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Abstract There is convincing evidence that nitric oxide
(NO) may be a causative factor in the pathogenesis of
migraine. We investigated the consequences of NO donors’
administration on meningeal processes related to the devel-
opment of migraine pain in an animal model of meningeal
nociception. The administration in mice of the NO donors
nitroglycerin (GTN) and sodium nitroprusside (SNP) pro-
duced a delayed meningeal upregulation of interleukin-1ß
and inducible NO synthase. A thermal allodynia and hyper-
algesia devoid of side effects was produced 1 to 4 h after
administration. To clarify the cellular pathways modulated
by GTN and SNP, we examined the expression of cellular
factors involved in pain modulation, such as protein kinase
C (PKC) and its downstream effectors. Western blotting
experiments showed an upregulation and increased phos-
phorylation of PKCγ and PKCε within dura mater after NO
donors’ administration. A dramatic PKC-dependent increase
of the phosphorylation of cyclic AMP response element
binding protein (CREB) and signal transducer and activator
of transcription (STAT)-1 was observed, along with an acti-
vation of the nuclear factor-κB (NF-κB) pathway, as
reflected by a reduction of the inhibitory protein-κ-Bα
(IκBα). Furthermore, the PKC blocker, Calphostin C, pre-
vented the GTN and SNP-induced pain hypersensitivity.
These results suggest the relevance of the PKC-mediated
pathway in the induction of meningeal nociception and
might help clarify the etiopathology of migraines. We can
suggest PKC as a new target for migraine pain.
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Introduction

Despite much research and advanced knowledge in mi-
graine pathophysiology, the mechanisms underlying mi-
graine attacks remain poorly understood. There is
convincing evidence that nitric oxide (NO) may be a caus-
ative factor in the pathogenesis of migraines [1]. Intrave-
nous infusion or sublingual administration of the NO donor
nitroglycerin (GTN) has long been known to induce mild-
to-moderate headaches in both healthy subjects and patients
suffering from primary headaches [2, 3], but only in migrai-
neurs, this immediate headache is followed by a second
headache phase that fulfills the criteria of genuine migraine
attacks [1, 2, 4]. NO is a very important molecule in the
regulation of cerebral and extracerebral cranial blood flow
and arterial diameters, but importantly, it is also involved in
nociceptive processing in the central nervous system. In
healthy subjects, GTN induces facilitation in the pain pro-
cessing at the spinal trigeminal nucleus site [5], with a
prominent role in the pathophysiology of migraines by
modulating pain transmission from intracranial structures
to higher centers of the brain. A facilitation of pain process-
ing at the trigeminal level has also been reported during
GTN-triggered migraine attacks [6]. In animals, GTN
increases neuronal activity in the trigeminal nucleus cauda-
lis and periaqueductal grey matter [7]. The dura mater is
among the few intracranial tissues that evoke pain when
stimulated, and dural afferent signals can activate the nucle-
us trigeminalis caudalis. After GTN infusion, the threshold
for activation of neurons by stimulation of dural afferents
was reduced [8]. Similarly, systemic infusion of the NO
donor sodium nitroprusside (SNP) induced an immediate
transient and a second delayed increase in activity of neu-
rons in the spinal trigeminal nucleus with meningeal afferent
input [9]. GTN also produces a delayed meningeal inflam-
mation mediated by direct actions on the dura mater that
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does not develop secondary to events within the brain [10].
The migraine is thought to be generated by nociceptive
processes within the meninges, followed by activation of
trigeminal neurons within the brainstem, but the noxious
stimuli initially involved in these nociceptive processes are
unknown.

Protein kinase C (PKC) is a family of enzymes located in
anatomical regions that regulate pain and their role has been
described in acute and chronic pain. At different anatomical
levels (peripheral nerve terminal, spinal and supraspinal
sites), PKC integrates numerous receptor pathways into
final effectors that increase excitatory signaling and de-
crease inhibitory signaling, thus inducing pain [11]. The
activation of PKC has been related to the induction of a
painful condition, whereas PKC blockers decreased noci-
ception [11]. Recently, it has been reported that PKC inhib-
itors reduce NO synthesis from IFN-γ-treated microglia and
that specific PKC isoforms are able to regulate inducible NO
synthase (iNOS) expression in mouse peritoneal macro-
phages [12]. It is plausible to suppose that PKC might be
activated after the administration of NO donors. Then we
investigated the selective involvement of specific PKC iso-
forms in a painful symptomatology related to a migraine
attack in an animal model of meningeal nociception induced
by administration of GTN and SNP [9, 13]. To clarify the
cellular pathways involved in the induction of meningeal
pain hypersensitivity, we focused our attention on PKC
downstream effectors. We demonstrated that the activation
of a PKC-mediated pathway involving cyclic AMP response
element binding protein (CREB) and signal transducer and
activator of transcription 1 (STAT1) that appeared to be
responsible for meningeal pain hypersensitivity.

Materials and Methods

Animal Treatment

All experiments were carried out in accordance with the
European Communities Council Directive of November,
24 1986 (86/609/EEC).

Male Swiss albino mice (20-22 g) from the Morini
(San Polo d'Enza, Italy) breeding farm were used. Ten
mice were housed per cage (26×41 cm). The cages
were placed in the experimental room 24 h before the
test for acclimatization. The animals were fed a standard
laboratory diet and tap water ad libitum, and were kept
at 23±1 °C with a 12 h light/dark cycle (i.e., light on at
7 AM). GTN (10 mg/kg; Bioindustria L.I.M., [Novi
Ligure, Italy]), dissolved in 10 % ethylene glycol in
saline (0.9 % NaCl) and SNP (1 mg/kg, Sigma, [Milan,
Italy]), dissolved in saline were administered intraperi-
toneally, as previously reported [14].

To investigate the role of PKC in the intracellular events
modulated by NO donors, the PKC blocker Calphostin C
(0.2 μg/mouse i.c.v. [Calbiochem, Milan, Italy]) dissolved in
0.5 % dimethyl sulfoxide, as previously described [15]. Time-
course experiments performed in our laboratory showed that the
Calphostin C effect peaked 1 to 2 h after intracerebroventricular
administration. Animals, therefore, were divided into 2 treat-
ment groups: 1) Calphostin C administered 10 minutes before
NO donors injection and protein expression detected 1 or 2 h
after GTN/SNP administration; 2) Calphostin C administered
3 h after NO donors, and experiments performed 4 or 6 h after
NO donors treatment.

Lipopolysaccharide (LPS) (60 mg/kg i.p., Sigma) was
used as positive control of iNOS and interleukin (IL)-1ß
expression. After LPS administration, dura mater to conduct
Western blotting experiments was removed after 4 and 6 h
for iNOS detection, and after 6 h for IL-1ß experiments.

Cold Plate Test

For assessment of cold allodynia, mice were placed on a
cold plate that is maintained at a temperature of 4±0.1 ° C.
Reaction times were measured with a stopwatch before, and
1, 2, 4, and 6 h after administration of the NO donors. The
time between placements of a mouse on the plate and
licking or lifting of a hind paw was measured with a digital
timer. An arbitrary cut-off time of 60 seconds was adopted
and 10 mice per group were used.

Hot Plate Test

Mice were placed inside a stainless steel container, which was
thermostatically set at 50.0±0.1 ° C. Reaction times were
measured with a stopwatch before, and 1, 2, 4, and 6 h after
administration of the NO donors. The endpoint used was the
licking of the fore or hind paws. An arbitrary cut-off time of
60 seconds was adopted and 10 mice per group were used.

Motor Coordination

The motor coordination was assessed by using the rota rod
test. The apparatus consisted of a base platform and a rotating
rod with a diameter of 3 cm and a nonslippery surface. The rod
was placed at a height of 15 cm from the base. The rod (30 cm
in length) was divided into 5 equal sections by 6 disks. Thus,
up to 5 mice were tested simultaneously on the apparatus, with
a rod-rotating speed of 16 r.p.m. The integrity of motor coor-
dination was assessed on the basis of the number of falls from
the rod in 30 seconds. Those mice scoring <3 and >6 falls in
the pre-test were rejected (20 %). The number of falls was
measured before (pre-test), and 1, 2, 4, and 6 h after the
administration of the NO donors, and 10 mice per group were
used.
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Locomotor Activity

The locomotor activity was evaluated by using the hole-board
test. The apparatus consisted of a 40-cm square plane with 16
flush-mounted cylindrical holes (3-cm diameter) distributed 4×
4 in an equidistant, grid-like manner. Mice were placed on the
center of the board 1×1 and were allowed to move around
freely for a period of 5 minutes each. Two photo beams,
crossing the plane from mid-point to mid-point of opposite
sides, thus dividing the plane into 4 equal quadrants, automat-
ically signaled themovement of the animal (counts in 5minutes)
on the surface of the plane (locomotor activity). Miniature
photoelectric cells, in each of the 16 holes, recorded (counts
in 5 minutes) the exploration of the holes (exploratory activity)
by the mice. Experiments were performed 4 h after administra-
tion of the NO donors and 10 mice per group were tested.

Western Blot Analysis

Dura mater was collected at 1, 2, 4, and 6 h after GTN or
SNP treatment and was homogenized in a buffer containing
protease and phosphatase inhibitors. The homogenate was
centrifuged at 9,000 x g for 15 minutes at 4 °C; the low
speed pellet was discarded and the supernatant was stored at
-80 ° C. Protein concentration was quantified using Brad-
ford’s method (protein assay kit [Bio-Rad Laboratories,
Milan, Italy]). Membrane homogenates (10-50 μg) were
separated on 10 % sodium dodecyl sulphate - PolyAcryl-
amide Gel (SDS-PAGE), and were then transferred onto
nitrocellulose membranes, blocked and probed with specific
antibodies against PKCγ phosphorylated on Thr514
(pPKCγ, 1:1000 dilution), c-Fos (1:1000) (Biosource
[Camarillo, CA]); PKCγ (1:1000); PKCε (1:800); PKCε
phosphorylated on Ser729 (pPKCε, 1:750); iNOS (1:250);
IL-1ß (1:1000); Iκ-Bα (1:1000); STAT1 phosphorylated on
Tyr701 (pSTAT1, 1:500); ß-actin (1:1000 dilution) (Santa
Cruz Biothechnology Inc. [Santa Cruz, CA, USA]); CREB
(1:500) or phosphorylated CREB (pCREB) on Ser133 (1:500)
(Cell Signalling Technology [Billerica, MA, USA]) followed by
peroxidase-conjugated secondary antisera (1:10,000). Blots were
developed using enhanced chemiluminescence detection system
(Pierce [Milan, Italy]). Optical density measurements were per-
formed by dividing the intensity of the bands by the intensity of
the housekeeping protein ß-actin. Measurements in control sam-
ples were assigned a relative value of 100 %.

Statistical Analysis

All experimental results are given as the mean ± S.E. mean.
The results of Western blotting experiments are the mean of at
least 4 independent experiments. Analysis of variance fol-
lowed by Tukey post hoc test was used for statistical analysis
(GraphPad Prism 5.0).

Results

Reduction of the Pain Threshold without Induction of Side
Effects by NO Donors

The administration of GTN (10 mg/kg i.p.) and SNP (1 mg/kg
i.p.) produced cold allodynia in the cold plate test. The reaction
times to the cold stimulus were reduced 1, 2, and 4 h after NO
donors’ administration and the pain threshold returned to con-
trol values after 6 h (Fig. 1A). After NO donor treatment, a heat
hyperalgesia was also observed in the hot plate test with a
similar profile and time course to the cold plate test results
(Fig. 1B).

The reduction of the pain threshold was not accompanied
by the induction of side effects. The spontaneous mobility
and exploratory activity of mice treated with GTN and SNP
were unmodified in comparison with the control group. In
the same experimental conditions, D-amphetamine, used as
a positive control, significantly increased both parameters
evaluated (Fig. 1C). NO donors did not alter motor coordi-
nation of treated animals at any time point (Fig. 1D).

NO Donors Induced IL-1ß, iNOS Expression, and Activation
of the Nuclear Factor-κB (NF-κB) Pathway

The meninges are among the few pain-sensitive tissues within
the cranium and to evaluate the site of the hyperalgesic action
of NO donors, we detected the expression of cellular media-
tors modulated by NO within dura mater. Interleukin (IL)-1ß,
iNOS, and Iκ-Bα were examined by immunoblotting in
homogenates of dura mater after administration of GTN
(10 mg/kg i.p.) and SNP (1 mg/kg i.p.). NO donors caused a
biphasic increase in IL-1ß protein with a rapid rise at 1 to 2 h,
followed by a second peak at 6 h. The increase of IL-1ß
protein expression produced 6 h after LPS injection (60 mg/
kgi.p.) was used as positive control (Fig. 2A).

iNOS protein was not constitutively expressed in the dura
mater as indicated by the absence of a band in control animals.
At 4 and 6 h after GTN (10 mg/kg i.p.) or SNP administration
(1 mg/kg i.p.), a 130 kDa band, corresponding to iNOS
protein, was detected. iNOS was not expressed at earlier time
points (Fig. 2B). LPS was used as positive control. iNOS
protein expression was not detected within the brain, in agree-
ment with previous observations [10]. The lack of iNOS
expression was observed within the periaqueductal gray mat-
ter (PAG) and thalamus, brain areas involved in pain modu-
lation, of GTN- and SNP-treated animals (data not shown).

To investigate transcriptional mechanisms that promote
iNOS expression, the activation of NF-κB after NO donor
administration was examined. In homogenates of dura mater,
we observed a degradation of Iκ-Bα, the protein that constitu-
tively inhibits NF-κB, as indicated by the significant decrease
of protein levels, 1 and 2 h after GTN or SNP administration. At
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later time points (4 and 6 h), the levels of Iκ-Bα increased
(Fig. 2C).

Increased Expression and Phosphorylation of PKCγ
and PKCε Isoforms by NO Donors

SNP treatment produced a rapid and robust increase of pPKCγ
levels within the dura mater that peaked 1 h after treatment.
This effect slowly diminished, remaining significant up to 4 h
after treatment and returning to control values at 6 h (Fig. 3A).

A robust increase of the phosphorylation of PKCε was
produced by both GTN and SNP. Similarly to pPKCγ, the
pPKCε levels increased between 1 and 4 h with a peak at 1 h
within the dura mater (Fig. 3B). The effect produced by the
NO donors disappeared 6 h after administration (Fig. 3B).
The intensity of the phosphorylation was comparable to that
observed for the PKCγ isoform.

Similar results were obtained after GTN administration.
PKCγ and PKCε protein expression were also increased 1,
2, and 4 h after treatment with a similar time course for GTN
and SNP.

As potential downstream effectors of PKC, we detected
CREB and STAT1. Experiments conducted on dura mater
demonstrated that SNP and GTN reduced CREB protein
content 2 h after administration, and then the effect disap-
peared (Fig. 3C).

A robust increase of the pCREB was detected (Fig. 3D).
The SNP- and GTN-induced increase of pCREB was

significant 1 h after administration, which peaked at 2 h,
and then the effect drastically decreased. The pCREB values
returned comparable to the control at 4 and 6 h after NO
donor administration (Fig. 3D).

A dramatic increase in the phosphorylated form of
STAT1 was detected in the dura mater. The pSTAT1 con-
tents were significantly increased 1 h after SNP administra-
tion, which peaked at 4 h, and then returned comparable to
the control after 6 h. Similar results were obtained after
GTN treatment (Fig. 3E).

NO Donors Induce Allodynia and Hyperalgesia
through a PKC-Dependent Mechanism

The administration of GTN and SNP produced a cold allo-
dynia (Fig. 4A) and heat hyperalgesia (Fig. 4B) that peaked
2 to 4 h after administration. The intracerebroventricular
injection of the PKC blocker Calphostin C (0.2 μg per
mouse) in coincidence with the peak of pain hypersensitiv-
ity, completely reversed the hypersensitivity to thermal stim-
uli induced by NO donors, leading to reaction times
comparable to the control values. Calphostin C, when ad-
ministered alone, was devoid of any analgesic activity
(Fig. 4A, 4B).

Calphostin C prevented the increase of pPKCγ (Fig. 4C)
and pPKCε (Fig. 4D) induced by SNP within the dura mater,
indicating that the doses and administration schedule of Cal-
phostin C in behavioral tests were ideal to block PKC activity.
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PKC-Dependent Activation of CREB and STAT1

To investigate the cellular events involved in the PKC-activated
pathway, we detected the effects produced on iNOS protein
levels. A drastic reduction of iNOS production was detected in
the dura mater of mice treated with the PKC blocker, Calphos-
tin C (Fig. 5A). Since iNOS was upregulated 6 h after NO
donors’ injection, when PKC phosphorylation was no longer
detected, we investigated whether the PKC-mediated regula-
tion of iNOS expressionwasmediated through the activation of
upstream modulators of iNOS. GTN and SNP reduced the Iκ-
Bα levels 1-2 h after administration. We, then, investigated if
NO donors might induce a PKC-dependent modulation of the

NF-κB pathway. Pretreatment with Calphostin C prevented the
Iκ-Bα reduction in the dura mater (Fig. 5B).

CREB and STAT1, respectively, showed a peak activation
2 and 4 h after NO donors’ administration. The modulation of
CREB expression was PKC-mediated, since the treatment
with Calphostin C, completely reversed the SNP-induced
decrease of CREB protein levels (Fig. 5C). The presence of
PKC-mediated activation of CREB was demonstrated by the
prevention of the pCREB upregulation after Calphostin C
administration (Fig. 5D).

A dramatic increase in the phosphorylated form of
STAT1 was detected in the dura mater of SNP-treated ani-
mals that peaked at 4 h. A PKC-mediated activation of
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Fig. 2 Effect of nitric oxide (NO) donors’ administration on interleu-
kin (IL)-1ß, inducible nitric oxide synthase (iNOS), and Iκ-Bα expres-
sion. Protein levels were detected by using an immunoblotting
technique. (A) Densitometric measurements of IL-1ß protein expres-
sion show a biphasic increase after nitroglycerin (GTN) (10 mg/kg,
i.p.; F[4, 18] 19.410) or sodium nitroprusside (SNP) (1 mg/kg i.p.; F[5,
24] 21.740), with a peak protein expression at 1 to 2 h and 6 h. IL-1ß
protein expression after lipopolysaccharide (LPS) injection was used as
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animals (C) or in mice receiving GTN or SNP 1 and 2 h after admin-
istration within the dura mater. iNOS protein appeared at 4 and 6 h
(GTN F[2, 9] 8.125); SNP (F[2, 9] 8.932). LPS was used as control.
(C) NO donors activate meningeal NF-κB pathway, as indicated by the
reduced levels of Iκ-Bα (GTN F[4, 15] 17.710; SNP 8F[4, 16]
21.670). The columns represent the densitometric quantitation of im-
munoreactive protein expressed relative to control. Representative
immunoblots were reported in each panel. *P<0.05, **P<0.01, and
***P<0.001 compared with the control group
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STAT1 was also demonstrated for this transcription factor
because the treatment with Calphostin C prevented the
phosphorylation of STAT1 (Fig. 5E).

c-Fos contents were measured in several areas within the
brainstem and the brain (PAG, trigeminal nucleus caudalis,
thalamus) of NO donor-treated mice, and a c-Fos overex-
pression was observed in all areas. As an example, we
reported the c-Fos content from PAG. c-Fos upregulation
was inhibited by Calphostin C administration, illustrating

that the NO donor-induced neuronal hyperactivation follows
a PKC-dependent mechanism (Fig. 5F).

Discussion

The administration of GTN in humans produces intracellular
events that lead to a short-lived (minutes) immediate headache
followed by a delayed second headache phase only in
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susceptible individuals (migraineurs). After GTN and SNP
administration in mice, we detected a prolonged pain hyper-
sensitivity that appeared 1 h after administration. These results
are supported by the observation that intravenous or local
application of the NO donor SNPwas followed by an increase
in spontaneous neuronal activity of trigeminal neurons with
meningeal afferent input with a delay of approximately 1 h,
indicating that NO produces delayed and long-lasting pro-
nociceptive changes in neurons in the trigeminal nucleus [9].
All these results are in good accordance with the clinical
“migraine model” in which an infusion of GTN provoked
migraine attacks with a similar delay of 1 to several hours [2,
3, 16]. Due to the short half-life of NO donors in the blood
plasma, this effect cannot be explained by a direct acti-
vation of trigeminal neurons, but rather the NO derived
from SNP or GTN is presumed to have triggered a
long-term process. We propose the NO-induced PKC-
dependent activation of a signaling pathway involving

CREB, STAT1, and NF-κB as the mechanisms underly-
ing this process.

Along with pain hypersensitivity, the systemic administra-
tion of GTN and SNP produced a delayed meningeal inflam-
mation in mice similar to that observed after NO donors’
infusion [10], as demonstrated by the delayed expression of
IL-1ß and iNOS within the dura mater. To elucidate the
mechanism responsible for the production of pain hypersen-
sitivity, we first investigated the role of PKC. It is known that
PKC represents a second messenger pathway coupled to the
induction of c-Fos, the protein product of the immediate early
gene c-fos, widely used as marker of neuronal activation and
pain [17]. It is also a family of enzymes highly involved in
pain modulation [11]. We observed an increased expression
and phosphorylation of PKCε and PKCγ, isoforms with a
prominent role in pain modulation [11], within meninges,
concomitantly with the presence of allodynia and hyperalge-
sia. Treatment with the PKC inhibitor, Calphostin C,
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Fig. 4 Allodynia and
hyperalgesia produced by nitric
oxide (NO) donors’ administra-
tion underlies a protein kinase
C (PKC)-mediated pathway of
activation. Cold allodynia (A)
and heat hyperalgesia (B) in-
duced by nitroglycerin (GTN)
(10 mg/kg i.p.) and sodium
nitroprusside (SNP) (1 mg/kg
i.p.) were reversed by intracer-
ebroventricular injection of the
PKC blocker, Calphostin C
(calph) (0.2 μg per mouse), and
10 mice per group were used.
PKC blockade completely pre-
vented the increased expression
of pPKCγ (C) and pPKCε (D)
within the dura mater. The pro-
tein levels were detected 4 h
after SNP administration (C)
(calph, 0.2 μg per mouse i.c.v.).
The columns represent the den-
sitometric quantitation of im-
munoreactive protein expressed
relative to control. Representa-
tive immunoblots are reported
in the top of each panel. *P<
0.05, **P<0.01, and ***P<
0.001 compared with the con-
trol group; °P<0.05, °°P<0.01
and °°°P<0.001 compared with
SNP-treated group. SNP+C0
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prevented allodynia and hyperalgesia. The same treatment
also prevented the increased phosphorylation of PKCε and
PKCγ in the dura mater, demonstrating that the Calphostin C
activity was related to its ability to block PKC activation,
ruling out the presence of any unspecific, PKC-independent
effect. Several lines of evidence illustrated that conventional
PKC isoenzymes [18, 19], PKCδ [12, 20], PKCη [21], and
PKCε [22] are involved in the LPS- and cytokine-induced
expression of inflammatory genes, including iNOS, as it
emerges from studies conducted on murine microglia/

macrophages. Furthermore, Calphostin C dramatically re-
duced meningeal iNOS expression after GTN and SNP ad-
ministration. It is plausible to suppose that NO donors might
directly activate PKC, and that this NO donor-induced PKC
activation contributes to meningeal nociception in this animal
model. This hypothesis is further supported by clinical evi-
dence illustrating that tamoxifen, the only agent with docu-
mented and appreciable central PKC-inhibitory activity
approved for human use [23], has shown promise for treating
the migraine, as attested by case reports [24–26] and clinical
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Fig. 5 Nitric oxide (NO) donors modulate dural intracellular pathways
through a protein kinase C (PKC)-dependent mechanism. Administra-
tion of Calphostin C (C) (0.2 μg per mouse i.c.v.) prevented the
increased expression of inducible NO synthase (iNOS) (F[2, 12]
5.61) (A), antagonized the reduction of Iκ-Bα levels (F[2, 13] 4.49)
(B), prevented the NO donor-induced decrease of cyclic AMP response
element binding protein (CREB) (F[2, 12] 5.27) (C), and increase of
phosphorylated CRED (pCREB) expression (F[2, 13] 7.22) (D).

Calphostin C administration reversed the sodium nitroprusside
(SNP)-induced increase of pSTAT1 (F[2, 13] 11.56) (E), and the
increased cerebral expression of c-Fos (F[2, 13] 6.11) (F). The columns
represent the densitometric quantitation of immunoreactive protein
expressed relative to control. Representative immunoblots are reported
in the top of each panel. *P<0.05, ***P<0.001 compared with the
control group. °P<0.05, °°P<0.01, and °°°P<0.001 compared with the
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studies [27, 28]. The positive effects of tamoxifen on the
migraine were attributed to its anti-estrogenic activity. Present
findings suggest that the tamoxifen-induced anti-migraine
activity might be related to its PKC-blocking properties, fur-
ther supporting the hypothesis that PKC signaling pathway
may play an important role in the pathophysiology of the
migraine. We can also suggest PKC as an innovative target
for migraine pain.

To further elucidate the PKC-mediated pathway after NO
donors’ administration, we investigated downstream effectors
of PKC, such as NF-κB, STAT1, and CREB, transcription
factors also involved in pain modulation. The relevance of
NF-κB and STAT pathways in the response to cytokines and
inflammation is widely known. The involvement of CREB in
pain perception is indicated by the increased CREB phosphor-
ylation in the dorsal horn in the early stages of inflammation
[29] and sciatic nerve injury [30].

Mice treated with GTN or SNP showed a consistent acti-
vation of NF-κB, CREB, and STAT1 in the dura mater in
coincidence with pain hypersensitivity. PKC appears to be an
upstream modulator of these transcription factors because the
PKC inhibitor, Calphostin C, prevented the IκBα degradation
and the CREB and STAT1 hyperphosphorylation, allowing us
to hypothesize a role of these transcription factors in the NO
donor-induced meningeal pain hypersensitivity. A further cor-
relation between these transcription factors and migraine pain
arises from the observation that the activation of the NF-κB
pathway is attenuated by parthenolide, the active constituent
of feverfew [31] and aspirin [32], anti-inflammatory drugs
used for migraine treatment. Recently, it has been observed
that triptans, widely used anti-migraine drugs, attenuate
capsaicin-induced CREB phosphorylation within the trigem-
inal nucleus caudalis [33].

The NF-κB and STAT1-dependent signaling pathways
are integral to the transcriptional regulation of many inflam-
matory genes, and these transcriptional factors often coop-
eratively regulate the transcriptional activation of many
genes. It has been demonstrated that IFN-γ-induced
STAT1α and TNFα-induced NF-κB synergistically regulate
the transcription of the intercellular adhesion molecule-1
and IRF-1 genes [34–36]. Furthermore, the transcriptional
coactivator CREB-binding protein cooperates with STAT1
and NF-κB for synergistic transcriptional activation of the
gene for CXC ligand 9, an IFNγ-inducible chemokine [37].
We might hypothesize that CREB, STAT1, and NF-κB,
acting as downstream effectors of PKC, can cooperatively
modulate the sensation of pain to produce a condition of
hypersensitivity to noxious stimuli.

Concerning the cell type that might be involved in NO
donors’ dural effect, it has been reported that after GTN
infusion in rats, a meningeal inflammation characterized by
increased IL-6 levels and iNOS expression in dural macro-
phages was observed [10]. We detected a similar pattern of

meningeal inflammation after i.p. administration of NO
donors, and we can hypothesize a prominent role of dural
macrophages. However, we also observed a PKCγ upregu-
lation. Because PKCγ is a neuronal PKC isoform, we can-
not exclude a neuronal involvement.

Although GTN can accumulate and reach toxic levels in
adipose tissue and lipid-rich organs, such as the brain, we
can exclude that the hypersensitivity observed was related to
an altered viability of mice. NO donors did not modify
spontaneous mobility, inspection activity, locomotor activi-
ty, and were not endowed with visible behavioral side
effects at any time point. In regard to the cardiovascular
effect, both GTN and SNP systemically administered at the
doses used in the present study induced moderate hypoten-
sion that lasted 40 and 80 minutes, respectively [38]. No
altered cardiovascular parameter was observed 2 and 4 h
after treatment [38], and we can suppose that pain hyper-
sensitivity was not subsequent to a hypotensive effect.

Concerning the possible mechanism of action of NO and
subsequent steps in the NO-induced cascade, it has been
clinically suspected that delayed GTN-induced migraine
could be caused by iNOS activation and increased produc-
tion of NO [1]. However, we observed that the NO donor-
induced pain hypersensitivity preceded iNOS expression,
suggesting a lack of involvement of iNOS in the induction
of the painful symptomatology, typical of this animal model
of meningeal nociception. Clinical trials investigating the
efficacy of selective iNOS inhibitors for the acute [39] and
prophylactic [40] treatment of migraine showed negative
results, further supporting the hypothesis that iNOS is not
directly involved in the induction of migraine pain. Consid-
ering the high iNOS inhibition achieved with these inhib-
itors, these negative results indicate that iNOS is unlikely to
be a suitable target for the anti-migraine therapy.

GTN doses used in animal studies are always higher than
those able to cause a migraine attack in migraineurs. Intra-
venous infusion of GTN can allow the use of a dose that,
whereas supramaximal to the dose-producing migraine in
humans is much lower than that administered intraperito-
neally. After both administration routes, GTN facilitates
transmission of afferent fibers to the trigeminal nucleus [8,
41]. However, after GTN infusion, the c-Fos expression was
unchanged [8], whereas c-Fos was upregulated after intra-
peritoneal injection into selected areas of the brain that are
primarily involved in the transmission of cephalic pain [7,
42], and hyperalgesia was induced [14]. Based on these
data, the murine phenotype we obtained appears to be rep-
resentative not only for NO-induced pain hypersensitivity,
but also for the migraine pain experienced by migraineurs
during a migraine attack.

These findings highlight the upregulation and increased
phosphorylation of PKCγ and PKCε in an animal model
induced by NO donors’ administration, with a time course
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consistent with migraine attacks. The activation of the PKC-
mediated pathways was concomitant with the presence of
pain hypersensitivity and appeared to be responsible for the
meningeal nociception. We can also suggest PKC as an
innovative target for migraine pain.

Required Author Forms Disclosure forms provided by the authors
are available with the online version of this article.
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