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Abstract Mitochondrial DNA (mtDNA) depletion syn-
dromes (MDS) are a genetically and clinically heteroge-
neous group of autosomal recessive disorders that are
characterized by a severe reduction in mtDNA content
leading to impaired energy production in affected tissues
and organs. MDS are due to defects in mtDNA mainte-
nance caused by mutations in nuclear genes that function in
either mitochondrial nucleotide synthesis (TK2, SUCLA2,
SUCLG1, RRM2B, DGUOK, and TYMP) or mtDNA repli-
cation (POLG and C10orf2). MDS are phenotypically het-
erogeneous and usually classified as myopathic,
encephalomyopathic, hepatocerebral or neurogastrointesti-
nal. Myopathic MDS, caused by mutations in TK2, usually
present before the age of 2 years with hypotonia and
muscle weakness. Encephalomyopathic MDS, caused by
mutations in SUCLA2, SUCLG1, or RRM2B, typically
present during infancy with hypotonia and pronounced
neurological features. Hepatocerebral MDS, caused by
mutations in DGUOK, MPV17, POLG, or C10orf2, com-
monly have an early-onset liver dysfunction and neurolog-
ical involvement. Finally, TYMP mutations have been
associated with mitochondrial neurogastrointestinal en-
cephalopathy (MNGIE) disease that typically presents be-
fore the age of 20 years with progressive gastrointestinal
dysmotility and peripheral neuropathy. Overall, MDS are

severe disorders with poor prognosis in the majority of
affected individuals. No efficacious therapy is available
for any of these disorders. Affected individuals should have
a comprehensive evaluation to assess the degree of in-
volvement of different systems. Treatment is directed main-
ly toward providing symptomatic management. Nutritional
modulation and cofactor supplementation may be benefi-
cial. Liver transplantation remains controversial. Finally,
stem cell transplantation in MNGIE disease shows promis-
ing results.
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Introduction

Mitochondrial DNA (mtDNA) depletion syndromes
(MDS) are autosomal recessive disorders with a broad
genetic and clinical spectrum that are characterized by a
severe reduction in mtDNA content in affected tissues
and organs. An adequate amount of mtDNA is required
for the production of key subunits of mitochondrial
respiratory chain complexes and therefore for energy
production. Therefore, mtDNA depletion results in or-
gan dysfunction that is likely due to insufficient synthe-
sis of respiratory chain components needed for adequate
energy production [1–3].

MDS are associated with defects in mtDNA maintenance
caused by mutations in nuclear genes that function in either
mitochondrial deoxyribonucleoside triphosphate (dNTP) syn-
thesis or mtDNA replication. TK2 (thymidine kinase 2),
SUCLA2 [adenosine diphosphate (ADP)-forming succinyl
CoA ligase beta subunit], SUCLG1 [guanosine diphosphate
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(GDP)-forming succinyl CoA ligase alpha subunit], RRM2B
(ribonucleotide reductase M2 B subunit), DGUOK (deoxy-
guanosine kinase), and TYMP (thymidine phosphorylase) en-
code proteins that maintain the mitochondrial dNTP pool;
therefore, mutations in any of these genes result in depleting
the mitochondria fromDNA building blocks and, subsequent-
ly, mtDNA depletion. POLG (DNA polymerase gamma) and
C10orf2 (Twinkle) are essential for mtDNA replication; there-
fore, mutations in these genes result in insufficient mtDNA
synthesis to keep up with mtDNA turnover and segregation to
daughter cells during cell divisions resulting in reduction of
mtDNA content [4, 5].

MDS are phenotypically heterogeneous and may affect
either a specific organ or a combination of organs, including
muscle, liver, brain, and kidney. Clinically, MDS are usually
classified as 1 of 4 forms: a myopathic form associated with
mutations in TK2; an encephalomyopathic form associated
with mutations in SUCLA2, SUCLG1, or RRM2B; a hepa-
tocerebral form associated with mutations in DGUOK,
MPV17, POLG, or C10orf2; and a neurogastrointestinal
form associated with mutations in TYMP [4, 5].

In this review we discuss the genetic basis, clinical man-
ifestations, and therapeutic options for MDS.

Genetic Basis of mtDNA Depletion Syndromes

MDS are due to defects in mtDNA maintenance caused by
mutations in nuclear genes, which function in either

maintaining the mitochondrial nucleotide pool (TK2,
DGUOK, SUCLA2, SUCLG1, RRM2B, and TYMP) or by
mutations in genes associated with mtDNA replication
(POLG and C10orf2). The function of the MPV17 gene
remains unclear (Fig. 1).

Defects in Maintaining Mitochondrial Nucleotide Pool

Unlike nuclear DNA, which replicates with each cell
division, mtDNA replicates continuously and indepen-
dently of cell division. dNTPs can be synthesized via
either the de novo pathway, which is cell cycle-regulated,
thereby operative only in S-phase cells or the salvage
pathway in which dNTPs are produced by utilizing pre-
existing deoxynucleosides to synthesize DNA precursors.
As mtDNA synthesis is continuous throughout the cell
cycle, the salvage pathway becomes essential for mtDNA
maintenance. TK2, DGUOK, SUCLA2, SUCLG1,
RRM2B, and TYMP encode proteins that maintain the
mitochondrial dNTP pool mainly through salvage path-
ways; therefore, mutations in any of these genes result in
depleting the mitochondria from DNA building blocks
with subsequent mtDNA depletion.

Mitochondrial thymidine kinase 2 (TK2) is encoded by the
nuclear gene TK2 and plays an essential role in the pyrimidine
nucleoside salvage pathway [6]. It mediates the first, and rate-
limiting, step in the phosphorylation of pyrimidine nucleo-
sides in the mitochondrial matrix. Mitochondrial deoxygua-
nosine kinase is encoded by the nuclear gene DGUOK and is
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Fig. 1 Schematic presentation of protein involved in mitochondrial
nucleotide pools maintenance and mitochondrial DNA replication.
TK2 = mitochondrial thymidine kinase 2 (encoded by TK2 gene);
dGK = mitochondrial deoxyguanosine kinase (encoded by the
DGUOK gene); SUCL = succinyl CoA ligase (SUCL is composed of
an alpha subunit, encoded by SUCLG1 and a beta subunit, encoded by
either SUCLA2 or SUCLG2); NDPK = nucleoside diphosphate kinase;
POLG = DNA polymerase gamma (POLG is a heterotrimer enzyme
composed of one catalytic subunit encoded by POLG and two

accessory subunits encoded by POLG2); TP = thymidine phosphory-
lase (encoded by TYMP gene); RNR = ribonucleotide reductase
(RRM2B encodes the p53-inducible small subunit (p53R2) of the
RNR); dNMP = deoxynucleoside monophosphate; dNDP = deoxynu-
cleoside diphosphate; dNTP = deoxynucleoside triphosphate; NDP =
nucleoside diphosphate; dTMP = deoxythymidine monophosphate;
TK1 = cytosolic thymidine kinase 1; TYMS = thymidylate synthase.
The twinkle protein is encoded by C10orf2 and the MPV17 by the
MPV17 gene
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essential for the purine nucleoside salvage pathway as it
mediates the first step in the phosphorylation of purine nucleo-
sides in the mitochondrial matrix [7]. Mutations in TK2 or
DGUOK result in impaired synthesis of mitochondrial
dNTPs, the building blocks for mtDNA, leading to decreased
mtDNA amount and mtDNA depletion.

SUCLA2 and SUCLG1 encode subunits of succinyl CoA
ligase (SUCL). SUCL is a mitochondrial tricarboxylic
acid cycle enzyme that catalyzes the reversible conver-
sion of succinyl-CoA and ADP or GDP to succinate and
adenosine triphosphate or guanosine triphosphate. SUCL
is composed of an alpha subunit, encoded by SUCLG1
and a beta subunit, encoded by either SUCLA2 or
SUCLG2. The alpha subunit forms a heterodimer with
either of its beta subunits, resulting in an ADP-forming
SUCL and a GDP-forming SUCL, respectively. SUCL
also forms a complex with the mitochondrial nucleoside
diphosphate kinase, and the lack of this complex forma-
tion in SUCL deficiency has been suggested to disturb
the kinase function, resulting in decreased mtDNA syn-
thesis leading to mtDNA depletion [8].

RRM2B encodes the p53-inducible small subunit
(p53R2) of ribonucleotide reductase, a cytosolic enzyme
that catalyzes the terminal step of de novo synthesis of
deoxyribonucleoside by direct reduction of ribonucleoside
diphosphates to their corresponding deoxyribonucleoside
diphosphates. The p53R2 is expressed in post-mitotic cells
and therefore has a key function in the maintenance of
dNTP pools for mtDNA synthesis [9].

TYMP encodes thymidine phosphorylase (TP), which is a
cytosolic enzyme that catalyzes the conversion of thymidine
to thymine and deoxyuridine to uracil, and is therefore
essential for the nucleotide salvage pathway. Low TP activ-
ity results in the accumulation of thymidine and deoxyur-
idine, leading to an imbalance of cytosolic dNTP pools.
Because the mitochondrial dNTP pool relies, in part, on
dNTP imported from the cytosol, an imbalanced cytosolic
dNTP pool can lead to an imbalanced mitochondrial dNTP
pool that can impair mtDNA synthesis [4].

Defects in mtDNA Replication

POLG encodes the catalytic subunit of DNA polymerase
gamma, which is a heterotrimer enzyme composed of one
catalytic subunit encoded by POLG and two accessory sub-
units encoded by POLG2 that assist in binding and process-
ing the synthesized DNA. DNA polymerase gamma is
required for mtDNA synthesis as it is the only DNA poly-
merase in humans that allows for replication and repair of
mtDNA [10]. The twinkle protein, encoded by C10orf2,
serves the important function of a DNA helicase that is
required for DNA replication [11]. Therefore, POLG and
C10orf2 are essential for mtDNA replication and mutations

in these genes result in insufficient mtDNA synthesis to
keep up with mtDNA turnover and segregation to daughter
cells during cell divisions, resulting in a reduction of
mtDNA content and mtDNA depletion.

mtDNA Depletion Caused by Defects in a Protein
of Unknown Function

MPV17 encodes the MPV17 protein, an inner mitochondrial
membrane protein whose function and role in the pathogen-
esis of mtDNA depletion are as yet unknown. It has been
suggested that MPV17 plays a role in controlling mtDNA
maintenance and oxidative phosphorylation activity in
mammals and yeast [12]. A dysfunctional MPV17 protein
caused by MPV17 mutations impairs mtDNA maintenance
and can cause mtDNA depletion.

Clinical Manifestations of MDS

MDS are classified as 1 of 4 clinical forms: a myopathic
form associated with mutations in TK2, an encephalomyo-
pathic form associated with mutations in SUCLA2,
SUCLG1, or RRM2B, a hepatocerebral form associated with
mutations in DGUOK, MPV17, POLG, or C10orf2, and a
neurogastrointestinal form associated with mutations in
TYMP (Table 1).

TK2-Related Myopathic MDS

To date, approximately 50 affected individuals have been
reported with TK2-related MDS. The clinical presentation of
TK2-related MDS is variable, with a broad phenotype.
Initial development is typically normal and the majority of
affected children present before the age of 2 years with
gradual onset of hypotonia, generalized fatigue, decreased
physical stamina, proximal muscle weakness, and feeding
difficulty. Some patients develop facial weakness and bulbar
weakness, including dysarthria and dysphagia. Hypotonia
and weakness is observed in all patients and previously
acquired motor skills are lost. However, cognitive function
is typically spared [13–23].

Although TK2-related MDS has been thought to be as-
sociated with a purely myopathic form, other organ system
involvements have been reported, including an encephalo-
myopathic presentation with hypotonia, weakness, epilepsy,
and microcephaly [20], and hepatic involvement with hepa-
tomegaly and elevated transaminases accompanied by
mtDNA depletion in muscle and liver [19]. Other, less
common, presentations include spinal muscular atrophy-
like presentation [13] and chronic progressive external oph-
thalmoplegia with proximal muscle weakness [23]. Milder
presentations have been reported and include late onset
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proximal muscle weakness [15], adult-onset progressive
myopathy [22], and sensorineural hearing loss [21].

Serum creatine phosphokinase concentration is usual-
ly elevated and electromyography (EMG) usually shows
non-specific myopathic changes. Histopathological find-
ings on skeletal muscle include prominent variance in
fiber size, sarcoplasmic vacuoles, and increased connec-
tive tissue. Ragged red fibers are present. Succinate
dehydrogenase activity is increased, whereas cytochrome
c oxidase activity is low, or absent. Electron microscopy
shows abnormal mitochondria with circular cristae.
mtDNA content is typically severely reduced in muscle
tissue. Electron transport chain (ETC) activity assays in
skeletal muscle typically show decreased activity of
multiple complexes with complex I, I + III, and IV
being the most affected [13–23].

Typically, muscle weakness rapidly progresses leading to
respiratory failure and death within a few years of onset.
The most common cause of death is pulmonary infection.
Only a few patients have survived to late childhood and
adolescence.

SUCLA2 and SUCLG1-Related Encephalomyopathic MDS

Nearly 20 individuals have been reported with SUCLA2-
related MDS. Mutations in SUCLG1 have been reported less
frequently with a similar phenotype to that observed in
SUCLA2-related MDS [4, 24–30]. Affected infants present
with hypotonia typically before the age of 6 months. All
affected children develop hypotonia, muscle atrophy, and
psychomotor delay. Other frequent manifestations include
progressive scoliosis or kyphosis, abnormal movements,
including dystonia and athetoid or choreiform movements,
feeding difficulty, gastroesophageal reflux, sensorineural
hearing impairment, postnatal growth retardation, and res-
piratory insufficiency that can result in frequent pulmonary
infections. Other, less common, manifestations include hy-
perhidrosis, strabismus, ptosis, and epilepsy presenting with
either infantile spasms or generalized convulsions. Urine
organic acids analysis consistently shows elevated methyl-
malonic acid. Similarly, plasma methylmalonic acid concen-
tration is elevated. Lactate is elevated in both plasma and
cerebrospinal fluid (CSF) in most affected individuals.

Table 1 Clinical phenotypes of different mitochondrial DNA depletion syndromes

Mitochondrial DNA
depletion syndromes

Age of onset Common clinical features

Myopathic

TK2-related Infancy—early childhood Hypotonia and muscle weakness, facial weakness, bulbar weakness
(dysarthria and dysphagia), elevated serum creatine phosphokinase

Encephalomyopathic

SUCLA2- and
SUCLG1-related

Infancy Hypotonia and muscle weakness, psychomotor delay, scoliosis/kyphosis,
abnormal movement disorders (dystonia, athetoid, or choreiform),
sensorineural hearing impairment, epilepsy, growth retardation, lactic
acidosis, elevated methylmalonic acid in urine and plasma, cortical
atrophy and basal ganglia involvement in neuroimaging

RRM2B-related Neonatal—infancy Hypotonia and muscle weakness, psychomotor delay, microcephaly,
sensorineural hearing loss, failure to thrive, lactic acidosis

Hepatocerebral

DGUOK-related Neonatal Hepatic dysfunction, psychomotor delay, hypotonia, rotary nystagmus
developing into opsoclonus, lactic acidosis, hypoglycemia

MPV17-related Infantile—childhood Hepatic dysfunction, psychomotor delay, hypotonia, peripheral neuropathy,
lactic acidosis, hypoglycemia, leukoencephalopathy in neuroimaging

POLG-related Early childhood Hepatic dysfunction, epilepsy, psychomotor delay, ataxia, neuropathy,
hyporeflexia and hypotonia evolving into spastic paraparesis, stroke or
stroke-like episodes, myoclonus, choreoathetosis, parkinsonism, nystagmus,
somnolence, irritability, cortical visual loss, and sensorineural hearing
impairment, generalized brain atrophy in neuroimaging

C10orf2-related Neonatal—infancy Hepatic dysfunction, psychomotor delay, epilepsy, peripheral neuropathy,
hypotonia, ophthalmoplegia, nystagmus, athetosis, ataxia, sensorineural
hearing impairment, lactic acidosis, cerebellar cortical atrophy in
neuroimaging

Neurogastrointestinal

TYMP-related Late childhood—adolescence Gastrointestinal dysmotility, weight loss, peripheral neuropathy, ptosis,
ophthalmoplegia, elevated thymidine and deoxyuridine in plasma,
leukoencephalopathy in neuroimaging
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EMG may reveal findings suggestive of motor neuron in-
volvement, whereas neuroimaging may show cortical atro-
phy, bilateral basal ganglia involvement, and delayed
myelination. Histopathological findings on skeletal muscle
include increased fiber variability, increased number of mi-
tochondria, and extensive intracellular fat accumulation.
ETC activity assays in muscle typically show a combined
deficiency of respiratory complex I, III, and IV, with normal
complex II activity. Quantitation of mtDNA shows a de-
creased mtDNA content in muscle. Prognosis is poor, with
most affected children dying in childhood, most commonly
from an intercurrent infection [24–30].

RRM2B-Related Encephalomyopathic MDS

To date, RRM2B mutations have been reported in about 15
infants with severe encephalomyopathic MDS that is associ-
ated with early-onset (neonatal or infantile), multi-organ pre-
sentation, and mortality during infancy. Affected individuals
typically present during the first months of life with hypoto-
nia, lactic acidosis, failure to thrive, tubulopathy, microceph-
aly, psychomotor delay, sensorineural hearing loss, and
profoundmtDNA depletion in muscle. The disease progresses
rapidly, leading to death in few months [4, 31–34].

RRM2B mutations have also been reported to cause a
mitochondrial neurogastrointestinal encephalopathy
(MNGIE)-like phenotype with mtDNA depletion [35] and
autosomal-dominant progressive external ophthalmoplegia
(PEO) with multiple mtDNA deletions [36, 37].

DGUOK-Related Hepatocerebral MDS

Approximately 100 individuals have been reported with
DGUOK-related MDS, which can present in two forms:
multi-organ disease in neonates and isolated hepatic disease
later in infancy or childhood [38]. The majority of affected
individuals have a neonatal-onset multi-organ illness that
presents with lactic acidosis and hypoglycemia in the first
week of life. Within weeks of birth, all infants develop
hepatic disease and neurologic dysfunction. Severe myopa-
thy, developmental regression, and typical rotary nystagmus
developing into opsoclonus are also seen. Cholestasis is
prominent early in the clinical course. Liver involvement
may cause neonatal- or infantile-onset liver failure that is
generally progressive with ascites, edema, and coagulop-
athy. A minority of affected individuals present initially in
infancy or childhood with isolated hepatic disease, occa-
sionally following a viral illness. Affected individuals with
this form may develop mild hypotonia and renal involve-
ment manifesting as proteinuria and aminoaciduria [2,
38–55]. More recently, DGUOK mutations have been
reported in a neonate with clinical and autopsy findings
consistent with neonatal hemochromatosis and mtDNA

depletion [56], and in individuals with adult-onset mito-
chondrial myopathy and mtDNA multiple deletions in skel-
etal muscle [57].

The majority of affected newborns with the multi-organ
form of the disease show elevated serum concentration of
tyrosine or phenylalanine on newborn screening [54, 55].
Findings of intrahepatic cholestasis typically include eleva-
tions in serum concentrations of liver transaminases, gamma-
glutamyltransferase (GGT), and conjugated hyperbilirubine-
mia. Increased serum concentration of ferritin is observed in a
large number of affected infants. mtDNA content is reduced in
liver and muscle [54, 55]. ETC activity in liver typically
shows a combined deficiency of complexes I, III, and IV
[49]. Liver histopathology typically reveals microvesicular
cholestasis, but may show bridging fibrosis, giant cell hepati-
tis, or cirrhosis. Liver electron microscopy may reveal an
increase in the number of mitochondria and is commonly
associated with abnormal cristae [40, 45, 54, 55, 58].

Hepatic dysfunction is progressive in the majority of
individuals with both forms of DGUOK-related MDS and
is the most common cause of death. Hepatocellular carcino-
ma has also been reported in 1 patient. For children with the
multi-organ form, liver transplantation provides no survival
benefit [53].

MPV17-Related Hepatocerebral MDS

MPV17-related hepatocerebral MDS, an infantile-onset dis-
order, can present with a spectrum of combined hepatic,
neurologic, and metabolic manifestations. Approximately
30 affected individuals have been reported with MPV17-
related hepatocerebral MDS [59–68]. Of note, among those
confirmed cases are individuals with Navajo neurohepatop-
athy who were found to have homozygous p.Arg50Gln
mutations in MPV17. Navajo neurohepatopathy, a disorder
prevalent in the Native American Navajo population, has the
manifestations of MPV17-related hepatocerebral MDS, as
well as painless fractures, acral mutilation, and corneal
anesthesia, ulceration, and scarring [60].

Affected individuals typically present with manifesta-
tions of liver dysfunction, including jaundice, cholestasis,
and coagulopathy. Infancy is the typical age of onset; how-
ever, individuals homozygous for the p.Arg50Gln mutation
may present later in childhood [60]. In the vast majority of
affected individuals, liver disease progresses to liver failure
typically during infancy or early childhood. Hepatomegaly
and liver cirrhosis occur in some affected individuals.
Hepatocellular carcinoma has also been reported in 2 affect-
ed individuals. The vast majority of affected individuals
exhibited neurologic manifestations, including developmen-
tal delay, hypotonia, muscle weakness, and motor and sen-
sory peripheral neuropathy. Some affected individuals
presented with psychomotor delays during early infancy,
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while others had normal development early in life followed by
loss of motor and cognitive abilities later in infancy or early
childhood. Less frequent neurologic manifestations include
epilepsy, ataxia, dystonia, microcephaly, cerebrovascular in-
farction, and subdural hematoma. Failure to thrive is one of
the common manifestations, although some children have
normal growth, especially early in the course of the disease.
The vast majority of affected individuals have metabolic
derangements, including lactic acidosis and hypoglycemia,
which typically presents during the first 6 months of life.
Less frequent manifestations include renal tubulopathy, hypo-
parathyroidism, and gastrointestinal dysmotility that manifests
as gastroesophageal reflux, cyclic vomiting, and diarrhea.
Corneal anesthesia and ulcers were reported in individuals
homozygous for the mutation p.Arg50Gln [59–68].

More recently, MPV17 mutations have been reported in
adult presentation of neuropathy and leukoencephalopathy
with multiple mtDNA deletions in muscle indicating that
MPV17 mutations are associated with an evolving broader
phenotype [69]

Affected infants demonstrate elevated transaminases and
GGT, and hyperbilirubinemia. Liver histopathology may
show cholestasis and cirrhosis. Neuroimaging may show
white matter abnormalities (leukoencephalopathy). mtDNA
content is severely and consistently reduced in liver tissue,
and can also be reduced in muscle tissue. ETC activity
assays in liver and muscle tissue typically show decreased
activity of multiple complexes with complex I or I + III
being the most affected [66].

Liver disease typically progresses to liver failure in af-
fected children and liver transplantation remains the only
treatment option for liver failure. Approximately half of
affected children reported did not undergo liver transplanta-
tion and died because of progressive liver failure—the ma-
jority during infancy or early childhood. A few children
were reported to survive without liver transplantation [66].

POLG-Related Hepatocerebral MDS

POLG-related disorders present a continuum of broad and
overlapping phenotypes presenting from early childhood to
late adulthood. The clinical phenotypes of POLG-related dis-
orders include autosomal recessive and dominant adult-onset
PEO [70–73], myoclonic epilepsy, myopathy, sensory ataxia
(MEMSA) syndrome [74, 75], ataxia-neuropathy spectrum
including mitochondrial recessive ataxia syndrome (MIRAS),
and sensory ataxia, neuropathy, dysarthria, ophthalmoplegia
(SANDO) syndrome [76–79], and hepatocerebral MDS
(Alpers-Huttenlocher syndrome) [80–90]. More recently,
POLG mutations were identified in individuals with clinical
features of MNGIE, but no leukoencephalopathy [91].

The incidence of Alpers-Huttenlocher syndrome has been
estimated to be ~1:50,000 [92]. It is the most severe

phenotype associated with POLG mutations and character-
ized by a progressive encephalopathy with intractable epi-
lepsy and psychomotor delay, neuropathy, and hepatic
failure. Affected individuals usually present between the
age of 2 and 4 years with seizures (focal, generalized,
myoclonic, epilepsia partialis continua, or status epilepti-
cus), headaches that are typically associated with visual
sensations or visual auras, hypotonia, and psychomotor
regression. Early in the disease course areflexia and hypo-
tonia are present and later followed by spastic paraparesis
that evolves over months to years, leading to psychomotor
regression. All affected individuals develop neuropathy,
ataxia, and loss of cognitive function, including concentra-
tion, language skills, and memory. Affected individuals may
also develop stroke and stroke-like episodes, myoclonus,
choreoathetosis, parkinsonism, nystagmus, somnolence, ir-
ritability, loss of normal emotional responses, depression,
cortical visual loss, and sensorineural hearing loss.
Neurologic signs and symptoms may worsen during infec-
tions or other stressful situations. Affected individuals de-
velop liver dysfunction with elevated transaminases,
hypoalbuminemia, coagulopathy, hypoglycemia, and hyper-
ammonemia. Liver involvement can progress rapidly to end-
stage liver failure within a few months. CSF protein is
generally elevated. Neuroimaging may show gliosis and
generalized brain atrophy. Liver histology may demonstrate
macro- and microvesicular steatosis, centrilobular necrosis,
fibrosis, cirrhosis, bile duct proliferation, and mitochondrial
proliferation. mtDNA content is reduced in liver. Disease
progression is variable, with life expectancy from onset of
symptoms ranging from 3 months to 12 years [80–90].

C10orf2-Related Hepatocerebral MDS

Mutations in C10orf2 have been associated with variable
phenotypes, including infantile-onset spinocerebellar ataxia
[11, 93–97], autosomal dominant PEO [98–100], and hep-
atocerebral MDS [101, 102]. Mutations in C10orf2 are a
rare cause of early-onset hepatocerebral MDS that has been
reported in 5 children from 2 unrelated families. Affected
individuals typically present in the neonatal or infantile
period with lactic acidosis, hepatomegaly, hypotonia, and
psychomotor delay. The neurologic involvement progresses
to include hyporeflexia, muscular atrophy, ophthalmoplegia,
nystagmus, athetosis, ataxia, epilepsy, sensory neuropathy,
sensorineural hearing impairment, psychomotor regression.
Liver involvement includes cholestasis, increased transami-
nases, and coagulopathy. Affected infants may also have
feeding difficulties and growth retardation. Lactate is in-
creased in plasma and CSF. Neuroimaging can show cere-
bellar cortical atrophy. ETC activity assays show reduced
activities of complexes I, III, and IV. mtDNA content is
severely reduced in liver tissue. Prognosis is poor with 3
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of the reported affected children dying between 2 and 3 years
of age [101, 102].

MNGIE Disease

Mutations in TYMP have been reported in about 70 individ-
uals with MNGIE disease [103]. Affected individuals usu-
ally present clinical manifestations between the first and
fifth decades with the majority starting with symptoms
before age 20 years. All affected individuals develop weight
loss and progressive gastrointestinal dysmotility manifesting
as early satiety, nausea, dysphagia, gastroesophageal reflux,
postprandial emesis, episodic abdominal pain and disten-
tion, and diarrhea. In addition, all affected individuals have
peripheral demyelinating motor and sensory neuropathy that
may be accompanied by axonal neuropathy in some cases.
The neuropathy typically presents with distal weakness and
paresthesias occurring in a symmetric stocking-glove distri-
bution. Ptosis and ophthalmoplegia are common findings.
Intellectual disability occurs in some individuals. Other
variable manifestations include hepatic cirrhosis with in-
creased liver enzymes and macrovesicular steatosis, anemia,
sensorineural hearing loss, short stature, autonomic nervous
system dysfunction (usually orthostatic hypotension), blad-
der dysfunction, ventricular hypertrophy, and diverticulosis
[103–119].

Affected individuals can have elevated CSF protein and
plasma lactate. Thymidine and deoxyuridine are increased
in plasma. In affected individuals, thymidine phosphorylase
enzyme activity in leukocytes is usually less than 10 % of
the control mean [107, 112]. EMG and nerve conduction
velocity show decreased motor and sensory nerve conduc-
tion velocities, and myopathic changes. Neuroimaging typ-
ically demonstrates diffuse white matter abnormalities
(leukoencephalopathy) [103, 117]. mtDNA depletion, mito-
chondrial proliferation, and smooth cell atrophy are ob-
served in the external layer of the muscularis propria in the
stomach and in the small intestine. Skeletal muscle general-
ly shows histologic abnormalities of a mitochondrial myop-
athy including ragged-red fibers and defects in single or
multiple ETC complexes with the most common defect in
complex IV. However, MNGIE has been reported without
skeletal muscle involvement at the morphological, enzymat-
ic, or mtDNA content level [120].

MNGIE is a progressive disease with mean age of death
is approximately 40 years (ranging from 25–60 years) [108].

Therapeutic Options for MDS

Although MDS are severe disorders with poor prognosis in
the majority of affected individuals, no curative therapy is
available for any of these disorders. MDS are multi-organ

disorders; therefore, affected individuals should have a com-
prehensive evaluation to assess the degree of involvement of
different systems. Management of MDS should involve a
multidisciplinary team, including different specialists and
aims to provide supportive care and symptomatic treatment
for complications associated with these disorders. Other
treatment options for some MDS include dietary modula-
tion, cofactor supplementation, liver transplantation, and
stem cell transplantation.

Assessment of the Extent of MDS

Affected individuals with MDS should have an extensive
evaluation to understand the involvement of different
organs, including the neuromuscular, hepatic, gastrointesti-
nal, cardiac, and renal systems.

Almost all affected individuals with MSD show neuro-
muscular manifestations; therefore, a neurology consulta-
tion with comprehensive neurologic examination and
developmental/cognitive assessment are mandatory. The
following diagnostic modalities can be used to assess the
degree of neurological involvement: neuroimaging (mainly
brain magnetic resonance imaging) to establish the degree of
central nervous system, nerve conduction velocity to establish
the degree of the peripheral nervous system involvement,
EMG to assess myopathy, and electroencecephalography if
seizures are suspected. A thorough ophthalmologic and hear-
ing evaluation is also required.

The degree of liver involvement in the hepatocerebral
forms of MDS can be assessed by liver function tests,
including liver transaminases, GGT, albumin, fasting blood
glucose, ammonia, and coagulation profile; ultrasound ex-
amination to assess liver size and texture, and for the pres-
ence of masses; alpha fetoprotein (AFP) to screen for
hepatocellular carcinoma; and hepatology/liver transplanta-
tion consultation.

Gastrointestinal evaluation in MNGIE disease may depend
on the symptoms and can include the following: gastrointes-
tinal consultation, abdominal imaging (X-ray and computed
tomography), upper gastrointestinal contrast radiography,
esophagogastroduodenoscopy, sigmoidoscopy, liquid phase
scintigraphy, and antroduodenal manometry. These studies
may show hypoperistalsis, gastroparesis, dilated duodenum,
and diverticulosis. Small bowel manometry shows reduced
amplitude of contractions [103].

Echocardiogram and electrocardiogram are needed to
determine cardiac involvement. Pulmonary function tests
and assessment of blood gases are needed for patients with
myopathy to assess for respiratory insufficiency. Nutritional
evaluation and swallowing assessment are needed in those
with feeding difficulty and growth retardation. Urine analy-
sis, urine electrolytes, and urine amino acids can be per-
formed to assess renal tubulopathy.
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Symptomatic Management for MDS

Seizures are common features in MDS with neurological
involvement. Seizure control with antiepileptic medications
is the goal of treatment; however, refractory epilepsy may be
very difficult to control. The use of high-dose anticonvul-
sants and/or treatment with more than 1 medication often
becomes necessary to control refractory seizures. It is very
important to avoid valproic acid (Depakene®) and sodium
divalproate (divalproex) (Depakote®) in treating seizures
in MDS, particularly POLG-related disorders, because of
the risk of precipitating and/or accelerating liver disease
[121, 122].

Physical therapy can help maintain muscle function and
prevent joint contractures. Feeding difficulties and failure to
thrive may require nutritional support by experienced dieti-
tian, occupational therapy to improve oromotor functions,
and the use of a nasogastric tube or gastrostomy tube
feedings.

Respiratory insufficiency can benefit from chest physio-
therapy, aggressive antibiotic treatment of chest infections,
and artificial ventilation that could include assisted nasal
ventilation or intubation, and the use of a tracheostomy
and ventilator.

Other treatment options include bracing to treat scoliosis
or kyphosis, surgery for ptosis, and cochlear implantation
for sensorineural hearing loss.

Nutritional Modulation in MDS

Formulas with an enriched medium-chain triglyceride con-
tent may provide better nutritional support for infants with
cholestasis than formulas with predominantly long-chain
triglycerides [123].

Prevention of hypoglycemia requires avoidance of fast-
ing by frequent or continuous feeding. In addition, un-
cooked cornstarch may reduce symptomatic hypoglycemia
in individuals with DGUOK and MPV17-related hepato-
cerebral MDS [54, 65]. Furthermore, cornstarch use may
slow the progression of the liver disease in MPV17-related
hepatocerebral MDS [63, 65].

Cofactor Use in MDS

Succinate and ubiquinone were reported to slow the pro-
gression of liver impairment in MPV17-related MDS [64].

Elevated CSF inflammatory cytokines and blocking fo-
late receptor autoantibodies associated with reduced CSF
folate were reported in a child with Alpers-Huttenlocher
syndrome. Treatment with oral folinic acid (leucovorine)
resulted in improvement of CSF folate level and seizure
frequency, and communicative abilities improved [124].
Therefore, CSF folate may be deficient in disorders that

lead to mtDNA depletion. It has been suggested that testing
for CSF folate deficiency with treatment offered to those
with deficiency can be one option; the other option can be
empiric therapy with folinic acid [90].

Levocarnitine, creatine monohydrate, coenzyme Q10, B
vitamins, and antioxidants, such as alpha lipoic acid, vita-
min E, and vitamin C, have been used as mitochondrial
supplements. These cofactors have been used in MDS;
however, there is very limited evidence for their effective-
ness [125, 126].

More recently, enteral administration of sodium pyruvate
to a child with myopathic MDS has been reported to im-
prove muscle strength and quality of life score using used
the Newcastle Pediatric Mitochondrial Disease Scale. No
significant change of the blood lactate level or lactate-to-
pyruvate ratio were noticed [127]. Further evaluation is need
before reaching conclusions about the effectiveness of such
therapy.

Studying myotube cells of individuals with MDS have
demonstrated that the application of variable combinations
of deoxynucleoside monophosphates in different types of
MDS result in near normalization of mtDNA content in
many cases. Therefore, the use of deoxynucleoside mono-
phosphate combinations may be a possible therapeutic ap-
proach for individuals with MDS [128]. Further clinical
investigation is needed to investigate this approach.

Liver Transplantation in MDS

Although liver transplantation remains the only treatment
option for liver failure in hepatocerebral MDS, liver trans-
plantation in mitochondrial hepatopathy is controversial,
largely because of the multi-organ involvement.

Liver transplantation has been performed in about a third
of affected individuals with MPV17-related MDS; the out-
come has not been satisfactory, with half of the transplanted
children dying in the post-transplantation period because of
multi-organ failure and/or sepsis [66].

For children with multi-organ DGUOK-related MDS,
liver transplantation provides no survival benefit.
However, several children with isolated hepatic disease have
had excellent 10-year survival with liver transplantation
and, thus, it is a potential therapeutic option. However, this
option warrants careful discussion with parents because at
least 1 child with isolated liver disease developed neurologic
features after liver transplantation [53].

Liver transplantation is not advised in children with
Alpers-Huttenlocher syndrome because transplanting the
liver does not alter the rapid progression of the neurological
complications [129]. However, liver transplantation in adults
who have an acceptable quality of life may be of benefit. Two
affected individuals with POLG-related disorders were
reported to survive after liver transplantation [79, 88].
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Thymidine Reduction in MNGIE Disease

In MNGIE, a correlation between plasma thymidine levels
and the severity of the phenotype has been observed [130].
Therefore, it has been proposed that the reduction in circu-
lating thymidine levels can result in disease improvement.
Peritoneal dialysis has been used to reduce the thymidine
levels leading to an improvement of the symptoms in affect-
ed individuals with MNGIE disease [131]. Enzyme replace-
ment therapy via infusion of platelets from healthy donors to
individuals with MNGIE resulted in reduction of circulating
thymidine and partially restored TP activity [132].

Allogeneic hematopoietic stem cell transplantation
(HSCT) offers the possibility of sustained correction of
enzyme deficiency and has become an established treatment
for many different storage diseases. More than 10 individu-
als with MNGIE disease have so far been treated with
allogeneic HSCT [133–136]. Allogeneic HSCT has been
shown to restore TP activity, lowering thymidine levels
and improving the gastrointestinal dysmotility [132–135].
However, neurological assessments remained unchanged
[136]. Although HSCT corrects biochemical abnormalities
and improves gastrointestinal symptoms, the procedure can
be risky in patients already in poor medical condition, as are
many MNGIE patients and several affected patients were
reported to die in the post-transplantation period [136]. As
transplant-related morbidity and mortality increase with the
progression of the disease and the number of associated
comorbidities, it has been suggested that individuals with
MNGIE should be referred to HSCT when they are still
relatively healthy in order to minimize the complications
of the procedure [136].

Conclusion

MDS are a genetically and clinically heterogeneous group
characterized by a severe reduction in mtDNA content in
affected tissues. MDS are due to a defect in mtDNA main-
tenance caused by mutations in nuclear genes which func-
tion in either mitochondrial dNTP synthesis (TK2, SUCLA2,
SUCLG1, RRM2B, DGUOK, and TYMP) or mtDNA repli-
cation (POLG and C10orf2). The function of MPV17 is not
yet known. According to the organ majorly involved, MDS
are classified as the myopathic form associated with muta-
tions in TK2, the encephalomyopathic form associated with
mutations in SUCLA2, SUCLG1, or RRM2B, the hepato-
cerebral form associated with mutations in DGUOK,
MPV17, POLG, or C10orf2, and the neurogastrointestinal
form associated with mutations in TYMP. Although muta-
tions in these different genes have been traditionally
assigned to these phenotypes, the phenotypic associations
have been expanding with the current advancement in the

molecular testing. Although MDS are severe disorders with
poor prognosis in the majority of affected individuals, no
curative therapy is available for any of these disorders.
Affected individuals should have a comprehensive evaluation
to assess the degree of involvement of different systems.
Treatment is directed mainly toward providing symptomatic
management. Nutritional modulation and cofactor supple-
mentation may be beneficial. Liver transplantation remains
controversial. Finally, stem cell transplantation in MNGIE
disease shows promising results.

Required Author Forms Disclosure forms provided by the authors
are available with the online version of this article.
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