
ionic strength (24); the second condition was met by adding a low
concentration of SDS to the Triton X-100-based extraction
buffer and using a polyclonal antibody against a peptide mapping
near the C terminus of OSCP, which disrupts the interaction
of the OSCP C-terminal domain with the N-terminal portion of
subunit b (25). This strategy allowed the immunoprecipitation
of individual OSCP, b, and d subunits, because no other stalk
protein was detected in the specific immunoblots (Fig. 14).
CyPD was found exclusively in the immunoprecipitation with
OSCP antibody, suggesting that OSCP is the direct interactor of
CyPD in the ATPase complex (Fig. 14). We next used OSCP-
specific siRNAs in HQB17 cells (26), where we studied the ex-
pression of selected ATP synthase subunits in total extracts of
mitochondria. We found the expected decrease of OSCP, but not
of F; a- and p- subunits or CyPD (Fig. 1B, Left). When the ATP
synthase was immunoprecipitated from mitochondria with de-
creased levels of OSCP, decreased levels of CyPD were detected
as well, which precisely matched the decreased association of
OSCP to the enzyme complex (Fig. 1B, Right). It should be noted
that cells with stably reduced OSCP levels do not display de-
creased levels of a-, f-, and d subunits or alterations of mito-
chondrial membrane potential or mitochondrial ultrastructure,
indicating that assembly and function of ATP synthase are not
compromised (27).
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OSCbP -res - - fp |- - - | - - - Fig. 1. CyPD interacts with OSCP and is displaced by
— — — - - - Bz-423. (A) Extracts and immunoprecipitates of BHM
d |e= - ” CyPD |G - li. with anti-OSCP or b or d subunit antibodies were
CyPD - ' p— ) immunoblotted as indicated. Lane 1, mitochondria;
mouse bovine lane 2, immunoprecipitates with OSCP (Left), b (Center),
100 and d (Right) antibodies; lanes 3, IgG antibody. (B) Total
cell extracts (Left) and complex V immunoprecipitates
(0] (Right) of mitochondria from cells either untreated
B total complex V IP 2 * (lane 1) or treated with scrambled siRNA (lane 2) or
E 50 *¥ OSCP siRNA (lane 3) probed for F; o,p-subunits, OSCP,
1.2 3 1.2 3 S and CyPD. (C) Heart mitochondria were treated with
o, B m P —— o the indicated concentrations of Bz-423 (uM), immuno-
S‘ precipitated with anticomplex V antibodies, and
OSCP | we s= = —— © immunoblotted with antibodies against p-subunit or
CyPD - b - — @ 0 25 50 0 25 50 CyPD. Ratio between CyPD and f-band intensities is
reported (n = 3 + SE). *P < 0.02; **P = 0.0015, Student

Bz-423, uM ttest.

CyPD-OSCP interactions were mostly electrostatic in nature,
because they could be disrupted by increased ionic strength (Fig.
S14). A study of surface potentials and isopotential curves of
CyPD and OSCP in the ATP synthase complex (Fig. S1 B and C)
identified putative binding regions of CyPD on OSCP at the
residues indicated in Fig. S1C. This region overlaps with helices 3
and 4, the binding site of benzodiazepine 423 (Bz-423), a well-
characterized inhibitor of the FoF; ATP synthase that readily
permeates mitochondria (27, 28). We, therefore, tested the ef-
fect of Bz-423 on the association of CyPD to mouse and bovine
complex V at 10 mM Pi, and we found a concentration-
dependent displacement that is consistent with competition for
a common binding site (Fig. 1C). This set of experiments
documents that OSCP is the partner of CyPD on the lateral
stalk, that no CyPD binding occurs in the absence of OSCP, and
that the binding site covers the same region where Bz-423 binds
the OSCP subunit.

Bz-423 Induces the PTP. To test whether the interaction of Bz-423
with OSCP is also relevant for PTP modulation, we studied the
Ca** retention capacity (CRC) of mitochondria allowing the
definition of the threshold matrix Ca** load required to trigger
pore opening. Bz-423 decreased the CRC of mitochondria at
1 mM Pi but not 5 mM Pi (Fig. 24). In the presence of CsA (Fig.
2B), which displaces CyPD from OSCP (24), or in CyPD-null
mitochondria (Fig. 2C), the PTP-sensitizing effect of Bz-423 was
observed at 5 mM Pi as well. This behavior matched the in-
hibitory profile of Bz-423 on ATP hydrolysis, which required
higher concentrations of Bz-423 only in CyPD-competent
mitochondria at high Pi concentrations (Fig. S2). Inhibition of
ATP synthase with resveratrol (29) and oligomycin was instead

independent of CyPD (Fig. S3). These results highlight a striking
analogy between the effects of Bz-423 on PTP and ATP synthase.

ATP Synthase Activity and OSCP Affect the PTP. Adenine nucleotides
are inhibitors of the PT (6), but their mechanism of action is
unknown. We explored the hypothesis that nucleotides affect
the Ca®* sensitivity of the PTP through the catalytic activity of
the FoF; ATP synthase. We incubated mitochondria either (i)
with ADP and respiratory substrates in the presence of an ATP-
hydrolyzing system based on hexokinase plus glucose (so that
mitochondria were energized by the respiratory chain, the ADP
concentration was constant, and rotation of the ATP synthase
was clockwise when viewed from the membrane side) (30) or (i)
with ATP in the presence of an ATP-regenerating system based
on phosphocreatine and creatine kinase in the absence of sub-
strates (so that mitochondria were energized by ATP hydrolysis
at constant levels of ATP, and rotation of the ATP synthase was
in the opposite direction) (30). In either case, mitochondria
developed a membrane potential as shown by accumulation of
Rhodamine 123 (Fig. 34), which responded appropriately to the
addition of oligomycin [i.e., with hyperpolarization in ATP-syn-
thesizing mitochondria (Fig. 34, trace a) and depolarization in
ATP-hydrolyzing mitochondria (Fig. 34, trace b)] and the un-
coupler carbonylcyanide-p-trifluoromethoxyphenyl hydrazone.
PTP opening in ATP-hydrolyzing mitochondria (constant ATP
levels) required two times the Ca®* load of ATP-synthesizing
mitochondria (constant ADP levels) (Fig. 3B). The mean ratio
between ATP-hydrolyzing and -synthesizing mitochondria was
2.06 + 0.27 in four independent experiments per condition, an
effect that matches the effect of CsA in mouse liver mitochon-
dria (20). This difference was not due to the nucleotides per se,

Fig. 2. Bz-423 decreases the mitochondrial Ca®* re
tention capacity. Isolated WT (A and B) or Ppif’~
mouse liver mitochondria (C) were incubated in the
presence of 1 (open symbols) or 5 mM (closed symbols)
Pi-Tris and Bz-423 as indicated. In B only, 1.6 uM CsA
was added. Extramitochondrial Ca®* was monitored,
and CRC was determined by stepwise addition of
10 uM Ca** pulses. The measured CRC (i.e., the amount
of Ca?* accumulated before onset of Ca?*-induced Ca**
release) was normalized to that obtained in absence of
Bz-423 (CRCy), and data are average of triplicate experi-
ments + SE. Absolute CRC values (nmol Ca2+/mg protein)
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at 1 mM Piwere 120 +0, 160 + 20, and 166.7 + 30.6 for A,
B, and C, respectively; absolute CRC values (nmol Ca2+/mg
protein) at 5 mM Pi were 86.7 + 11.5, 126.7 + 30.6, and
160 + 20 for A, B, and C, respectively (n = 3 + SD).
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because in the presence of oligomycin ADP was actually slightly
more effective than ATP (Fig. 3C, traces a and b, respectively).
We could exclude any contrlbutlon from endoplasmlc reticulum
contaminants, because no Ca** uptake was seen in the presence
of ATP plus ohgomycm (Fig. S4). These results indicate that the
catalytlc activity of ATP synthase (synthesis vs. hydrolysis) affects
the Ca®* sensitivity of the PTP.

We also tested the effect of OSCP knockdown on the sensitivity
of the PTP to Ca** in permeabilized HQB17 cells using ATP
hydrolysis to generate the proton gradlent Lowered OSCP ex-
pression decreased the threshold Ca** required for opening (Fig.
3D). It should be noted that OSCP-depleted mitochondria did
take up a sizeable amount of Ca®* before onset of the PT (Fig.
3D), consistent with a conserved catalytic activity of ATP synthase
and the buildup of the proton gradlent (27). Thus, lack of the stalk
subunit OSCP increases the Ca** sensitivity of the PTP, sug-
gesting that the FoF; ATP synthase is involved in its formation.
This hypothesis was tested in ATP synthase preparations.

Purified ATP Synthase Dimers Have PTP Channel Activity. We sepa-
rated mitochondrial proteins by blue native electrophoresis
(BNE) (31) and identified the ATP synthase by in-gel activity
(Fig. 44). SDS/PAGE of dimers and monomers eluted from
BNE gels (Fig. 4B) displayed the same subunit pattern previously
shown in high-resolution gels (32). Western blotting detected the
occasional presence of some respiratory complexes I and III in
the dimers (the I + III supercomplex runs very close to complex
V dimers in BNE) but not VDAC, CyPD, or ANT (Fig. 4C),
which in BNE with digitonin migrates with the electrophoretic
front as an individual protein (31).

The gel-purified ATP synthase dimers or monomers were in-
corporated in planar lgld bilayers. Addition of Bz-423 to the dimer
in the presence of Ca“* elicited channel activity, whereas no such
activity was observed when the drug was added to the monomer (Fig.
54). Addition of phenylarsine oxide gPhAsO) one of the most
powerful sensitizers of the PTP to Ca™ (1), was not sufficient to
induce channel opening, but the subsequent addition of Bz-423 in-
duced activity with similar characteristics to Bz-423 alone (Fig. 5B
and Fig. S5). Moreover, y-imino ATP (AMP-PNP), a nonhydro-
lyzable ATP analog (33), inhibited current conduction even in the
presence of PhAsO (Fig. 5B). The characteristics of the pore closely
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Fig. 3. ATP synthase catalysis and OSCP knockdown
affect the Ca®* sensitivity of the PT. (A) Membrane po-
tential was measured in mitochondria incubated with
respiratory substrate and ADP plus an ATP-consuming
system (trace a) or no substrate, ATP, and an ATP-
regenerating system (trace b) as detailed in Materials
and Methods. Where indicated, 2 mg mouse liver mi-
tochondria (MLM), 1 pg/mL oligomycin (oligo), and 1 pM
carbonylcyanide-p-trifluoromethoxyphenyl hydrazone
(FCCP). (B) Conditions for traces a and b were exactly as
in A, but Ca** was measured. (C) The incubation me-
dium contained respiratory substrate and 1 pg/mL oli-
gomycin, and it was supplemented with 0.4 mM ADP
(trace a) or 0.4 mM ATP (trace b); one experiment rep-

1 2 resentative of three is shown. (D) Scrambled siRNA- or
—— 13 OSCP siRNA-treated cells (closed and open bars, re-

- spectively) were permeabilized with digitonin, and their
OSCP CRC was measured in the presence of an ATP-regener-

ating system. Data are average + SD of nine in-

|—— B dependent determinations per condition. *P = 0.0025
— OSCP (Student t test). The blots display the levels of OSCP and

F1 p-subunits in the two batches of cells used (lanes 1,
scrambled siRNA; lanes 2, OSCP siRNA).

matched the features of MMC-PTP (10-12): the maximal chord
conductance was 1.0-1.3 nS in 150 mM KCl, and various subcon-
ductance states were commonly entered (Fig. 5 C and D). Tran-
sitions of about 1.0 and 0.5 nS, typical of MMC-PTP activity, are
shown in Fig. S64. Again in keeping with the properties of MMC,
the activity could be largely inhibited by Mg** and nearly completely
inhibited by Mg®* plus ADP (Fig. 5C); however it could not be
inhibited by CsA, like the MMC of Ppif "~ mitochondria (23), co-
herently with the lack of C)z/PD in the preparation (Fig. 4C). Other
inducers beside Pi and Ca”* were not strictly necessary to induce
PTP currents, as shown in Fig. S6B, where Ca”* was added at 3 mM
and the ATP synthase dimer was extracted in the presence of 10 mM
Pi, which sensitizes the PTP even in the absence of CyPD (1).
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Fig. 4. Purification of FoF, ATP synthase. (A) BHM were subjected to BNE to
separate oligomers (O), dimers (D), and monomers (M) of ATP synthase, which
were identified by Coomassie blue (lane 1) and in-gel activity staining (lane 2).
Dimers and monomers were excised, eluted, subjected to SDS/PAGE, and
stained with colloidal Coomassie (B), or they were transferred to nitrocellu-
lose and tested for respiratory complexes and ATP synthase, subunit-g of F,,
ANT, VDAC, and CyPD (C). T, D, and M refer to total extract, dimer, and
monomer, respectively. One experiment representative of three is shown.
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Fig. 5. Dimers of FoF, ATP synthase generate currents matching MMC-PTP. (A) A bilayer experiment in 50 mM KCl, 1 mM Pi, and 0.3 mM Ca* (Ca** only
in trans; V.is= —60 mV). After addition of dimeric ATP synthase, no activity could be observed (Upper) until immediately after the addition of 0.1 mM Bz-423
to the trans side (Lower; arrow). When monomers were used, the recording was identical to Upper, which was not modified by the addition of Bz-423.
(B) A similar experiment in the presence of 0.1 mM PhAsO in trans. Activity (Upper) was elicited by the addition of Bz-423 as in A and inhibited by 0.1 mM
AMP-PNP in trans (Lower; arrow). Corresponding current amplitude histograms from gap-free 60-s traces are shown in Right. (C) Current traces (150 mM
KCI; Vs as indicated) with dimeric ATP synthase and 0.3 mM Ca%*, 0.1 mM Bz-423, and 50 pM PhAsO added to the trans side. Note numerous substates.
(D, Left) Activity (Vs = —80 mV) recorded as in C (first trace) and after sequential additions of Mg?* (0.6 mM) and ADP (0.6 mM) to the trans side; (D, Right)
corresponding amplitude histograms from gap-free 100-s traces. Representative experiments are shown of a total of 28 experiments performed under

various conditions using six different ATP synthase dimer preparations.

Channel openings were still observed in the presence of bongkrekic
acid and could not be elicited by atractyloside, selective inhibitors of
ANT. Rather, in some cases, atractyloside induced a small con-
ductance (Fig. S7). Of note, channels were not observed with gel-
purified complex I, indicating that this occasional contaminant
also cannot be responsible for the current that we observe in the
purified dimers of FoF; ATP synthase (Fig. S7). The ATP synthase
preparations still possessed enzymatic activity after extraction from
the gels for incorporation in the bilayers, which was shown by
a second BNE and activity staining (Fig. S8).

Discussion

We have shown that CyPD interacts with the ATP synthase at
OSCP subunit. This observation, which builds on our previous
work on regulation of the ATP synthase by CyPD (24), led to
identification of the elusive PTP as a dimer of the FoF; ATP
synthase. The electrophysiological features displayed by our ATP
synthase preparation are very different from the currents of the
ANT, which has been proposed to take part in PTP formation
(15) and is still included in models of the PTP in association with

5890 | www.pnas.org/cgi/doi/10.1073/pnas.1217823110

the Pi carrier (34). The ANT exhibits a conductance ranging
between 50 and 700 pS in 100 mM KCl (35), which is lower than
the currents displayed by the MMC (9-12); it shows low proba-
bility of current fluctuation at voltages lower than 150 mV at
variance from the reconstituted ATP synthase dimers (Fig. 5),
and it can be inhibited only by ADP and bongkrekic acid together,
whereas ADP alone had a marginal effect (35-37). Patch-clamp
experiments with the reconstituted, functionally active mito-
chondrial Pi carrier revealed an anion channel function with
a mean conductance as low as 40 + 10 pS, which was decreased to
25 + 5 pS by Ca** and Mg?*, inhibited by Pi, and unaffected by
ADP (38). These features make the Pi carrier a very unlikely
candidate as a PTP component, and they rule out that the cur-
rents observed here may be related to this protein.

Bz-423 was discovered and characterized as an apoptosis-in-
ducing agent acting through mitochondria (39); identification
of OSCP as its target was achieved through the screening of a
human cDNA T7 phage display library (27) and the interaction
with ATP synthase resulting in inhibition of enzyme activity con-
firmed by NMR (28). The striking selectivity of action of Bz-423
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on OSCP and its ability to trigger channel activity of ATP synthase
dimers, together with the lack of activity of monomer prepa-
rations, argues against the possibility that the currents that we
observe are caused by unidentified contaminating proteins. This
concluswn is strengthened by the inhibitory effect of AMP-PNP
and Mg?*/ADP on channel activity.

The PTP-inducing effect of Bz-423 and CyPD (which both act
through OSCP on top of the lateral stalk in the matrix) is nec-
essarily indirect, because it impinges on the permeability prop-
erties of the inner membrane. Because a current is only seen with
the dimers, it is logical to conclude that the PTP forms at the
membrane interface between two adjacent Fg sectors, which
would be in keeping with the well-characterized effects of fatty
acids and 1 sophosphohplds on the PTP (1). The essentlal role of
matrix Ca? in PTP formation is intriguing. Ca>* is able to sus-
tain ATP hydrolysis b complex V with a similar K,,, as Mg>* and
to compete with Mg** for the catalytic sites (40). Interestlngly
and in contrast with other divalent metal-ATP complexes, the
ATPase activity is not coupled to proton translocation when Ca®*
is bound, suggesting that Ca** induces conformational changes in
Fo, which could then mediate PTP formation and explain the
inability of Ca** to sustain ATP synthesis (41). As shown here,
accessibility of the PTP Ca®* binding sites is influenced by en-
zyme catalysis and OSCP. One possible explanation is that the
OSCP subunit affects the affinity of the metal binding snes of
ATP synthase and thus the ease with which matrix Ca®* can
replace Mg®*, causing PTP opening. OSCP as such would be
a negative modulator, and its effect would be counteracted by
binding of the positive effector CyPD (which indeed increases the
Ca’* affinity of the PTP). Removal of OSCP, or CyPD binding to
OSCP, would induce similar conformational effects, consistent
with the data presented here as well as with previous findings on
CyPD interactions with the lateral stalk (24).

Although defining the detailed mechanism of PTP formation
requires additional work, the demonstration that the PTP forms
from dimers of the FoF; ATP synthase solves a long-lasting is-
sue in cell biology and readily accommodates key ?athophysi-
ological effectors of the PT. Indeed, Ca’*, Mg**, adenine
nucleotides, and Pi bind the catalytic core at Fy, and the membrane
potential and matrix pH, which are key PTP modulators (1), are
also key regulators of the ATP synthase. Channel formation by
purified ATP synthase dimers confirms our long-standing stance
that the PT is an inner membrane event that does not require outer
membrane components (1), which is also in keeping with recent
results that we obtained in mitoplasts (42). The present findings
suggest a dual function for complex V, i.e., ATP synthesis and PTP
formation. The enzyme of life seems, therefore, to be also the
molecular switch that may signal the presence of fully depolarized,
dysfunctional mitochondria to stimulate cell death (1) and/or
mitophagy (43). The detailed mechanisms through which this
transition is achieved can now be addressed with the powerful tools
of genetics, and we have little doubt that clarification of the mo-
lecular determinants of PTP formation will provide the solution to
outstanding problems on the role of PTP in pathophysiology.

Materials and Methods

Immunoprecipitation and Western Blotting. Immunoprecipitation (IP) of ATP
synthase was performed from 0.5 mg bovine, mouse heart, or human osteo-
sarcoma HQB17 cells mitochondria prepared by standard methods (44, 45) using
anticomplex V monoclonal antibody covalently linked to protein G-Agarose
beads (MS501 immunocapture kit; Abcam) as reported (24). For isolated sub-
units, 30 pL Staphylococcus aureus protein A-Sepharose 4B (Sigma) were cou-
pled with 10 pg OSCP subunit antibody, 2 pg b subunit, or nonimmune antibody
in IP buffer (15 mM Tris, 10 mM Pi-Tris, 2 mM EDTA-Tris, 1.8 mM EGTA-Tris, 0.5%
volivol Triton X-100, 0.005% wt/vol BSA, 0.25% SDS, pH 7.4) and incubated for
2 h at 4 °C. Then, 0.5 mg bovine heart mitochondria (BHM) solubilized and
precleared in IP buffer were added with protein A-coupled antibody and in-
cubated overnight at 4 °C. For d subunit, BHM was suspended in IP buffer, in-
cubated for 1 h at4 °Cwith 4 pg anti-d or rabbit anti-mouse antibodies, and then
incubated for 3 h at4 °Cwith 30 uL protein A. IP supernatants were separated by
SDS/PAGE followed by Western blot analysis. Antibodies were polyclonal rabbit
anti-a and -p F; subunit, anti-b subunit (a gift from John Walker, Medical
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Research Council—Mitochondrial Biology Unit, Cambridge), anti-ANT Q18
(Santa Cruz Biotechnology), monoclonal anti-g, anti-d subunit, anti-OXPHOS
(Mitoscience), anti-CyPD (Calbiochem), anti-OSCP (Abcam), and anti-VDACI (a
gift from F. Thinnes, Max-Planck-Institut fir Experimentelle Medizin, Abteilung
Immunchemie, Géttingen, Germany). Immunoreactive bands were detected by
enhanced chemiluminescence (Pierce). CyPD is expressed as CyPD/p-ratio of
bands analyzed with Quantity One software (Biorad). Statistics were calculated
by GrafPad software.

Transfection with siRNAs. HQB17 cells (26) were transfected with an siRNA du-
plex OSCP oligo ribonucleotides pool (Invitrogen) as follows: ATPSOHSS100870
(-GGA ACC CAA AGU GGC UGC UUC UGU U-, -AAC AGA AGC AGC CAC Uuu
GGG UUC C-), ATP50HSS100872 (-CAG GGC UAU GCG GGA GAU UGU CUA A,
-UUA GAC AAU CUC CCG CAU AGC CCU G-), or scrambled sequence at 0.2 pM.
Before treatment, cybrids were cultured without antibiotics for 24 h and then
transfected with siRNA and Lipofectamine 2000 in Opti-MEM (Invitrogen). After
6 h, the medium was replaced with culture medium without siRNA for 66 h
before preparation of mitochondria.

Mitochondrial CRC and Membrane Potential. Extramitochondrial Ca** was
measured by Calcium Green-5N (Molecular Probes) fluorescence (46) using
a Fluoroskan Ascent FL (Thermo Electron) plate reader at a mitochondrial con-
centration of 1 mg x mL™'. Membrane potential was measured at 25 °C using
a Perkin-Elmer LS50B spectrofluorometer based on the fluorescence quenching
of 0.15 uM Rhodamine 123 (46). For measurements of CRC and membrane po-
tential during ATP synthesis at constant [ADP] (Fig. 3 A, trace a and B, trace a),
the incubation medium contained 0.1 M glucose, 80 mM KCl, 10 mM Mops-Tris,
5mM succinate-Tris, 4 mM MgCl,, 1 mM Pi-Tris, 0.5 mM NADP*, 0.4 mM ADP,
50 uM P1,P5-di(adenosine-5') pentaphosphate, 10 pM EGTA, 2 uM rotenone,
4 U/mL glucose-6-phosphate dehydrogenase, and 3 U/mL hexokinase. We
ascertained that mitochondrial respiration was maximally stimulated and
that the added enzymes were in excess by measuring O, consumption with
a Clark oxygen electrode. For measurements of CRC and membrane po-
tential during ATP hydrolysis at constant [ATP] (Fig. 3 A, trace b and B, trace b),
the incubation medium contained 0.1 M sucrose, 80 mM KCl, 10 mM Mops-Tris, 4
mM MgCl,, 2mM phosphocreatine, 1 mM Pi-Tris, 0.4 mM ATP, 10 uM EGTA, 2 uM
rotenone, and 1.5 U/mL creatine kinase. We ascertained that the ATP-
regenerating activity was in excess by measuring the mitochondrial mem-
brane potential, which was sustained at the maximal value beyond the
duration of the CRC experiments. For all other CRC measurements (Figs. 2
and 3Cand Fig. S4), the incubation medium contained 0.1 M sucrose, 80 mM
KCl, 10 mM Mops:Tris, 5 mM succinate-Tris, 4 mM MgCl,, 1 mM Pi-Tris, 10 uM
EGTA-Tris, 2 uM rotenone, 0.5 pM Ca** Green-5N, and 1 mg/mL mitochon-
dria. Additional modifications or additions are specified. Measurements of
ATP hydrolysis were performed according to published methods (47, 48).

BNE Gel and Sample Preparation for Electrophysiology. Pellets of mitochondria
were suspended at 10 mg/mL in 1 M aminocaproic acid and 50 mM Bis-Tris, pH
7.0 (24), solubilized with 2% (wt/vol) digitonin, and immediately centrifuged
at 100,000 x g for 25 min at 4 °C. The supernatants were supplemented with
Coomassie Blue G-250 (Serva) and rapidly applied to 1D 4-11% poly-
acrylamide gradient BNE (Invitrogen). After electrophoresis, gels were
stained with Coomassie Blue, used for in-gel activity staining, or prepared
for an overnight native complex protein elution from BNE gel as follows.
Bands corresponding to monomers and dimers of complex V or monomer of
complex | were excised and diluted with 25 mM tricine, 7.5 mM Bis-Tris, and
1% (wt/vol) n-heptyl p-b-thioglucopyranoside, pH 7.0 (49) supplemented
with 8 mM ATP-Tris and 10 mM MgSO,. After overnight incubation at 4 °C,
samples were centrifuged at 20,000 x g for 10 min at 4 °C, and supernatants
were (i) used directly for reconstitution in electrophysiological studies, (ii)
subjected to 2D-SDS PAGE separation followed by Western blotting, or (iii)
loaded in 2D-BNE followed by Coomassie Blue or in-gel activity staining
(ATPase activity was amplified as in ref. 50).

Electrophysiology. Planar lipid bilayer experiments were performed as de-
scribed (51). Briefly, bilayers of about 150-200 pF capacity were prepared
using purified soybean azolectin. The standard experimental medium was
150 mM KCl and 10 mM Hepes, pH 7.4. Control experiments with empty
membrane or detergents used for the purification showed no activity. All
voltages reported refer to the cis chamber, zero being assigned by con-
vention to the trans (grounded) side. Currents are considered as positive
when carried by cations flowing from the cis to the trans compartment. Data
were acquired at 100 ps/point, filtered at 500 Hz, and analyzed offline using
the pClamp program set (Axon Instruments). Histograms were fitted using
the Origin7.5 program set.
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Electrostatic Calculations. The molecular structures of the membrane extrinsic
region of the bovine ATP synthase (Protein Data Bank ID code 2WSS, chains)
(25) and human CyPD complexed with CsA (Protein Data Bank ID code
2Z6W) (52) were used for the calculation of surface potential with the
Generalized Born model (53) and isopotential surfaces within the Poisson—
Boltzmann theoretical framework (54). The calculations performed on the apo-
form of CyPD and OSCP in the ATP-synthase complex did not reveal apparent
complementarity in the surface potential and isopotential curves because of the
complexity and extension of OSCP in the context of ATP synthase. For CyPD, the
dominant surface contribution is positive and located at a region flanking
the binding site for CsA. The face of CyPD opposite to the CsA binding site shows
less extended but negative potential. The overall charge at pH 7.0 of CyPD,
based on the sequence (GenBank accession no. NP_005720.1, mature peptide),
is strongly positive (six proton charges), and therefore, we expected that the
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