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Abstract
Small cell lung cancer (SCLC) is a disease characterized by aggressive clinical behavior and lack
of effective therapy. Due to its tendency for early dissemination, only a third of patients have
limited-stage disease at the time of diagnosis. SCLC is thought to derive from pulmonary
neuroendocrine cells. Although several molecular abnormalities in SCLC have been described,
there are relatively few studies on epigenetic alterations in this type of tumor. Here, we have used
methylation profiling with the methylated CpG island recovery assay (MIRA) in combination with
microarrays and conducted the first genome-scale analysis of methylation changes that occur in
primary SCLC and SCLC cell lines. Among the hundreds of tumor-specifically methylated genes
discovered, we identified 73 gene targets that are methylated in more than 77% of primary SCLC
tumors, most of which have never been linked to aberrant methylation in tumors. These
methylated targets have potential for biomarker development for early detection and therapeutic
management of SCLC. SCLC cell lines had a ~3-fold greater number of hypermethylated genes
than primary tumors. Gene ontology analysis indicated a significant enrichment of methylated
genes functioning as transcription factors and in processes of neuronal differentiation. Motif
analysis of tumor-specific methylated regions identified enrichment of binding sites for several
neural cell fate-specifying transcription factors including NEUROD1, HAND1, ZNF423 and
REST. We hypothesize that two potential mechanisms, loss of cell fate-determining transcription
factors by methylation of their promoters and functional inactivation of their corresponding
genomic binding sites by DNA methylation, can promote a differentiation defect of
neuroendocrine cells thus enhancing the ability of tumor progenitor cells to transition towards
SCLC.
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Introduction
Lung cancer is divided by histology into small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC). SCLC represents about 15% of all lung cancer cases and is one of the
most lethal forms of cancer with properties of high mitotic rate and early metastasis.1 It is
distinctly characterized by small cells with poorly defined cell borders and minimal
cytoplasm, rare nucleoli and finely granular chromatin. Although SCLC patients initially
respond to chemotherapy and radiation therapy, the disease recurs in the majority of
patients. Because of the aggressiveness of SCLC and the lack of effective therapy and early
diagnosis, without treatment the median survival time for SCLC is only two to four months.
With current treatment modalities, the median survival times for limited stage disease, less
than 5% of the total, is 16–24 months, and for extensive disease, 7–12 months, in spite of the
fact that 60–80% of patients respond to therapy. It is essential to gain a better understanding
of the molecular pathogenesis of the disease and to identify molecular alterations, which
could lead to improved results in early detection and a means of assessing response to
therapy.

Several studies have identified abnormalities within tumor suppressor genes, oncogenes,
signaling pathways, receptor kinases and growth factors that have a proven role in the
pathogenesis of various other human cancers. About 90% of SCLC patients’ DNA samples
have mutations in the TP53 gene.2, 3 Similarly, another tumor suppressor gene,
retinoblastoma (RB), is either deleted or mutated in the majority (about 90%) of SCLCs.2, 4

In addition, higher expression of the MYC family of oncogenes has been found in SCLC
cell lines, xenografts and fresh tumor specimens.5–7 Abnormalities in various receptor
tyrosine kinase (RTK) families are commonly found in the majority of SCLC cases. These
changes are associated with a more aggressive tumor growth, resistance to therapy and poor
prognosis.8, 9 The phosphoinositide 3-kinase (PI3K)/AKT pathway is defective in SCLC
patients’ tumors. Nearly two thirds of SCLCs have phosphorylated AKT9 and this
constitutively active kinase can modulate a variety of cellular functions such as cell
proliferation, survival, motility, adhesion and differentiation.8 The cellular origin of SCLC
is yet to be proven definitively. Recent studies in mice indicated that neuroendocrine cells
seem to be the predominant cells of origin of SCLC.10, 11

SCLC is also characterized by common deletion of the fragile histidine triad (FHIT) gene,
located at 3p14.2 Similarly, chromosome 3p21 is another locus, which is frequently
subjected to loss in almost all SCLCs, and this event is thought to be an early event in lung
cancer pathogenesis.12 At 3p21.3, there are several candidate tumor suppresser genes,
including the Ras association domain family member 1A (RASSF1A), tumor suppressor
candidate 2 (TUSC2, also known as FUS1), semaphorin 3B (SEMA3B) and semaphorin 3F
(SEMA3F).13, 14

In contrast to the genetic alterations discussed above, epigenetic aberrations, specifically
DNA methylation changes found in SCLC tumors, have not been studied so far in a
comprehensive manner. DNA methylation analysis might provide vital information that
could shed light on mechanisms of disease initiation, development and progression, as well
as lead to cancer biomarker discovery.15, 16 There are several gene-specific DNA
methylation studies for SCLC. For example, promoter hypermethylation of the tumor
suppressor gene RASSF1A and subsequent suppression of its expression is found in almost
all of the SCLC tumors.17, 18 Another study found caveolin-1 (CAV1) gene methylation in
over 90% the tested SCLC cell lines.19

Lack of genome-wide DNA methylation studies in SCLC prompted us to undertake this
task. We applied the methylated-CpG island recovery assay (MIRA), which has shown
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excellent sensitivity for identification of methylated genomic regions in cancer20–23 to map
DNA methylation patterns at promoters and CpG islands of primary SCLC tumors, SCLC
cell lines, and normal lung control samples.

Results
Identification of methylated genes in human SCLC tissue on a genome-wide platform

The MIRA technique, used in combination with microarray analysis, is a high-resolution
mapping technique and has proven successful for profiling global DNA methylation patterns
in non-small cell lung cancers and other tumors.22–25 In the present study, we have applied
this sensitive method to study the methylation status of CpG islands and promoters in SCLC
to investigate the potential role of methylation changes in the initiation and development of
SCLC, as well as to discover potential biomarkers for better management of the disease.
Eighteen human primary SCLC and five SCLC cell line DNA samples were screened for
methylation by MIRA-based microarrays. DNAs from five normal healthy lung tissues
adjacent to the tumor and obtained at the time of surgical resection were used as controls in
the MIRA analysis. DNA was subjected to MIRA enrichment as described previously26, 27

and subsequent microarray analysis was performed on 720k Nimblegen CpG island plus
promoter arrays.

Microarray data analysis
In order to increase the specificity of MIRA-based enrichment signals, we chose to call
peaks based on different quantiles of four neighboring probes. Peaks were then calculated
using the base functions of the Bioconductor package Ringo.28 Table 1 shows the specificity
and sensitivity of this approach relative to different quantile ranges using DNA from the
SCLC cell line SW1271. Based on the validations conducted by COBRA single gene
methylation assays, we chose an 80% cutoff for medium to strongly methylated regions and
a cutoff below 56% defined as not methylated. Thus, compared to the conventional
NimbleScan method using the default settings, we could increase the sensitivity of
methylation peak detection to 94% without decreasing specificity. As this threshold was
defined for one SCLC cell line, we tested the same settings for primary small lung cancer
samples and did not observe a significant increase of false positive predicted
hypermethylated regions.

Using the peak identification algorithm described in the Materials and Methods section, we
identified approximately 15, 000 methylation peaks in each sample (Supplementary Table
1). Our clustering analysis of tumor samples and controls showed that SCLC cell lines
clustered together and that four of the five normal samples were close to each other, but
different tumor samples occupied different spaces in the dendrogram (Supplementary Figure
1).

Taking into account that we had 18 tumor samples and 5 normal samples for microarray data
analysis, we defined a stringent tumor-specific methylated region as the overlapping region
that meets the minimum 80% quantile criterion in 14 of 18 tumors and is below the 56%
quantile in 4 of 5 normal tissues. A less stringent set was defined as an overlap between at
least 6 peaks from tumor samples out of 18, using the same criteria as above. Thus, we were
mainly comparing strongly methylated regions versus poorly methylated regions. Although
small methylation level differences could not be picked up this way, the aim of discovering
uniquely strongly methylated and tumor-specific regions was well supported by this
approach.
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Methylated genes in primary SCLC
Supplementary Figure 2 shows examples of tumor-specific methylation peaks at the
PROX1, CCDC140, PAX3, and SIM1 genes located on chromosomes 1, 2, and 6,
respectively. Supplementary Figure 3 shows extensive tumor-specific methylation of the
HOXD cluster on chromosome 2. Compilation of tumor-specific methylation peaks revealed
a total of 698 regions in 6 out of 18 tumors (≥ 33% of SCLC tumors) compared to normal
lung DNA, which represented 339 ensembl gene IDs for promoter-related tumor-specifically
methylated regions (defined as −5000 to +1000 relative to the TSS), 197 ensembl gene IDs
related to peaks mapped to the gene bodies and 63 ensembl gene IDs for peaks mapped
downstream of the corresponding genes (Figure 1A; Supplementary Table 2). Individual
primary SCLCs contained between 366 and almost 1, 500 tumor-specific methylation peaks
(Supplementary Table 3).

There were 73 tumor-specific methylated peaks which were found in at least 14 out of 18
SCLC tumors (>77% of SCLC tumors) that corresponded to 28 ensembl gene IDs for
promoters, 30 ensembl gene IDs for gene bodies and 11 for downstream regions (Figure
1B). These methylated genes from 77% or more of the SCLC tumors are presented in Table
2 and in Supplementary Table 4, for more detailed information.

Identification of methylated genes in human SCLC lines
Due to the limited availability of primary SCLC tissue, we added several SCLC cell lines
originally derived from primary tumor sites. Due to the unavailability of neuroendocrine
cells, which are believed to be the cell of origin of SCLC, 10 we chose normal bronchial
epithelial cells as a control for these studies. Clustering analysis based on the total
methylation peaks of SCLC cell lines showed that all cell lines cluster tightly together
(Supplementary Figure 1). Further analysis of these methylated peaks for tumor cell line-
specific peaks revealed 1223 unique tumor-specific peaks found in 4 out of 5 SCLC cell
lines (≥80% of SCLC cell lines) compared to methylated peaks form normal bronchial
epithelial cells (Supplementary Table 5). These peaks represented 676 ensembl gene IDs
mapped to promoter regions, 323 ensembl gene IDs corresponding to methylated regions in
the gene body and 93 ensembl gene IDs where the hypermethylated regions could be located
downstream of genes (Figure 1C). Individual cell lines contained between 2779 and 4485
cell line-specific methylation peaks (Supplementary Table 3), numbers that are greater than
the tumor-specific methylation peaks found in primary SCLCs. To further determine if the
SCLC cell line model is appropriate to study the role of SCLC tumor methylation, we
compared SCLC tumor-specific methylated regions with SCLC cell line-specific methylated
regions. Strikingly, there was only a relatively small group of (<20%) of SCLC cell line-
specific genes found to be commonly (>6 of 18) methylated in primary SCLC tumors and
vice versa (i.e., only ~21% of SCLC primary tumor peaks matched with those of frequent
SCLC cell line methylation) (Figure 1D). When we determined the overlap between peaks
methylated in 14/18 tumors and 4 of 5 cell lines, the number of overlapped genes dropped to
27 (Figure 1E). This small overlap confirms that methylation patterns in SCLC cell lines do
not well recapitulate primary SCLC. We mapped the location of tumor-specific methylation
peaks relative to promoters, gene bodies and locations downstream of genes (Figure 1A–C).
The distribution patterns were similar for peaks found in ≥6/18 tumors and in cell lines but
for the most frequently methylated genes (≥14/18) the peaks tended to be more commonly
localized in gene bodies and downstream (Figure 1B). Cluster analysis of methylation peaks
in normal and tumor samples is shown in Figure 1F.

Validation of gene-specific methylation in SCLC samples
We further validated tumor-specific methylation peaks discovered by microarray analysis
for several of the targets by combined bisulfite restriction analysis (COBRA) assay. In this
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assay, bisulfite-converted DNA is PCR-amplified using gene-specific primers and is then
digested with a restriction endonuclease, either BstUI or TaqI, which recognize the
sequences 5'-CGCG- 3’ or 5’TCGA-3’, respectively. The cytosines in unmethylated
restriction sites are converted by sodium bisulfite and PCR and resist digestion, whereas
methylated sites remain unchanged and are cleaved by the enzymes. The digested fragments
visualized on agarose gels are thus indicative of methylated restriction sites in the region
analyzed. We performed extensive validation analysis by COBRA to confirm the tumor-
specific methylated regions (Supplementary Figure 4). Representative examples of COBRA
results are shown for the genes DMRTA2, MIR-129-2 and GALNTL1. In total, we
inspected the methylation status of 11 genes (GALNTL1, MIR-10A, MIR-129-2,
MIR-196A2, MIR-615, MIR-9-3, AMBRA1, HOXD10, PROX1, ZNF672 and DMRTA2)
based on the various degrees of methylation obtained from the list of differentially
methylated targets. Results for all the targets are presented in Supplementary Table 6.
COBRA analysis revealed that our microarray analysis is highly reliable with over 93%
accuracy and only ~4% false negative and ~3% false positive hits.

To further confirm the COBRA results of the methylated genes GALNTL1 and DMRAT2,
we sequenced bisulfite-converted DNA from SCLC tumor and matched normal lung
samples (Supplementary Figure 4). Normal control lung DNA samples showed either no or
very low levels of methylation across the CpG dinucleotides tested in contrast to SCLC
tumor DNA samples, which were heavily methylated.

Gene expression and methylation status
For the SCLC cell lines SW1271, H1836 and H1688, and HBECs, Affymetrix gene
expression analysis was performed and hypermethylated regions in the SCLC cell lines were
compared with their associated probe expression changes. On a global level, we could not
detect a correlation between the tumor-specific hypermethylated regions and downregulation
of associated genes. This phenomenon has been observed in other tumor methylation
studies. Some of the reasons for this lack of correlation are that (1) genes that become
methylated in tumors frequently are already expressed at very low levels in corresponding
normal tissues, 29–32 (2) methylation-independent mechanisms (such as chromatin
modifications) are responsible for expression changes, 33 and (3) methylation of alternative
promoters obscures such correlations.27, 34 Unlike the methylation patterns, the expression
signals of the individual tumor cell lines were not highly correlated to each other when
compared to the control cell line (as seen by principal component analysis; data not shown).

Functional pathway analysis of methylated genes
For the two stringencies that were defined (≥6 out of 18 tumors specifically hypermethylated
and ≥14 out of 18 tumors specifically hypermethylated), we performed a functional
annotation clustering, for promoter proximal tumor-specifically methylated regions and gene
body-associated tumor-specifically methylated regions. For ≥6 out of 18 tumor-specific
promoter proximal methylated regions, two main annotation clusters could be identified, one
for homeobox genes (P-value 1.6E-26, Bonferroni corrected) and one for transcription
factors in general (1.0E-09) (Figure 2A; Supplementary Table 7). More specifically, clusters
for neuronal fate commitment (1.3E-5), neuronal differentiation (3.5E-9) and pattern
specification processes (2.3E-11) showed the strongest enrichment. In comparison,
hypermethylated regions in gene bodies showed similar functional enrichment clusters for
homeobox genes (6.2E-26) and pattern specification processes (3.8E-11), but significantly
less enrichment for neuronal fate commitment (7.0E-1) and for neuronal differentiation
(1.2E-4) (Supplementary Table 8), suggesting that the latter functional categories are more
related to promoter-specific methylation (Figure 2A).
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Concerning functional enrichment for tumor-specifically hypermethylated regions for the
majority of tumors (≥14 out of 18 tumors), clusters with significantly less enrichment
compared to their less significant counterpart (≥6 out of 18) could only be obtained for
homeobox genes (7.5E-7 for promoter regions and 2.3E-8 for gene bodies) and transcription
factors (2.8E-4 for promoter regions and 3.6E-2 for gene bodies), which can be partly
explained by the lower number of genes in this category (Supplementary Tables 9 and 10).
Lung development was another significantly enriched category for promoter methylation
(Supplementary Table 9).

With regards to the cell lines, genes associated with hypermethylated regions in the five
SCLC cell lines compared to the control cell line, homeobox-related functional terms and
transcription factor-related terms were significantly enriched only for gene body associated
tumor peaks (4.8E-8 for homeobox genes and 3.0E-3 for transcription factors, Bonferroni
corrected) but the strong enrichment for these categories observed for promoter regions in
the tumor tissues was not present at all for the cell line models (Supplementary Tables 11
and 12). This probably reflects a much greater number and higher diversity of methylation
events observed in the cell lines.

For targets methylated in ≥14 out of 18 tumors and in ≥4 out of 5 cell lines (Supplementary
Table 13), we again observed an enrichment in the same functional categories. This group of
genes contained a number of genes involved in neuronal or neuroendocrine differentiation,
such as EOMES/TBR2, the gene TAC1, which encodes the neuropeptide substance P, and
RESP18, encoding a neuroendocrine-specific protein.

Motif discovery
We next used the de novo motif discovery algorithm HOMER35 to search for sequence
patterns that are associated with regions that are specifically methylated in SCLC tumor
samples for at least 33% of the tumors and were able to identify a set of non-redundant
sequence motifs that were highly enriched in comparison with all non-tumor-specifically
methylated regions on the array. Transcription factors, which were falling into this category,
were REST/NRSF (2.5e-16), ZNF423 (3.0e-13), HAND1 (1.44e-10) and NEUROD1
(2.3e-10) (Figure 2B). Examples of methylated NEUROD1 targets are shown in Figure 3.
The majority of the sequence motifs identified in methylated regions were enriched within
the proximal promoter regions of known genes. The highest enrichment was based on
redundant sequence structures and for those that were not, we demanded a stringent
alignment with matching transcription factor binding sites and a low number of occurrences
in the background set, which contained all possible methylation sites. REST, ZNF423,
HAND1 and NEUROD1 contained non-redundant sequences, a maximal mismatch of 2 bp
to the identified de novo motif and were selectively enriched in the target sequence set. As
such, the identified motifs might not be representative for the whole tumor-specific target set
but shed light on sub-regulatory networks with a possibly major impact on the phenotype of
SCLC. For example, NEUROD1 and HAND1 binding sites were found in methylated
targets representing genes involved in neuronal cell fate commitment such as GDNF,
NKX2-2, NKX6-1, EVX1, and SIM2 (Suppl. Tables 2 and 14). Methylation of these
binding sites suggests a model in which these transacting factors were lost during
tumorigenesis rendering their target sites susceptible to methylation. To analyze this
scenario further, we focused on the NEUROD1 transcription factor. Indeed, expression of
NEUROD1 proved to be undetectable by a sensitive RT-PCR assay (Supplementary Figure
5) in the four SCLC cell lines tested and it was expressed at very low levels in human
bronchial epithelial cells. In SCLC cell lines and, importantly, also in primary SCLC tumors,
the promoter of NEUROD1 was heavily methylated (Supplementary Figure 6A, B)
consistent with a lack of expression. In addition, we found increased methylation at the
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promoters of HAND1 and REST in SCLC cell lines and in primary tumors (Supplementary
Figure 6).

Discussion
To identify frequently methylated genes in SCLC tumor patients and SCLC cell lines, we
have combined the use of a sensitive method for identifying methylation in CpG rich
regions, the methylated-CpG island recovery (MIRA) assay26, 27 with genome-wide CpG
island and promoter array analysis. Global profiling of 18 SCLC tumor samples compared to
normal lung samples resulted in 698 and 73 tumor-specifically methylated and ensembl-
annotated gene targets for 33% or more (≥6 of 18) of tumors, representing a substantial
subgroup of patients, and in 77% or more of SCLC tumors (methylation in at least 14 of 18
samples), representing the majority of all patients, respectively. The 73 gene targets
methylated in such a large fraction of the patient population may be of particular value for
designing DNA methylation-based biomarkers for early detection of SCLC, for example in
serum or sputum, and for disease management.

We randomly selected and validated 11 targets, which were predicted by the array analysis,
by using bisulfite-based COBRA assays. The validated targets fell into various major
functional categories, including transcription factors and noncoding RNAs like GALNTL1,
MIR-10A, MIR-129-2, MIR-196A2, MIR-615, MIR-9-3, AMBRA1, HOXD10, PROX1,
ZNF672 and DMRTA2. Validation of this set of samples revealed the specificity of the
analysis. Some of the validated genes are epigenetically altered in various other cancers
(MIR-10A, MIR-129-2, MIR-196A2, HOXD10 and PROX1) but other genes have not yet
been identified as methylated in any cancer type (GALNTL1, MIR-615, AMBRA1, ZNF672
and DMRTA2). DMRTA2 methylation was found in 94% of the SCLC tumor patients. The
only fact that is known about DMRTA2 is that there is crosstalk of expression with the
transcription factor NFIA.36 Interestingly, there is evidence that NFIA is a key factor for the
differentiation of neuronal progenitor cells by downregulating the activity of the Notch
signaling pathway via repression of the key Notch effector Hes1.37 Given the strong
enrichment for neuronal differentiation pathways in tumor-specific methylated regions in
SCLC (Figure 2) it is tempting to speculate that there is a contribution of DMRTA2
methylation to impaired homeostasis between DMRTA2 and NFIA. There is no functional
evidence yet for GALNTL1. These two targets, as well as the many other very frequently
methylated genes (Table 2) have the potential to be used as biomarkers for this cancer type.

Gene annotation analysis of tumor-specific promoter methylated targets revealed a
substantial subgroup of genes that are specific for neuronal fate commitment, neuronal
differentiation and pattern specification processes, along with homeobox and other
transcription factors. In comparison, hypermethylated regions in gene bodies showed similar
functional enrichment clusters for homeobox genes and pattern specification processes, but
significant less enrichment for neuronal fate commitment and for neuronal differentiation
suggesting that the latter functional categories are more specific for promoter specific
methylation. This striking tendency for methylation of neuronal specific genes may suggest
an essential part in SCLC tumor initiation played by these genes.

Methylation of surrounding proximal promoters is often tightly associated with
transcriptional silencing, whereas gene body methylation seems to be associated with
transcriptional activation.27, 38 Loss of expression of genes, which are methylated in their
proximal promoters, could lead to SCLC tumor initiation. Further studies in this direction
will be required to establish experimental evidence. What we do not know at present is
whether these genes are unmethylated and expressed in pulmonary neuroendocrine cells and
their precursors, the likely cells of origin for SCLC. This specific cell type is currently not
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available for analysis. This issue does indeed apply to virtually all DNA methylation studies
done in human cancer to date. The exact cell of origin, the cell from which the tumor
initiates, is often not known, or these cells are not available in sufficient quantities.
Therefore – at least theoretically – all DNA methylation ‘changes’ found in tumor DNA
may already preexist in the cell of origin. However, we argue that methylation of genes that
promote the differentiation of neuroendocrine cells would be unlikely to occur in such cells
since that would interfere with their normal differentiated state.

The small cell lung cancer patients investigated in this study showed a strong enrichment of
tumor-specific methylation at homeobox genes (Supplementary Tables 15 and 16).
Homeobox genes and other transcriptional regulators are important for developmental
processes, playing important roles in cellular identity, growth, differentiation and cellular
interactions within the tissue environment. Given the results of our study, we developed a
theory that disruptions in the early phase of these processes would increase the probability
of the cell to become malignant, as this would lead to a pool of cells, which are aberrantly
kept in a proliferation loop without a decision towards a specific cell fate. As already
mentioned, it is thought that the cells of origin for SCLC are neuroendocrine cells, as shown
in mice.10, 11 Given the fact that many of the tumor-specifically methylated targets we
identified are important for cell fate decisions towards the neuronal lineage, it is intriguing
to speculate that one way of shifting the balance towards the emergence of SCLC would be
through the repression of key factors critical for differentiation of neuroendocrine cells. One
potential way of aberrant shutdown of these critical factors would be by promoter-targeted
methylation. Being freed of their normal developmental program by the absence or
reduction of cell fate specification factors, some of these cells could acquire additional
malignant traits, according to the “hallmark” model defined by Hahnan and Weinberg.39

This means that the observed hypermethylated regions are more probable to arise at an early
stage of perturbed differentiation rather than during the later stages of tumorigenesis.
Concerning other tumor-driving aberrant methylation events, which might increase the
tumorigenic potential, it is interesting to note that we could rarely detect any promoter-
specific methylation close to known tumor suppressor genes. Exceptions were tumor-
specific methylation of TCF21, 40 which was detected downstream of the gene in the tumors
but overlapping with the TSS in the cell lines and methylation of the promoter of the
RASSF1A gene confirming earlier gene-specific studies.17, 18

Another potential way of disrupting cell fate decisions is not by merely reducing the
responsible factors but by altering the selectivity towards their genomic recognition sites by
aberrant methylation at these regulatory regions, leading to the prevention of binding.
Indeed, it has long been known that DNA methylation can prevent transcription factor
binding leading to the inhibition of active transcription or the recruitment of methyl binding
proteins, causing gene suppression.38 When looking for binding sites of important cell fate
specificators in our tumor-specific methylated regions, we could indeed identify such a
correlation, especially concerning the transcription factors NEUROD1, ZNF423, HAND1
and REST (Figure 2B).

ZNF423 (also known as Ebfaz, Roaz, or Zfp423), a gene required for brain development, 41

may also have a role in neuroblastoma. ZNF423 is a transcription factor critically required
for cerebellar development and retinoic acid-induced differentiation.42 Downregulation of
ZNF423 expression by RNA interference in neuroblastoma cells results in a growth
advantage and resistance to retinoic acid-induced differentiation. Loss of the NF1 tumor
suppressor activates RAS-MEK signaling, which in turn represses ZNF423, a critical
transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of
both NF1 and ZNF423 have poor clinical outcome.43
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REST/NRSF is a transcription factor involved in complex regulatory pathways controlling
neuronal differentiation, 44 having both oncogenic and tumor-suppressive roles.45 As shown
in several other cancer types, there seems to be a correlation between the level of active
REST and the tendency to initiate cancer.46 Inactivation of the REST/NRSF network may
have a role in derepression of some neuroendocrine genes in SCLC.47 Interestingly Kreisler
et al.48 found that three CpG islands associated with the REST gene were methylated in
SCLC lines and we also found increased methylation near the REST promoter
(Supplementary Figure 6). The loss of REST was linked to the malignant progression of
SCLC.48 We present evidence that methylation of REST binding sites might also contribute
to the SCLC phenotype.

Given that neuroendocrine cells are the likely cells of origin for SCLC, 10, 11 it is interesting
that a significant number of NEUROD1 potential binding sites were correlated with
methylation in the tumors (Figure 2B). It has been shown in mice that NeuroD deficiency
resulted in both impaired alveolar septation and altered morphology of the pulmonary
neuroendocrine cells, suggesting a role in the regulation of pulmonary neuroendocrine and
alveolar morphogenesis.49 As such, methylation of NEUROD1 binding sites is supporting
our theory of early methylation aberrations causing a defect in the developmental program
of pulmonary neuroendocrine cells. Alternatively, lack of expression of transacting
developmental transcription factors induced by methylation of their own promoter, which
we did find for the NEUROD1 gene (Supplementary Figure 6), could lead indirectly to
methylation of the transcription factor target sites. In this scenario, methylation of the
binding site regions of these factors is the default state and can be prevented by in vivo
binding of the factor. Although hypothetical, our model has gained support from a recent
study in mouse ES cells.50 In this study, it was shown that the presence of several
transcription factors, including REST, is required to create genomic regions with low DNA
methylation.

In summary, we propose that probably both mechanisms, loss of key transcription factors
involved in cell fate decisions or differentiation by methylation of their promoters, and
functional inactivation of their corresponding binding site regions by methylation, can guide
the cell of origin towards a malignant state. We note that this could be a potential
explanation not only for the origin of SCLC but for tumorigenesis in general.

Materials and methods
Tissue and DNA samples

Primary SCLC tumor tissue DNAs were obtained from patients undergoing surgery at
Nagoya University Hospital or Aichi Cancer Center, Nagoya, Japan. Pairs of human primary
small cell lung cancer (SCLC) tumor tissue DNA and adjacent normal lung tissue DNA
were obtained from Asterand (Detroit, MI), BioChain (Hayward, CA), and Cureline (South
San Francisco, CA). SCLC cell lines (H1688, H1417, H1836, DMS53 and SW1271) were
obtained from the ATCC. The ATCC used short tandem repeat profiling for cell line
identification. Normal bronchial epithelial cells (HBECs; from Lonza; Walkersville, MD)
were used as a control for the cell line analysis. All cells were cultured with DMEM/F12
with 0.5% fetal bovine serum and the bronchial epithelial growth medium (BEGM) bullet
kit (Lonza). DNA and RNA from the cell lines were extracted using the DNeasy Blood &
Tissue Kit and RNeasy Mini Kit (Qiagen; Valencia, CA) respectively.

MIRA and microarray hybridization
Tumor and normal tissue DNA was fragmented by sonication to ~500 bp average size as
verified on agarose gels. Enrichment of the methylated double-stranded DNA fraction by
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MIRA was performed as described previously.26, 27 The labeling of amplicons, microarray
hybridization, and scanning were performed according to the NimbleGen protocol.
NimbleGen tiling arrays were used for hybridization (Human 3×720K CpG Island Plus
RefSeq Promoter Arrays). These arrays cover all UCSC Genome Browser annotated CpG
islands (total of 27, 728) as well as the promoters (total of 22, 532) of the well-characterized
RefSeq genes derived from the UCSC RefFlat files. The promoter region covered is ~3 kb
(−2440 to +610 relative to the transcription start sites). For all samples, the MIRA-enriched
DNA was compared with the input DNA. All microarray data sets have been deposited into
the NCBI GEO database (accession number GSE35341).

Identification and annotation of methylated regions
Analysis of the arrays was performed with R version 2.10, Perl scripts and the Bioconductor
package Ringo.28 Arrays were clustered in normal tissues, cell lines and tumor tissues using
hclust and Spearman correlation. Biological replicates were quantile-normalized and arrays
were normalized by Nimblegen's recommended method, tuyey-biweight. Probe ratios were
smoothed for three neighboring probes prior to peak calling. Instead of estimating a cutoff
ratio based on a hypothetical normal distribution for non-bound probes (Ringo), a quantile-
based approach was chosen to estimate methylation intensities. For this aim, peaks at
different quantiles were called, where four probes were above the quantile-based threshold
with a distance cutoff of 300 bp. A randomized set of peaks was validated by combined
bisulfite restriction analysis (COBRA) assays51 for each quantile range. Thus a quantile
range of 80% was chosen as a cutoff for methylated regions (defined as hypermethylated
regions). False positives and false negatives were assessed by COBRA. To investigate if
inter-sample differences had an influence on the acquired cutoff, predicted peaks were
validated in different tissues by COBRA analysis.

Tumor-specific regions were defined using two different stringencies. In one case, an
overlap of peaks in 6 or more out of 18 tumor samples (33%) was required above the cutoff
quantile threshold of 80%; the genomic regions were defined and for those regions only one
out of five normal tissues was allowed to overlap with a peak called on a 56% basis, which
resulted in an at least 1.5 ratio change. Overlaps were calculated using BEDtools.52 A more
stringent analysis required an overlap of peaks in at least 14 out of 18 tumors (>77%), with
the same settings as above. The obtained chromosomal positions were converted to the latest
hg19 genome build, using LiftOver from UCSC, requiring a minimum ratio of 0.9 of bases
that must remap. The obtained positions where then annotated using the Bioconductor
package ChIPpeakAnno and the latest ensembl annotation from BioMart.

Microarray expression analysis
Affymetrix human U133plus2.0 arrays for the three cell lines SW1271, H1836 and H1688
were processed by the robust multi-array average (RMA) method implemented in the
Bioconductor ‘Affy’ package and the average log2 intensity of each gene across all samples
was calculated. The three cell lines were clustered and compared against the control cell
line, HBECs. Single expression values were obtained, using the MAS 5.0 method. Proximal
promoter hypermethylated and non-hypermethylated regions, defined as −2000 bp to +1000
bp relative to transcription start sites according to the NimbleGen tilling arrays, were
assigned with their respective expression probe changes of the corresponding transcript. The
correlation between methylation and gene expression was based on a binary decision,
linking gene promoters with differentially methylated regions with gene expression changes.
A comparison with gene expression changes, where the promoter regions had a change in
their methylation level (as measured by peak detected or absent) was above the significance
threshold (p-value 0.05, Two sided T test).
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De novo motif prediction
Motif analysis was performed by HOMER, a program developed by Chris Benner.35 More
specifically, the discovery was performed using a comparative algorithm similar to those
previously described by Linhart et al.53 Briefly, sequences were divided into target and
background sets for each application of the algorithm (choice of target and background
sequences are noted below). Background sequences were then selectively weighted to
equalize the distributions of CpG content in target and background sequences to avoid
comparing sequences of different general sequence content. Motifs of length 8 to 30 bp were
identified separately by first exhaustively screening all possible oligos for enrichment in the
target set compared to the background set by assessing the number of target and background
sequences containing each oligo and then using the cumulative hypergeometric distribution
to score enrichment. Up to two mismatches were allowed in each oligonucleotide sequence
to increase the sensitivity of the method. The top 200 oligonucleotides of each length with
the best enrichment scores were then converted into basic probability matrices for further
optimization. HOMER then generates motifs comprised of a position-weight matrix and
detection threshold by empirically adjusting motif parameters to maximize the enrichment of
motif instances in target sequences versus background sequences using the cumulative
hypergeometric distribution as a scoring function. Probability matrix optimization follows a
local hill-climbing approach that weights the contributions of individual oligos recognized
by the motif to improve enrichment, while optimization of motif detection thresholds were
performed by exhaustively screening degeneracy levels for maximal enrichment during each
iteration of the algorithm. Once a motif is optimized, the individual oligos recognized by the
motif are removed from the data set to facilitate the identification of additional motifs.
Sequence logos were generated using WebLOGO (http://weblogo.berkeley.edu/). Motifs,
obtained from Jasper and TRANSFAC for which no high-throughput data exists were
discarded for this analysis. Only those motifs with the highest alignments to known
transcription factors, non-redundant matrixes and non-repetitive sequences were chosen for
further analysis.

Functional annotation analysis
Gene ontology analysis was performed using DAVID functional annotation tools with
Biological Process FAT and Molecular Function FAT datasets.54, 55 The enriched Gene
Ontology terms were reported as clusters to reduce redundancy. The P-value for each cluster
is the geometric mean of the P-values for all the GO categories in the cluster. The gene list
in each cluster contains the unique genes pooled from the genes in all the GO categories in
the cluster. Functional terms were clustered by using a Multiple Linkage Threshold of 0.5
and Bonferroni corrected P-values.

DNA methylation analysis using sodium bisulfite–based methods
DNA was treated and purified with the EZ DNA Methylation-Gold™ Kit (Zymo Research).
PCR primer sequences for amplification of specific gene targets in bisulfite-treated DNA are
shown in Supplementary Table 17. The PCR products were analyzed by combined bisulfite
restriction analysis (COBRA) as described previously.51 Additionally, PCR products from
bisulfite-converted DNA were cloned into pCR2.1-TOPO using a TOPO TA cloning kit
(Invitrogen), and individual clones were sequenced with M13 forward (−20) primer.

Transfection, reverse transcription and quantitative real-time PCR
The DMS53 SCLC line was transfected with a NEUROD1 expression plasmid (2 µg) at
~60% confluence in 35 mm dishes with FugenHD® (Roche Applied Science, Indianapolis,
IN) in serum-free medium according to the manufacturer's recommendations. The cells were
cultured for an additional 48 h for analysis of NEUROD1 expression. Total RNA was
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isolated from HBECs, all five SCLC cell lines and from DMS53 cells overexpressing
NEUROD1 using the RNeasy Mini Kit (Qiagen; Valencia, CA). cDNA was prepared using
the iScript cDNA synthesis kit (Bio-Rad; Hercules, CA). Quantitative PCR was performed
to assess expression of NEUROD1 and 18S RNA using NEUROD1 primers (forward,
5’GTTCTCAGGACGAGGAGCAC3’and reverse 5’CTTGGGCTTTTGATCGTCAT3’)
and 18S primers (forward 5’GTAACCCGTTGAACCCCATT3’ and reverse
5’CCATCCAATCGGTAGTAGCG3’). Real-time PCR was performed using iQ SYBR
Green Supermix and the iCycler real-time PCR detection system (Bio-Rad). Amplicon
expression in each sample was normalized to 18S RNA. The relative abundance of target
mRNA in each sample was calculated as 2 raised to the negative of its threshold cycle value
times 1016 after being normalized to the abundance of its corresponding 18S RNA, e.g. [2-
(IL-8 threshold cycle)/2-(18 S threshold cycle)] × 106].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mapping of tumor-specific methylation peaks in primary SCLC and SCLC cell lines
A. Localization of the methylation peaks in primary SCLC (6 or more out of 18 tumors
methylated; i.e. peaks that meet the minimum 80% quantile criterion in 6 of 18 tumors)
relative to gene position. B. Localization of the methylation peaks in primary SCLC (14 or
more out of 18 tumors methylated) relative to gene position. C. Localization of the
methylation peaks in SCLC cell lines (4 or more out of 5 cell lines methylated) relative to
gene position. D. Overlap of methylation peaks between SCLC primary tumors (6 or more
out of 18 tumors methylated) and SCLC cell lines (4 or more out of 5 cell lines methylated).
E. Overlap of methylation peaks between SCLC primary tumors (14 or more out of 18
tumors methylated) and SCLC cell lines (4 or more out of 5 cell lines methylated). F.
Cluster analysis of methylation peaks. Methylation peaks found in at least 33% of tumor
samples but not in normal samples were identified. Then the data were subjected to
hierarchical clustering with Euclidean distance and average linkage method using Cluster
v3.0 and visualized in Java TreeView. Red, methylated state; green, unmethylated state.
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Figure 2. Functional annotation and motif finding analysis
A. Shown are DAVID functional analysis clusters which contained the highest enrichment
scores in all three categories: 33% or more of tumors, 77% or more of tumors and cell lines.
For more details see Materials and Methods. B. Motif finding analysis. Significantly
enriched consensus motifs for REST, Roaz/ZNF423, Hand1, and NEUROD1 are shown.
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Figure 3. Examples of tumor-specific methylation of NEUROD1 target genes in SCLC
The top of the Figure indicates the chromosomal coordinates according to the UCSC
Genome browser hg19. Gene names and direction of transcription are shown at the bottom
of the Figure. The Nimblegen array data (methylated fraction versus input) are shown for
three normal lung tissues (red) and five primary SCLC tumors (blue). The methylation
signal is shown plotted along the chromosome as a P value score. Therefore, the minimum
number on the y-axis is 0 (when P = 1). The P value score was obtained by NimbleScan
software and is derived from the Kolmogorov-Smirnov test comparing the log2 ratios
(MIRA versus input) within a 750 bp window centered at each probe and the rest of the data
on the array. The asterisks indicate the location of the NEUROD1 target sites.

Kalari et al. Page 18

Oncogene. Author manuscript; available in PMC 2014 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kalari et al. Page 19

Ta
bl

e 
1

V
al

id
at

io
n 

of
 m

ic
ro

ar
ra

y 
re

su
lts

 b
y 

C
O

B
R

A
 a

ss
ay

s

T
op

 Q
ua

nt
ile

N
o 

of
 t

ar
ge

ts
 t

es
te

d 
a

M
et

U
nM

et
P

C
R

 f
ai

ls
%

M
et

%
U

nM
et

99
%

10
9

-
1

10
0

0

95
%

10
9

-
1

10
0

0

90
%

10
9

1
-

90
10

85
%

10
9

1
-

90
10

80
%

10
7

3
-

70
30

70
%

14
3

5
6

37
.5

62
.5

60
%

19
3

12
4

20
80

50
%

13
2

11
-

15
85

a C
O

B
R

A
 w

as
 p

er
fo

rm
ed

 f
or

 e
ac

h 
qu

an
til

e 
ca

te
go

ry
 w

ith
 b

is
ul

fi
te

-c
on

ve
rt

ed
 D

N
A

 f
ro

m
 th

e 
SW

12
71

 c
el

l l
in

e.
 R

es
ul

ts
 w

er
e 

ta
bu

la
te

d 
fo

r 
nu

m
be

r 
of

 m
et

hy
la

te
d 

(M
et

) 
an

d 
un

m
et

hy
la

te
d 

(U
nM

et
) 

ge
ne

s 
in

th
es

e 
va

ri
ou

s 
ca

te
go

ri
es

.

Oncogene. Author manuscript; available in PMC 2014 July 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kalari et al. Page 20

Table 2

Gene targets methylated in 77% or more of primary SCLCs.

chr start.peak end.peak hgnc_symbol description

6 27647872 27648246

1 91189238 91189687 BARHL2 BarH-like homeobox 2 [Source:HGNC Symbol;Acc:954]

10 124901911 124902685 HMX2 H6 family homeobox 2 [Source:HGNC Symbol;Acc:5018]

15 53087134 53087683 ONECUT1 one cut homeobox 1 [Source:HGNC Symbol;Acc:8138]

9 100611180 100611554 FOXE1 forkhead box E1 (thyroid transcription factor 2) [Source:HGNC Symbol;Acc:3806]

17 59529794 59530268 TBX4 T-box 4 [Source:HGNC Symbol;Acc:11603]

1 214153078 214153777 PROX1 prospero homeobox 1 [Source:HGNC Symbol;Acc:9459]

14 95239173 95240547 GSC goosecoid homeobox [Source:HGNC Symbol;Acc:4612]

21 38068981 38069055 SIM2 single-minded homolog 2 (Drosophila) [Source:HGNC Symbol;Acc:10883]

6 117584283 117584857 VGLL2 vestigial like 2 (Drosophila) [Source:HGNC Symbol;Acc:20232]

14 37124350 37124799 PAX9 paired box 9 [Source:HGNC Symbol;Acc:8623]

2 177004205 177004604

14 36991675 36992549 NKX2-1 NK2 homeobox 1 [Source:HGNC Symbol;Acc:11825]

1 197879403 197880252 LHX9 LIM homeobox 9 [Source:HGNC Symbol;Acc:14222]

11 32455050 32455624 WT1-AS WT1 antisense RNA (non-protein coding) [Source:HGNC Symbol;Acc:18135]

13 112719925 112720174 SOX1 SRY (sex determining region Y)-box 1 [Source:HGNC Symbol;Acc:11189]

21 38069706 38069780 SIM2 single-minded homolog 2 (Drosophila) [Source:HGNC Symbol;Acc:10883]

2 176956605 176956754 HOXD13 homeobox D13 [Source:HGNC Symbol;Acc:5136]

9 129566330 129566704 ZBTB43 zinc finger and BTB domain containing 43 [Source:HGNC Symbol;Acc:17908]

3 172167182 172167256 GHSR growth hormone secretagogue receptor [Source:HGNC Symbol;Acc:4267]

1 230777303 230777452 COG2 component of oligomeric golgi complex 2 [Source:HGNC Symbol;Acc:6546]

3 27765097 27765996 EOMES eomesodermin [Source:HGNC Symbol;Acc:3372]

20 30639265 30639939 HCK hemopoietic cell kinase [Source:HGNC Symbol;Acc:4840]

3 183274057 183274331 KLHL6 kelch-like 6 (Drosophila) [Source:HGNC Symbol;Acc:18653]

12 114846668 114847217 TBX5 T-box 5 [Source:HGNC Symbol;Acc:11604]

4 122685401 122685475 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:E7ENT1]

2 182547581 182547655

20 44880344 44880693 CDH22 cadherin 22, type 2 [Source:HGNC Symbol;Acc:13251]

9 21402751 21403100 IFNA12P interferon, alpha 12, pseudogene [Source:HGNC Symbol;Acc:5443]

7 97360940 97362189 TAC1 tachykinin, precursor 1 [Source:HGNC Symbol;Acc:11517]

2 223162732 223163206 CCDC140 coiled-coil domain containing 140 [Source:HGNC Symbol;Acc:26514]

7 129422815 129423514

2 192711381 192711755

6 27107272 27107346 HIST1H4I histone cluster 1, H4i [Source:HGNC Symbol;Acc:4793]

2 176969205 176970504 HOXD11 homeobox D11 [Source:HGNC Symbol;Acc:5134]

19 9608951 9609250 ZNF560 zinc finger protein 560 [Source:HGNC Symbol;Acc:26484]

7 27282651 27282900 EVX1 even-skipped homeobox 1 [Source:HGNC Symbol;Acc:3506]

2 223163332 223163406 PAX3 paired box 3 [Source:HGNC Symbol;Acc:8617]

7 27282951 27283025 EVX1 even-skipped homeobox 1 [Source:HGNC Symbol;Acc:3506]
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7 8474326 8475225 NXPH1 neurexophilin 1 [Source:HGNC Symbol;Acc:20693]

4 174452351 174452925 Nbla00301 (NBLA00301), non-coding RNA [Source:RefSeq DNA;Acc:NR_003679]

4 13545178 13545427 NKX3-2 NK3 homeobox 2 [Source:HGNC Symbol;Acc:951]

X 111325120 111325194 TRPC5 transient receptor potential cation channel, subfamily C, member 5 [Source:HGNC
Symbol;Acc:12337]

6 100911555 100911904 SIM1 single-minded homolog 1 (Drosophila) [Source:HGNC Symbol;Acc:10882]

14 29243250 29243899 C14orf23 chromosome 14 open reading frame 23 [Source:HGNC Symbol;Acc:19828]

5 172660770 172660844 NKX2-5 NK2 transcription factor related, locus 5 (Drosophila) [Source:HGNC Symbol;Acc:2488]

2 220196257 220197006 RESP18 regulated endocrine-specific protein 18 homolog (rat) [Source:HGNC Symbol;Acc:33762]

9 126776030 126776479 LHX2 LIM homeobox 2 [Source:HGNC Symbol;Acc:6594]

1 165323302 165323951 LMX1A LIM homeobox transcription factor 1, alpha [Source:HGNC Symbol;Acc:6653]

2 119603031 119603180 EN1 engrailed homeobox 1 [Source:HGNC Symbol;Acc:3342]

12 63543634 63544008 AVPR1A arginine vasopressin receptor 1A [Source:HGNC Symbol;Acc:895]

8 97170050 97170499 GDF6 growth differentiation factor 6 [Source:HGNC Symbol;Acc:4221]

1 47694839 47695213 TAL1 T-cell acute lymphocytic leukemia 1 [Source:HGNC Symbol;Acc:11556]

13 84453425 84453824 SLITRK1 SLIT and NTRK-like family, member 1 [Source:HGNC Symbol;Acc:20297]

4 174448251 174448725 HAND2 heart and neural crest derivatives expressed 2 [Source:HGNC Symbol;Acc:4808]

2 176977280 176977729 HOXD10 homeobox D10 [Source:HGNC Symbol;Acc:5133]

5 37835994 37836168 GDNF glial cell derived neurotrophic factor [Source:HGNC Symbol;Acc:4232]

9 37029751 37030525 PAX5 paired box 5 [Source:HGNC Symbol;Acc:8619]

14 29247325 29247499 C14orf23 chromosome 14 open reading frame 23 [Source:HGNC Symbol;Acc:19828]

7 8483051 8483825 NXPH1 neurexophilin 1 [Source:HGNC Symbol;Acc:20693]

6 154360508 154360857 OPRM1 opioid receptor, mu 1 [Source:HGNC Symbol;Acc:8156]

20 58569381 58569455 CDH26 cadherin 26 [Source:HGNC Symbol;Acc:15902]

9 21968201 21968875 C9orf53 chromosome 9 open reading frame 53 [Source:HGNC Symbol;Acc:23831]

16 49311725 49312274 CBLN1 cerebellin 1 precursor [Source:HGNC Symbol;Acc:1543]

8 9756191 9756540 MIR124-1 microRNA 124-1 [Source:HGNC Symbol;Acc:31502]

5 170741921 170741995 TLX3 T-cell leukemia homeobox 3 [Source:HGNC Symbol;Acc:13532]

20 21488326 21488925 NKX2-2 NK2 homeobox 2 [Source:HGNC Symbol;Acc:7835]

5 170743496 170744170 TLX3 T-cell leukemia homeobox 3 [Source:HGNC Symbol;Acc:13532]

5 172672295 172672844 Y RNA [Source:RFAM;Acc:RF00019]

2 177027180 177027529 HOXD4 homeobox D4 [Source:HGNC Symbol;Acc:5138]

4 85402627 85403376 NKX6-1 NK6 homeobox 1 [Source:HGNC Symbol;Acc:7839]

15 96911497 96912071 MIR1469 microRNA 1469 [Source:HGNC Symbol;Acc:35378]

15 89949372 89949871 MIR9-3 microRNA 9-3 [Source:HGNC Symbol;Acc:31646]

3 50377447 50378846 RASSF1A (*) Ras association (RalGDS/AF-6) domain family member 1 [Source:HGNC Symbol;Acc:
9882]

(*)
indicates a previously validated gene with a lower threshold for normal tissues than used for the other regions.
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