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Abstract
In this review we discuss the role of protonation states in receptor-ligand interactions, providing
experimental evidences and computational predictions that complex formation may involve
titratable groups with unusual pKa’s and that protonation states frequently change from unbound
to bound states. These protonation changes result in proton uptake/release, which in turn causes
the pH-dependence of the binding. Indeed, experimental data strongly suggests that almost any
binding is pH-dependent and to be correctly modeled, the protonation states must be properly
assigned prior to and after the binding. One may accurately predict the protonation states when
provided with the structures of the unbound proteins and their complex; however, the modeling
becomes much more complicated if the bound state has to be predicted in a docking protocol or if
the structures of either bound or unbound receptor-ligand are not available. The major challenges
that arise in these situations are the coupling between binding and protonation states, and the
conformational changes induced by the binding and ionization states of titratable groups. In
addition, any assessment of the protonation state, either before or after binding, must refer to the
pH of binding, which is frequently unknown. Thus, even if the pKa’s of ionizable groups can be
correctly assigned for both unbound and bound state, without knowing the experimental pH one
cannot assign the corresponding protonation states, and consequently one cannot calculate the
resulting proton uptake/release. It is pointed out, that while experimental pH may not be the
physiological pH and binding may involve proton uptake/release, there is a tendency that the
native receptor-ligand complexes have evolved toward specific either subcellular or tissue
characteristic pH at which the proton uptake/release is either minimal or absent.
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INTRODUCTION
Protein association/dissociation is one of the most important phenomena occurring in living
cell [1, 2]. The resulting protein assemblages could be long or short living entities as
permanent complexes, splicing machinery, transcription factors, and many others including
dynamic functional units participating in signaling cascades or cell-cycle regulation [3].
Important examples of protein assemblages are receptor-ligand complexes in which the
ligand is a small peptide or small molecule (drug). In cases such as these, one may consider
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the formation of the receptor-ligand complex to be subject to several constraints such as
subunits should be co-localized in space and time; the probability of proteins binding
depends on subunits concentration; and protein-protein recognition requires appropriate
physiochemical environment (see reference [2] for a complete list). For the purpose of this
review, which focuses on the role of protonation states in binding, we will introduce a
different scheme, namely we will consider the binding process to be made of three important
steps: (1) recognition: the receptor and the ligand must sense each other in the crowded
cellular environment; (2) orientation: the receptor and the ligand must be properly oriented
in such a way that their interfaces point toward each other; and (3) physical binding: the
receptor and the ligand form 3D complex (oligomer).

During each of the above mentioned steps, the receptor and ligand will interact, and various
forces will make contributions to the binding. Of these forces, the electrostatics in particular
is expected to be the dominant force during steps 1 and 2; this is because there is no direct
contact between the receptor and ligand in these steps, and all other forces, being short-
ranged, will have negligible effect. The electrostatic force is capable of causing
conformational and ionization changes in both the receptor and the ligand and can therefore
alter the protonation states. These changes may result in changes in the charge distribution,
which will affect the electrostatic interactions. An even more complicated balance is
expected to occur during the final stage (the physical binding), since more forces will be
involved and both the receptor and the ligand interfaces will be shielded from the water
phase. It is very likely that the dramatic changes in the interface environment and the newly
formed interactions across the interface will induce conformational and protonation changes.
In this review we will outline the importance of correctly assigning protonation states for
each of the three above mentioned steps.

The importance of the role of electrostatics on protein-protein interactions is well
understood and was elucidated by many researchers: Nielsen demonstrated that electrostatic
interactions are the major force for stability, binding characteristics, and function of proteins
[4]. The electrostatics is the driving force behind electron transfer and protein-protein
association [5]. The importance of surface and active center charges of acetylcholinesterase
in the electrostatic attraction of its ligands, and the influence of charge on the reactive
orientation of the ligand has previously been demonstrated [6]. It was shown that
electrostatics plays profound role in the thrombin-γ′ chain interactions [7]. The role of
electrostatics on protein binding energy and its salt dependence was outlined in a series of
other works [8–10]. Large scale investigations were done to assess the plausible protonation
changes associated with the binding as well [11, 12].

Before proceeding with these topics, one could raise the question of the importance of
protonation phenomena in receptor-ligand recognition at all [13, 14]. Is there experimental
evidence that protonation states may not be standard in receptor-ligand complexes or may
change during the formation of the complex? How frequently were such events
experimentally documented in the past? Below, we briefly provide experimental evidence of
proton uptake/release due to receptor-ligand interactions, while outlining that such data is
not absolute and depends on the environmental conditions of the experiments including pH
and, to a certain extent, the salt concentration.

A recent study utilized site-directed replacements of various amino acids in lactose
permease of Escherichia coli (LacY) to determine the source of an observed pKa value that
had the unusually high value of approximately 10.5 for sugar-binding affinity. It was
concluded that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any
single amino acid residue, but appears to reside within a complex of residues involved in H+
translocation [15]. Another experimental study employed isothermal titration calorimetry
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(ITC) in conjunction with macromolecular modeling (MM), to show that the binding of the
ERα nuclear receptor to its DNA response element is coupled to proton uptake [16]. It was
suggested that two ionizable residues, H196 and E203, located at the protein-DNA interface,
are the ionizable residues changing their protonation states as a result of binding. It was also
pointed out that H196 and E203 are predominantly conserved across approximately 50
members of the nuclear receptor family, which suggests that proton uptake may serve as a
key regulatory switch for modulating protein-DNA interactions [16]. Another study utilized
NMR to demonstrate that the binding of Bacillus anthracis glmS riboswitch to the α-anomer
of GlcN6P binding is pH-dependent. Furthermore, the binding of glmS RNA reduces the
pK(a) of the GlcN6P amine by 1.6 units in the ground state, causing proton release [17].
Proton uptake was experimentally observed in case of ion binding [18] and allosteric
inhibition [19]. In general, any pH-dependent binding involves proton uptake/release and
therefore causes changes in the protonation states of ionizable groups. The literature is full
of examples of experimental data demonstrating pH-dependent binding from ion binding to
small peptides [20] or proteins [21], and acid-organic compounds [22], to protein-small
molecule [23, 24] and protein-protein binding [25–27]. All of these examples demonstrate
that protonation states frequently change due to the binding.

THE ROLE OF PROTONATION STATES ON RECEPTOR AND LIGAND
RECOGNITION

Within the cell, the receptor and the ligand are present and each individual molecule moves
due to thermal motion, and perhaps, randomly collides with the rest of molecules in the cell.
To find its partner, the receptor and the ligand must sense each other (Fig. 1 A.1 and B.1).
One must recall that in order for the molecules to steer themselves towards the correct
partner, they must be able to sense their partner at large distances so the driving force must
be the electrostatics.

It is also useful to recall that there are two major classes of receptor-ligand complexes:
hereto- and homo-complexes. The hereto-complexes are made of two different units
(including cases of protein-small molecule complexes), while homo-complexes are
composed of two identical monomer components. This is an important distinction when one
recognizes that at large distances (during the initial stage of molecular recognition), the
shape and the charge distribution within binding partners, perhaps, does not matter. The
most important molecular characteristic at large distances is the net charge. Therefore, the
initial co-localization in space and time for hetero-and homo-complexes should utilize
different mechanisms [28]. Perhaps, in case of hetero-complexes, the electrostatics almost
always plays a favorable role, since it was shown that in vast majority of cases, the
monomers carry opposite net charge [8]. In contrast, in the case of homo-complexes, the net
charge of the monomers has the same polarity and therefore opposes the initial co-
localization of the binding partners [29], but may be interacting favorably via dipole-dipole
interactions [30].

Co-localization of the binding partners will place the monomers within the same
environment in terms of pH and salt concentration. Perhaps, from an evolutionary
standpoint, this would have required binding partners to co-evolve in such a way that they
both would be adaptable to a shared environment. Indeed recent studies have shown that
binding partners’ pH-dependent characteristics are similar [10]. Thus, some complexes will
be formed at low, others at neutral, and still others at high pH. Therefore, in order to
correctly model native binding, one should know what the physiological pH of the reaction
is and be able to predict correctly the protonation states at this particular pH.
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To understand the role of protonation states in the initial steering, one must be able to
predict the pKa’s of the ionizable groups of both the receptor and the ligand in their
unbound state. Protonation states must be predicted on a theoretical basis because the use of
x-ray crystallography cannot determine the position of hydrogen atoms [31]. Note that at
this stage, the interactions are supposed to be quite weak and not to affect the energetics of
individual molecules, including the pKa’s of ionzable groups. Thus, if the structures of
unbound monomers are available, one could apply standard pKa calculations [32, 33] and be
able to estimate the protonation states at the desired pH. Unfortunately, it is quite likely that
there will be no a priori information about the physiological pH at which the complex forms,
but it is necessary to predict it by either using the information about sub-cellular location
provided in the Protein Data bank (PDB) [34] or by carrying out additional investigations to
search the literature for homologous annotated protein(s). Obviously, the problem
disappears in cases of predicting protonation states for a particular experiment carried out
with well-defined pH.

Another problem concerning the prediction of protonation states of unbound receptor and
ligand is the common situation where their structures are unavailable. Even in cases where
the structure of the complex is experimentally determined, taking the bound monomers from
the complex to carry out pKa calculations for unbound state may be problematic due to the
possibility that binding results in conformational changes [35]. If only the bound structures
are available, one can relax them with standard molecular dynamics or normal mode
modeling and then apply pKa calculations to the ensemble of generated structures [36]. If no
structure is available, the 3D structures of biological macromolecules can be predicted by
other means provided that there are structures of homologues. It was shown in the past that
pKa calculations can be reliable if the sites are within well conserved structural regions [37].
In cases of peptides serving as a ligand to the receptor, one should account for the possibility
that the ligand may be quite unstructured in the unbound state and may exist as an ensemble
of structures. In this case, the protonation states may differ within the ensemble and they
should be properly ensemble averaged.

Provided that the characteristic pH is known, the structures are available, and the pKa’s are
properly assigned to both the receptor and the ligand, one can easily determine the charge
distribution within each molecule. Typically the receptor and the ligand will carry opposite
net charge and will attract each other via favorable electrostatic interactions (Fig. 1 A.1 and
B.1). However, for every receptor carrying a negative net charge, there will be many ligand
candidates carrying a positive net charge and will also be co-localized in space and time
with the receptor. Obviously the initial recognition is not very specific, but rather simply
increases the concentration of plausible ligands around the target receptor. At the same time,
it should not be overlooked that the co-localization occurs in specific environment in terms
of pH, salt concentration, and volume constraints, and the receptor and the ligand must be
able to get inside the corresponding cellular compartment and not be digested by enzymes.
Taking all of these constraints into consideration, the possibility of having many candidate
ligands carrying the same net charge may not be so great in many cases.

THE ROLE OF PROTONATION STATES ON RECEPTOR-LIGAND MUTUAL
ORIENTATION

Once the receptor and the ligand are within close proximity to each other, they are expected
to sense each other’s interfaces, and restrict their rotational and translational motions in
order to orient their interfaces properly (Fig. 1 A.2 and B.2). The magnitude of interactions
and the loss of entropy due to the restricted mobility could cause protonation and
conformational changes. The magnitude of the potential conformational and ionization
changes will depend on various factors and can be grouped into two binding categories:
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lock-and-key and induced fit binding. Here, we will artificially attribute this to the step 2,
the mutual orientation, although much of the changes may occur at the actual physical
binding. Obviously in the case of lock-and-key binding, the orientation state is not expected
to cause drastic protonation changes, since the structures of unbound receptor and ligand are
almost unaffected by the proximity of the partner and both interfaces are accessible from the
water phase. The electrostatic interactions will be of marginal order since they will occur
through the water and will therefore be significantly reduced. On the other hand, when
observing the induced fit mechanism, one can expect significant conformational changes to
occur during the orientation phase since the proper interfaces must be formed. These
structural changes can alter the protonation states, including sites situated away from the
interfaces [38].

Previous works have discussed that the binding of proteins depends on the folding of
proteins themselves[39], and physicochemical properties of the interface [40]. The recent
work of Honig and co-worker [64] summarized that the complementarity between surfaces
of binding proteins are based on the shape [41] and electrostatic properties of binding sites
[42, 43]. This is the reason why before two proteins associate to form a complex, they have
to find the proper relative orientation by translational and rotational diffusion [44]. The
protein association can be rate limited either by the diffusional approach of the subunits to
form a transient complex, or by the subsequent conformational rearrangement to form the
native complex [45].

At the stage of protein orientation, flexibility in protein structure plays a central role [46]. It
was shown that even when the monomer is stable on its own, binding occurs faster through
unfolded intermediates [47]. This was attributed to the hypothesis that the associating
proteins will likely first form less constrained complexes, called encounter complexes, and
then will slowly rearrange by translational and rotational diffusion until they reach the
orientationally constrained transition state [44]. An example of protein complexes
experiencing conformational changes was observed during the interaction of barnase and its
intracellular inhibitor barstar; it revealed the formation of a weakly-specific complex due to
long-range electrostatic interactions between protomers (the structural units of an oligomeric
protein) [48, 49]. Another work observed pocket formation during protein-protein binding in
a set of protein complexes [50]. Zhou and co-workers focused their investigations on
predicting the protein association rate constant while putting emphasis on the role of
electrostatics [51–53]. Recently they developed a web server designed for predicting protein
association rate constants, called TransComp, which uses the structure of the native complex
as input and generates the transient complex and the value of the association rate constant
[45].

THE ROLE OF PROTONATION STATES ON THE PHYSICAL BINDING
During the final stage of the binding (the physical binding), after the partners are co-
localized in space and time, and are properly oriented to each other, they should come
together to form a complex (Fig. 1 A.3 and B.3). The final stage of binding is a complicated
event, which may induce further conformational and ionization changes. In cases where no
further conformational changes occur upon the physical binding, the protonation states of
titratable residues situated at the interface can be affected by both the loss of interactions
with the water phase and by newly formed interactions across the interface. The presence of
the partner can also affect the pKa of distant (away from interface) groups via long range
electrostatic interactions as well. In cases of further conformational changes induced by the
physical binding, especially if they are propagated throughout the entire structures, the pKa
changes can be scattered everywhere, including the back of the molecules far away from the
binding site.
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Receptor-ligand binding is driven by the difference between the free energy of the complex
relative to unbound states [54, 55]. Binding free energy consists of several energy terms:
including non-bonded terms such as electrostatic, van der Waals, and bonded terms such as
the mechanical energy of the system, and the change of the entropy [56]. All of these
energies are coupled with the protonation states and cannot be calculated separately. This
coupling of various energy terms and effects is the main difficulty in modeling proton
uptake/release upon the binding. Many experimental and computational studies were carried
out in the past to reveal the relative role of the energy components, conformational, and
ionization changes induced by the binding.

Some investigations have focused on conformational flexibility demonstrating that it may
disfavor or favor the association [57]. It was shown that different sites of the proteins
undergo conformational changes but at different amplitudes [58]. Analysis of the disordered
and ordered proteins complexes showed that although disordered proteins adopt particular
conformations in their bound form, they are still much less rigid than ordered proteins [46].
Since the interfacial area is an important characteristic of the binding, its properties were
statistically assessed, and indicated that the average interface has the same non-polar
character as the protein surface as a whole, but carries fewer charged groups [59]. The fewer
charged group observation is attributed to the fact that charged or polar protein residues that
were initially exposed to the water phase tend to be partly or fully dehydrated due to being
buried inside the protein complex [39, 60]. However, the energy penalty due to the reduction
of the proteins’ flexibility and residues’ desolvation can be compensated by newly formed
interactions across the interface [61–64]. Correct assignment of protonation states would be
crucial for accurate calculations of the balance of these opposing effects.

To demonstrate an analysis of the forces and energies causing receptor-ligand binding,
numerous studies were designed to determine the main patterns of protein binding sites. It
has often been assumed that receptor-ligand complexes associate through hydrophobic
patches on their surfaces [65]. However, polar interactions between molecules are also
common. It was shown that water molecules contribute to the close-packing of atoms that
ensure complementarity between the two protein surfaces providing polar interactions
between the proteins [59]. Further analysis showed that in some cases, interfaces have a
large hydrophobic core surrounded by a ring of interfacial polar interactions, while in others,
the interface consists of small hydrophobic patches with distributed polar interactions and
water molecules over the entire interfacial area [65]. It was demonstrated that the weak
homo-dimers have smaller contact areas between protomers and the interfaces are more
planar and polar on average [66, 67]. In contrast, strong transient dimers undergo large
conformational changes upon complex formation and are characterized as being larger, less
planar, and sometimes possessing more hydrophobic interfaces. The interfaces of the hetero-
complexes are less hydrophobic than those of homo-dimers [68, 69]. This phenomenon was
explained by the possibility of protomers to be stable and function independently, while
monomers in permanent complexes are found to be unstable in solution and not able to
function by themselves [2,59]. Protomers from hetero-complexes are stable and are capable
of proper biological functioning.

Further studies compared the influence of hydrophilic bridges between charged and polar
residues on protein folding and protein-protein binding [70]. It was found that in contrast to
protein folding, salt bridges across the binding interface can significantly stabilize
complexes. While the hydrophobic effect in protein-protein interfaces is significant, it is not
as strong as that observed in the interior of monomers. At this stage of proteins association,
electrostatic interactions play an important role, but are not necessarily predominant. In an
article, authors investigated how optimization of electrostatic affinity affects specificity [71].
Using charge-optimization techniques they proved that affinity-optimized electrostatic
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interactions do not necessarily create specificity of ligand binding to the protein but affect
the strength of binding through the formation of hydrogen bonds [72]. The effects of
variable protonation states on binding affinity is the result of changes in the solvation
properties of the free protomers, and also the interactions between the ligand and receptor
while bound together [72]. The terminal hydrogen bonding groups are often involved in the
interaction and can constrain the possible binding mode the ligand can adopt [73]. That is
why the knowledge of residue protonation is crucial for protein binding affinity predictions
[31, 72, 74]. Electrostatic complementarity between the ferrocene units within the
ferrocene–ferrocene dimer leads to very frequent formation and constrained geometry [75].
In contrast, for binding CD2 to its ligand CD48 it was shown that charged residues
contribute little to binding energy is this interaction [76]. However, the loss of these charged
residues is shown to markedly reduce ligand-binding specificity. Thus, the charged residues
increase the specificity of CD2 binding without increasing the affinity. It was also shown
that in the CD2/CD58 interaction, the binding is accompanied by energetically significant
conformational adjustments, that are not dependent on the highly charged binding interface
[77]. In this particular case, long-range electrostatic forces make no net contribution to
binding.

Conformational changes and electrostatic perturbations induced by the binding may result in
change of ionization states [78]. While most changes occur within the immediate vicinity of
the binding interface, it was shown that one out of five ionizable residues experience
substantial changes in pKa regardless of their ligand type [14]. It is well documented that the
pKa values of buried ionizable residues are usually very different from the standard pKa
values of ionizable residues exposed to the water [60, 79, 80]. Onufriev and co-workers
determined that 90% of examined protein-protein complexes possessed at least one ionizable
group which changed its charge state due to ligand bonding at physiological conditions.
They also determined that 9% of protein-protein complexes experience a substantial (greater
than one unit) change in pKa values due to binding [14]. An example of significant pKa
changes for histidine was shown for Herpes Simplex Virus receptor - IgG association [27],
and during complex formations of trypsin and thrombin with their ligands [81] as well.

MODELING THE BINDING FREE ENERGY INCLUDING PROTONATION
CHANGES AND APPLICATION TO DOCKING PROBLEM

Methods for modeling receptor-ligand binding free energy vary from structure based virtual
screening methods to more sophisticated and more computationally costly free energy
calculation methods. Docking methods utilize these methods or use a scoring function to
predict the most stable conformation of the ligand-receptor complex using the structures of
the unbound receptor and ligand. In both cases, the free energy calculations and the docking
results depend on various details and assumptions, such as the choice of protonation sites on
the receptor and the ligand [73, 82].

Proteins binding energy can be presented as following [83]:

(1)

where Keq is the equilibrium binding constant; ΔGcomplex, ΔGreceptor, and ΔGligand are the
folding free energies of the complex, receptor and ligand, respectively. These free energies
include various energy contributions, and in the case of changes of protonation state from
unfolded to folded state, must include the energy of ionization [38].

Many factors can influence the protonation states of the receptor and the ligand, such as
their concentration and the concentration of other molecules, temperature, and mostly the
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pH. Protomers differ in shape, functional groups, surface, and ability to form hydrogen
bonds and therefore will experience different effects due to abovementioned factors. Only in
very few cases does experimental data exist of the protonation states before and after the
binding. In the vast majority of the cases, these protonation states (and changes) must be
computationally predicted. However, the other frequently unknown factor is the pH of the
binding. At some pH values, the binding may not involve protonation changes, while at
other pH it may [10, 11]. In summary, computing the binding free energy or predicting the
binding mode via ab-initio docking while taking into account protonation and
conformational changes and having little knowledge of the physiological pH, is a challenge
[84]. Below we briefly outline several works dealing with these issues.

In terms of predicting protonation states of proteins and receptor-ligand complexes, one can
utilize standard pKa calculations if the structures of both the unbound and bound entities are
available [32, 36]. The problem becomes more complicated if several groups change
protonation state [78]. Nielsen pointed out that that this might be accomplished by
calculating the titration curves of all ionized groups in a range of pH values, while taking
into account the effect of the interactions between them [4]. There are now online servers
that can predict the best combination of protonation states for each ionizable residue as well
as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex
using coordinate information for the protein [85]. In terms of in silico screening, it was
shown that the optimization of protonation states can play a significant role on selecting
native-like ligand structures [86]. Another study constructed a prediction scheme with
target-specific scores for estimating ligand-binding affinities to human estrogen receptor α
(ERα), considering the major conformational change between agonist- and antagonist-
bound forms and the change in protonation states of histidine at the ligand-binding site [87].
Different protonation was shown to result in alternative binding modes in docking
simulations [88]. Another work showed the influence of variations of ligand protonation on
the binding energy landscape of protein-ligand complexes using a structural consensus that
was derived from multiple docking simulations [73]. Similarly, it was pointed out that the
ionization state of ligand and receptor functional groups strongly affects their binding
energy [89]. In Ref. [90] it was found that both the ionization state and the associated local
pH play significant roles in binding free energy and are potentially valuable in protein-
protein complex formation. The importance of taking protonation into account in molecular
docking has been highlighted in several other articles [82, 91, 92]. Another work pointed out
that one of the difficulties in the implementation of residues’ protonation state in binding
energy calculations is that the ionized state for each defined residue cannot be well-defined,
because protons are not static, they transfer between molecules [89]. A new computation
method called “computational titration” that implements the pH dependence of proteins
binding and allows scoring the protonation-dependent models was reported [89]. Another
group developed the combinatorial method called SPORES (structure protonation and
recognition system) to generate protonation states [31].

IMPORTANCE OF PROTONATION STATES AND PH-DEPENDENCE OF
BINDING

There is much research being done to understand the affect of pH on proteins and receptor-
ligand complexes. This knowledge has consequences for many fields including industrial
applications such as the production of pH dependent textiles and food, the production of
gases from microbial processes, medical applications including tumor suppressants and drug
design and many others (Fig. 2).

It is known that cells can exist and perform particular functions in complex environments
within a particular range of temperature and pH conditions [93]. The pH level is different for
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different parts of the body. Thus for example, in order to decompose food to basic
components, the stomach maintains an acidic environment. The cells, covering inner walls
of stomach, must be resistant to these extreme conditions and the proteins and receptor-
ligand complexes within should be able to perform their functions. Another example are
immunocompetent cells, such as monocytes and neutrophils. While being activated, they
produce reactive oxygen species that acidify the environment [94]. Thus, the change in pH is
used as a powerful weapon against pathogen organisms. In addition, these cells perform
phagocytosis, at which monocytes and neutrophils capture the pathogens inside phagosomes
inside cells. It was shown that during lysis of antigens the environment inside phagosomes/
lysosomes are maintained temporary acidic, that allows to activate enzymes such as
lysozyme to inactivate enemy [95]. Furthermore, the pH value is not constant throughout the
cell; compartments of the cells can have widely differing pH [93], so the receptor-ligand
complexes must be evolved to tolerate and sense the characteristic subcellular pH [11, 36,
96]. Besides cellular compartments, it is known that biological membranes strongly interact
with titratable residues making membrane binding pH-dependent [97].

The importance of protonation states and the corresponding local pH is illustrated by the
observation that tumor cells’ pH is different from that of normal cells. This was used to
develop different methods used for tumor suppression and treatment, as well as drug design
and delivery. A recent work showed that low pH is a hallmark of tumor malignancy, and this
potentially influences exosome release/uptake by cancer cells. The work was able to monitor
exosome traffic as a function of different pH conditions to show an increased exosome
release and uptake at low pH [98]. Another group investigated the effect of pH on p53 tumor
suppressant with a mutation present. The work found a novel mechanism of tumorigenesis: a
pH-dependent p53 tumor suppressor dysfunction, which led to tissue-specific tumor
development. The mutated tetramer was found to be very pH dependent while the wild type
was stable at all tested pH values. The mutation was shown to destablilize the p53
tetramerization domain at high pH values (6.5–8.0), so it was suggested that intracellular pH
is likely to modulate the function of the mutated complex [99]. Based on differences of
environmental pH of normal and tumor cells, new pH-sensitive polymeric micelles and
nanogels were developed to target slightly acidic extracellular pH environments of solid
tumors [100]. Another work prepared tumor-targeting peptide conjugated pH-responsive
polymeric micelles to be used in cancer therapy using a pH-responsive tumor targeting
delivery system. The pH-dependent drug release profile was obtained at a pH of 6.4, and
efficiency in delivering anticancer drugs in mice was demonstrated. It was speculated that
such a tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have
potential in cancer therapy [101].

The alteration in pH environment is widely used in drug design. It was explained that
engineering pH dependency into the interactions of therapeutic antibodies may allow
medications to be delivered less frequently or at lower doses. With this regard, a pH
dependent antibody against the IL-6 receptor was incorporated to dissociate quickly from
IL-6R within an acidic environment while maintaining its binding affinity to IL-6R in order
to increase the number of cycles of antigen binding [102]. In order to maximize the
efficiency and minimize initial drug release in the stomach, and reduce the potential gastro
irritant and ulcerogenic effects of the drug, another study designed a controlled release
formulation of ibuprofen with a pH dependent release profile. The work was successful in
extending the release of ibuprofen from its tablet formulations [103]. Similarly, it was found
that with all basic and the majority of acidic drugs, fraction unbound in plasma depended
linearly on pH. Evidence was found indicating that pH-induced changes in the plasma
proteins were also involved in the observed pH-dependent interaction with ligands. It was
suggested that changes in fraction unbound could be clinically relevant with narrow-
therapeutic-range drugs [104].
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In addition to medical applications, there are many fields that also utilize pH including many
industries that produce materials that can have pH dependent qualities and food processing
companies who must track pH in order to ensure food safety. The possibility of using pH
control to enhance separation and to clean up the ionic liquid solvent has been suggested by
the work of many groups [105]. It was explained that room temperature ionic liquids are
emerging as solvent replacements for volatile organic compounds traditionally used in
liquid/liquid separations. Experimentally, using thymol blue indicator dye, the group was
able to demonstrate a reversible pH-dependent liquid/liquid partitioning [106].

pH plays a central role in the production and fermentation of dairy products including milk
and cheeses. A recent study investigated the effect of pH on the turbidity of reconstituted
skim milk powder, and showed a relationship between the barostability of casein micelles
and pH [107]. In another study, it was found that the activity of cell-envelope proteinases
and aminopeptidases was a function of pH and reached a maximum at about pH 6 and
decreased at lower pH values [108]. In addition to milk, pH has a great effect on the
production of cheese. With this regard, the effect of pH on the composition, microstructural,
and functional properties of Mozzarella cheese was investigated and it was found that
cheeses with a high pH with a reduced calcium content resulted in a significant decrease in
the protein level and increases in the moisture content of the cheese [109]. PH is often used
as a control method in the production of hydrogen and methane from cheese whey. Thus, an
automatic pH controller was used to maintain the pH culture in order to control the amount
of gas produced [110]. Many other examples can be pointed out illustrating the importance
of the pH and protonation states in food industry [111–114].

In addition to the use of pH in materials and food processing, it is also used as a method for
controlling the production of gases such as hydrogen and methane in organic processes.
Hydrogen gas can result from the microbial fermentation of organic substrates. A technique
for limiting methanogenesis in mixed cultures is maintaining a low pH environment during
culture growth [115]. Another work determined that the production rate of hydrogen gas
from the conversion of wastewaters is also a function of pH, and the optimal pH range for
hydrogen production was at a pH range of 5.0–6.0 [116]. The pH of soil is often used to
control the formation of methane in soil from microbial processes [117].

CONCLUSION
It was outlined that protonation states of the receptor and the ligand before and after the
binding are a very important factor for the binding as indicated by both the experimental
data and computational modeling reported in the literature. It was shown that in many cases,
the formation of the complex is accompanied by proton uptake/release. At the same time,
the reviewed works suggested that each receptor-ligand complex has evolved toward a
specific pH, termed pH-optimum, at which the proton uptake/release upon the binding is
zero. Perhaps, the experimental observations and numerical studies indicating frequent
proton uptake/release upon complex formations were carried at pHs different from the pH-
optimum of the corresponding complexes and this was the reason for such a conclusion. In
any case, the computational methods should be able to model receptor-ligand binding at any
pH, including pH at which the binding induces proton transfer and is pH-dependent.
However, it was demonstrated that predicting the absolute binding energy, calculating the
pH dependence and scoring small molecule binding to the target protein taking into
consideration plausible protonation changes is still a challenge.
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GLOSSARY

Protomer the structural unit of an oligomeric protein

Receptor the protein (typically the larger partner) to with the other
protomer binds

Ligand the protein, the peptide or small molecule that binds to the
receptor

Recognition the receptor and the ligand sense each other in the crowded
cellular environment

Orientation the receptor and the ligand are oriented in such a way that their
interfaces point toward each other

Physical binding the receptor and the ligand form 3D complex (oligomer)

Hetero-complex
(hereto-dimer)

complex made of two different protomers

Homo-complex
(homo-dimer)

complex made of two identical units

References
1. Dennis, EA.; Bradshaw, RA. Transduction mechanisms in cellular signaling. Elsevier/AP;

Amsterdam Boston: 2011.

2. Nooren IM, Thornton JM. Diversity of protein-protein interactions. EMBO J. 2003; 22:3486–92.
[PubMed: 12853464]

3. Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl
Acad Sci U S A. 2003; 100:12123–8. [PubMed: 14517352]

4. Nielsen JE. Analysing the pH-dependent properties of proteins using pK(a) calculations. Journal of
Molecular Graphics & Modelling. 2007; 25:691–699. [PubMed: 16815056]

5. Gunner MR, Nicholls A, Honig B. Electrostatic potentials in Rhodopseudomonas viridis reaction
centers: Implications for the driving force and directionality of electron transfer. Journal of Physical
Chemistry. 1996; 100:4277–4291.

6. Radic Z, Kirchhoff PD, Quinn DM, McCammon JA, Taylor P. Electrostatic influence on the
kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and
fasciculin. J Biol Chem. 1997; 272:23265–77. [PubMed: 9287336]

7. Alexander KS, Fried MG, Farrell DH. Role of Electrostatic Interactions in Binding of Thrombin to
the Fibrinogen gamma′ Chain. Biochemistry. 2012

8. Talley K, Ng C, Shoppell M, Kundrotas P, Alexov E. On the electrostatic component of protein-
protein binding free energy. PMC Biophys. 2008; 1:2. [PubMed: 19351424]

9. Brock K, Talley K, Coley K, Kundrotas P, Alexov E. Optimization of electrostatic interactions in
protein-protein complexes. Biophys J. 2007; 93:3340–52. [PubMed: 17693468]

10. Kundrotas PJ, Alexov E. Electrostatic properties of protein-protein complexes. Biophys J. 2006;
91:1724–36. [PubMed: 16782791]

11. Mitra RC, Zhang Z, Alexov E. In silico modeling of pH-optimum of protein-protein binding.
Proteins. 2011; 79:925–36. [PubMed: 21287623]

12. Aguilar B, Anandakrishnan R, Ruscio JZ, Onufriev AV. Statistics and physical origins of pK and
ionization state changes upon protein-ligand binding. Biophys J. 2010; 98:872–80. [PubMed:
20197041]

13. Mitra R, Shyam R, Mitra I, Miteva MA, Alexov E. Calculating the protonation states of proteins
and small molecules: Implications to ligand-receptor interactions. Current Computer-Aided Drug
Design. 2008; 4:169–179.

Petukh et al. Page 11

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



14. Aguilar B, Anandakrishnan R, Ruscio JZ, Onufriev AV. Statistics and Physical Origins of pK and
Ionization State Changes upon Protein-Ligand Binding. Biophysical Journal. 2010; 98:872–880.
[PubMed: 20197041]

15. Smirnova I, Kasho V, Sugihara J, Choe JY, Kaback HR. Residues in the H+ translocation site
define the pKa for sugar binding to LacY. Biochemistry. 2009; 48:8852–60. [PubMed: 19689129]

16. Deegan BJ, Seldeen KL, McDonald CB, Bhat V, Farooq A. Binding of the ERα nuclear receptor
to DNA is coupled to proton uptake. Biochemistry. 2010; 49:5978–88. [PubMed: 20593765]

17. Davis JH, Dunican BF, Strobel SA. glmS Riboswitch binding to the glucosamine-6-phosphate
alpha-anomer shifts the pKa toward neutrality. Biochemistry. 2011; 50:7236–42. [PubMed:
21770472]

18. Kumar R, Mauk AG. Protonation and anion binding control the kinetics of iron release from
human transferrin. J Phys Chem B. 2012; 116:3795–807. [PubMed: 22364386]

19. Khare P, White AR, Parsons SM. Multiple protonation states of vesicular acetylcholine transporter
detected by binding of [3H]vesamicol. Biochemistry. 2009; 48:8965–75. [PubMed: 19685929]

20. Ghalebani L, Wahlstrom A, Danielsson J, Warmlander SK, Graslund A. pH-dependence of the
specific binding of Cu(II) and Zn(II) ions to the amyloid-beta peptide. Biochem Biophys Res
Commun. 2012; 421:554–60. [PubMed: 22525674]

21. Semin BK, Davletshina LN, Aleksandrov AY, Lanchinskaya VY, Novakova AA, Ivanov. pH
dependence of the efficiency of binding of iron cations to the donor side of photosystem II.
Biochemistry (Mosc). 2004; 69:331–9. [PubMed: 15061702]

22. Hsieh PC, Hsu SH, Lee CL, Brimblecombe P. pH dependence of binding benzo[h]quinoline and
humic acid and effects on fluorescence quenching. Environ Toxicol Chem. 2010; 29:1696–702.
[PubMed: 20821621]

23. Anand U, Kurup L, Mukherjee S. Deciphering the role of pH in the binding of ciprofloxacin
hydrochloride to bovine serum albumin. Phys Chem Chem Phys. 2012; 14:4250–8. [PubMed:
22354288]

24. Maiti A, Drohat AC. Dependence of substrate binding and catalysis on pH, ionic strength, and
temperature for thymine DNA glycosylase: Insights into recognition and processing of G. T
mispairs. DNA Repair (Amst). 2011; 10:545–53. [PubMed: 21474392]

25. Parkes JH, Gibson SK, Liebman PA. Temperature and pH dependence of the metarhodopsin I-
metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk
membranes. Biochemistry. 1999; 38:6862–78. [PubMed: 10346908]

26. Luo S, Blom AM, Rupp S, Hipler UC, Hube B, Skerka C, Zipfel PF. The pH-regulated antigen 1
of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates
fungal complement evasion. J Biol Chem. 2011; 286:8021–9. [PubMed: 21212281]

27. Sprague ER, Martin WL, Bjorkman PJ. pH dependence and stoichiometry of binding to the Fc
region of IgG by the herpes simplex virus Fc receptor gE-gI. J Biol Chem. 2004; 279:14184–93.
[PubMed: 14734541]

28. Zhang Z, Witham S, Alexov E. On the role of electrostatics in protein-protein interactions. Phys
Biol. 2011; 8:035001. [PubMed: 21572182]

29. Talley K, Kundrotas P, Alexov E. Modeling salt dependence of protein-protein association: Linear
vs nonlinear Poisson-Boltzmann equation. Communications in Computational Physics. 2008;
3:1071–1086.

30. De Pascalis AR, Jelesarov I, Ackermann F, Koppenol WH, Hirasawa M, Knaff DB, Bosshard HR.
Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl groups,
electrostatic surface potential, and molecular dipole moment. Protein Sci. 1993; 2:1126–35.
[PubMed: 8102922]

31. ten Brink T, Exner TE. Influence of protonation, tautomeric, and stereoisomeric states on protein-
ligand docking results. J Chem Inf Model. 2009; 49:1535–46. [PubMed: 19453150]

32. Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen JE, Farrell D,
Carstensen T, Olsson MH, Shen JK, Warwicker J, Williams S, Word JM. Progress in the
prediction of pKa values in proteins. Proteins. 2011; 79:3260–75. [PubMed: 22002859]

Petukh et al. Page 12

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



33. Nielsen JE, Gunner MR, Garcia-Moreno BE. The pKa Cooperative: a collaborative effort to
advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins.
2011; 79:3249–59. [PubMed: 22002877]

34. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn
GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE. The RCSB Protein
Data Bank: redesigned web site and web services. Nucleic Acids Res. 2011; 39:D392–401.
[PubMed: 21036868]

35. Elcock AH, McCammon JA. Calculation of weak protein-protein interactions: the pH dependence
of the second virial coefficient. Biophys J. 2001; 80:613–25. [PubMed: 11159430]

36. Witham S, Talley K, Wang L, Zhang Z, Sarkar S, Gao D, Yang W, Alexov E. Developing hybrid
approaches to predict pKa values of ionizable groups. Proteins. 2011; 79:3389–99. [PubMed:
21744395]

37. Kundrotas P, Georgieva P, Shosheva A, Christova P, Alexov E. Assessing the quality of the
homology-modeled 3D structures from electrostatic standpoint: test on bacterial nucleoside
monophosphate kinase families. J Bioinform Comput Biol. 2007; 5:693–715. [PubMed:
17688312]

38. Alexov E. Calculating proton uptake/release and binding free energy taking into account ionization
and conformation changes induced by protein-inhibitor association: application to plasmepsin,
cathepsin D and endothiapepsin-pepstatin complexes. Proteins. 2004; 56:572–84. [PubMed:
15229889]

39. Janin J, Bahadur RP, Chakrabarti P. Protein-protein interaction and quaternary structure. Q Rev
Biophys. 2008; 41:133–80. [PubMed: 18812015]

40. Ozbabacan SE, Engin HB, Gursoy A, Keskin O. Transient protein-protein interactions. Protein Eng
Des Sel. 2011; 24:635–48. [PubMed: 21676899]

41. Lawrence MC, Colman PM. Shape complementarity at protein/protein interfaces. J Mol Biol.
1993; 234:946–50. [PubMed: 8263940]

42. Vakser IA, Aflalo C. Hydrophobic docking: a proposed enhancement to molecular recognition
techniques. Proteins. 1994; 20:320–9. [PubMed: 7731951]

43. McCoy AJ, Epa VC, Colman PM. Electrostatic complementarity at protein/protein interfaces.
Journal of molecular biology. 1997; 268:570–584. [PubMed: 9159491]

44. Vijayakumar M, Wong KY, Schreiber G, Fersht AR, Szabo A, Zhou HX. Electrostatic
enhancement of diffusion-controlled protein-protein association: comparison of theory and
experiment on barnase and barstar. J Mol Biol. 1998; 278:1015–24. [PubMed: 9600858]

45. Qin S, Pang X, Zhou HX. Automated prediction of protein association rate constants. Structure.
2011; 19:1744–51. [PubMed: 22153497]

46. Meszaros B, Simon I, Dosztanyi Z. The expanding view of protein-protein interactions: complexes
involving intrinsically disordered proteins. Phys Biol. 2011; 8:035003. [PubMed: 21572179]

47. Levy Y, Wolynes PG, Onuchic JN. Protein topology determines binding mechanism. Proc Natl
Acad Sci U S A. 2004; 101:511–6. [PubMed: 14694192]

48. Schreiber G, Fersht AR. Rapid, electrostatically assisted association of proteins. Nature Structural
Biology. 1996; 3:427–431.

49. Lee LP, Tidor B. Barstar is electrostatically optimized for tight binding to barnase. Nature
Structural Biology. 2001; 8:73–76.

50. Gao M, Skolnick J. The distribution of ligand-binding pockets around protein-protein interfaces
suggests a general mechanism for pocket formation. Proc Natl Acad Sci U S A. 2012; 109:3784–9.
[PubMed: 22355140]

51. Alsallaq R, Zhou HX. Electrostatic rate enhancement and transient complex of protein-protein
association. Proteins. 2008; 71:320–35. [PubMed: 17932929]

52. Alsallaq R, Zhou HX. Prediction of protein-protein association rates from a transition-state theory.
Structure. 2007; 15:215–24. [PubMed: 17292839]

53. Korzhnev DM, Bezsonova I, Evanics F, Taulier N, Zhou Z, Bai Y, Chalikian TV, Prosser RS, Kay
LE. Probing the transition state ensemble of a protein folding reaction by pressure-dependent
NMR relaxation dispersion. J Am Chem Soc. 2006; 128:5262–9. [PubMed: 16608362]

Petukh et al. Page 13

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



54. Keskin O, Gursoy A, Ma B, Nussinov R. Principles of protein-protein interactions: What are the
preferred ways for proteins to interact? Chemical Reviews. 2008; 108:1225–1244. [PubMed:
18355092]

55. Prada-Gracia D, Gomez-Gardenes J, Echenique P, Falo F. Exploring the free energy landscape:
from dynamics to networks and back. PLoS Comput Biol. 2009; 5:e1000415. [PubMed:
19557191]

56. Jackson RM, Sternberg MJ. A continuum model for protein-protein interactions: application to the
docking problem. J Mol Biol. 1995; 250:258–75. [PubMed: 7541840]

57. Frederick KK, Marlow MS, Valentine KG, Wand AJ. Conformational entropy in molecular
recognition by proteins. Nature. 2007; 448:325–9. [PubMed: 17637663]

58. Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES. Are protein-protein interfaces more
conserved in sequence than the rest of the protein surface? Protein Science. 2004; 13:190–202.
[PubMed: 14691234]

59. Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. J Mol
Biol. 1999; 285:2177–98. [PubMed: 9925793]

60. Harms MJ, Castaneda CA, Schlessman JL, Sue GR, Isom DG, Cannon BR, Garcia-Moreno EB.
The pK(a) values of acidic and basic residues buried at the same internal location in a protein are
governed by different factors. J Mol Biol. 2009; 389:34–47. [PubMed: 19324049]

61. Gerstein M, Lesk AM, Chothia C. Structural mechanisms for domain movements in proteins.
Biochemistry. 1994; 33:6739–49. [PubMed: 8204609]

62. Wilson IA, Stanfield RL. Antibody-antigen interactions: new structures and new conformational
changes. Curr Opin Struct Biol. 1994; 4:857–67. [PubMed: 7536111]

63. DuBay KH, Geissler PL. Calculation of proteins’ total side-chain torsional entropy and its
influence on protein-ligand interactions. J Mol Biol. 2009; 391:484–97. [PubMed: 19481551]

64. Sheinerman FB, Honig B. On the role of electrostatic interactions in the design of protein-protein
interfaces. J Mol Biol. 2002; 318:161–77. [PubMed: 12054776]

65. Larsen TA, Olson AJ, Goodsell DS. Morphology of protein-protein interfaces. Structure. 1998;
6:421–7. [PubMed: 9562553]

66. Nooren IM, Thornton JM. Structural characterisation and functional significance of transient
protein-protein interactions. J Mol Biol. 2003; 325:991–1018. [PubMed: 12527304]

67. Jones S, Thornton JM. Analysis of protein-protein interaction sites using surface patches. Journal
of molecular biology. 1997; 272:121–132. [PubMed: 9299342]

68. Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol
Biol. 1988; 204:155–64. [PubMed: 3216390]

69. Janin J, Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990;
265:16027–30. [PubMed: 2204619]

70. Xu D, Lin SL, Nussinov R. Protein binding versus protein folding: the role of hydrophilic bridges
in protein associations. J Mol Biol. 1997; 265:68–84. [PubMed: 8995525]

71. Kangas E, Tidor B. Electrostatic specificity in molecular ligand design. Journal of Chemical
Physics. 2000; 112:9120–9131.

72. Park MS, Gao C, Stern HA. Estimating binding affinities by docking/scoring methods using
variable protonation states. Proteins-Structure Function and Bioinformatics. 2011; 79:304–314.

73. Todorov NP, Monthoux PH, Alberts IL. The influence of variations of ligand protonation and
tautomerism on protein-ligand recognition and binding energy landscape. Journal of Chemical
Information and Modeling. 2006; 46:1134–1142. [PubMed: 16711733]

74. Mizutani MY, Takamatsu Y, Ichinose T, Itai A. Prediction of Ligand Binding Affinity Using a
Multiple-Conformations-Multiple-Protonation Scheme: Application to Estrogen Receptor alpha.
Chemical & Pharmaceutical Bulletin. 2012; 60:183–194.

75. Bogdanovic GA, Novakovic SB. Rigid ferrocene-ferrocene dimer as a common building block in
the crystal structures of ferrocene derivatives. Crystengcomm. 2011; 13:6930–6932.

76. Davis SJ, Davies EA, Tucknott MG, Jones EY, van der Merwe PA. The role of charged residues
mediating low affinity protein-protein recognition at the cell surface by CD2. Proc Natl Acad Sci
U S A. 1998; 95:5490–4. [PubMed: 9576909]

Petukh et al. Page 14

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



77. Kearney A, Avramovic A, Castro MA, Carmo AM, Davis SJ, van der Merwe PA. The contribution
of conformational adjustments and long-range electrostatic forces to the CD2/CD58 interaction. J
Biol Chem. 2007; 282:13160–6. [PubMed: 17344209]

78. Jensen JH. Calculating pH and salt dependence of protein-protein binding. Curr Pharm Biotechnol.
2008; 9:96–102. [PubMed: 18393866]

79. Kaushik JK, Iimura S, Ogasahara K, Yamagata Y, Segawa S, Yutani K. Completely buried, non-
ion-paired glutamic acid contributes favorably to the conformational stability of pyrrolidone
carboxyl peptidases from hyperthermophiles. Biochemistry. 2006; 45:7100–12. [PubMed:
16752900]

80. Lambeir AM, Backmann J, Ruiz-Sanz J, Filimonov V, Nielsen JE, Kursula I, Norledge BV,
Wierenga RK. The ionization of a buried glutamic acid is thermodynamically linked to the
stability of Leishmania mexicana triose phosphate isomerase. European Journal of Biochemistry.
2000; 267:2516–2524. [PubMed: 10785370]

81. Czodrowski P, Sotriffer CA, Klebe G. Protonation Changes upon Ligand Binding to Trypsin and
Thrombin: Structural Interpretation Based on pKa Calculations and ITC Experiments. Journal of
molecular biology. 2007; 367:1347–1356. [PubMed: 17316681]

82. Knox AJS, Meegan MJ, Carta G, Lloyd DG. Considerations in compound database preparation
“Hidden” impact on virtual screening results. Journal of Chemical Information and Modeling.
2005; 45:1908–1919. [PubMed: 16309298]

83. Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annual review of
biophysics and biomolecular structure. 2003; 32:335–373.

84. Gilson MK, Zhou HX. Calculation of Protein-Ligand Binding Affinities*. Annu Rev Biophys
Biomol Struct. 2007; 36:21–42. [PubMed: 17201676]

85. Bayden AS, Fornabaio M, Scarsdale JN, Kellogg GE. Web application for studying the free energy
of binding and protonation states of protein-ligand complexes based on HINT. J Comput Aided
Mol Des. 2009; 23:621–32. [PubMed: 19554265]

86. Rapp CS, Schonbrun C, Jacobson MP, Kalyanaraman C, Huang N. Automated site preparation in
physics-based rescoring of receptor ligand complexes. Proteins. 2009; 77:52–61. [PubMed:
19382204]

87. Mizutani MY, Takamatsu Y, Ichinose T, Itai A. Prediction of ligand binding affinity using a
multiple-conformations-multiple-protonation scheme: application to estrogen receptor alpha.
Chem Pharm Bull (Tokyo). 2012; 60:183–94. [PubMed: 22293477]

88. Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A. The effect of ligand-based tautomer and
protomer prediction on structure-based virtual screening. Journal of Chemical Information and
Modeling. 2009; 49:2742–2748. [PubMed: 19928753]

89. Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE. Simple, intuitive calculations of
free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in
molecular models of neuraminidase-inhibitor complexes. Journal of medicinal chemistry. 2003;
46:4487–4500. [PubMed: 14521411]

90. Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A. Simple, intuitive
calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit
constrained water. Journal of medicinal chemistry. 2002; 45:2469–2483. [PubMed: 12036355]

91. Pospisil P, Ballmer P, Scapozza L, Folkers G. Tautomerism in computer-aided drug design. J
Recept Signal Transduct Res. 2003; 23:361–71. [PubMed: 14753297]

92. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T. Evaluation of the performance of 3D virtual
screening protocols: RMSD comparisons, enrichment assessments, and decoy selection--what can
we learn from earlier mistakes? J Comput Aided Mol Des. 2008; 22:213–28. [PubMed: 18196462]

93. Mather, JP.; Roberts, PE. Introduction to cell and tissue culture: theory and technique. Plenum Pub
Corp; 1998.

94. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human
disease. The American journal of medicine. 1991; 91:S14–S22.

95. Geisow MJ, Hart PDA, Young MR. Temporal changes of lysosome and phagosome pH during
phagolysosome formation in macrophages: studies by fluorescence spectroscopy. The Journal of
cell biology. 1981; 89:645–652. [PubMed: 6166620]

Petukh et al. Page 15

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



96. Alexov E. Numerical calculations of the pH of maximal protein stability. European Journal of
Biochemistry. 2004; 271:173–185. [PubMed: 14686930]

97. Mihajlovic M, Lazaridis T. Calculations of pH-dependent binding of proteins to biological
membranes. The Journal of Physical Chemistry B. 2006; 110:3375–3384. [PubMed: 16494352]

98. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M,
Molinari A. Microenvironmental pH is a key factor for exosome traffic in tumor cells. Journal of
Biological Chemistry. 2009; 284:34211–34222. [PubMed: 19801663]

99. DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki
RW. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant
p53 tetramer. Nature Structural & Molecular Biology. 2001; 9:12–16.

100. Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. Journal of
Controlled Release. 2008; 132:164–170. [PubMed: 18571265]

101. Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, Lee BH, Park RW, Kim IS, Choi K. Tumor-
targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer
therapy. Bioconjugate chemistry. 2010; 21:208–213. [PubMed: 20073455]

102. Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T,
Takubo R, Doi Y. Antibody recycling by engineered pH-dependent antigen binding improves the
duration of antigen neutralization. Nature biotechnology. 2010; 28:1203–1207.

103. Chandran S, Asghar LFA, Mantha N. Design and evaluation of ethyl cellulose based matrix
tablets of ibuprofen with pH modulated release kinetics. Indian journal of pharmaceutical
sciences. 2008; 70:596. [PubMed: 21394255]

104. Hinderling PH, Hartmann D. The pH dependency of the binding of drugs to plasma proteins in
man. Therapeutic drug monitoring. 2005; 27:71. [PubMed: 15665750]

105. McFarlane J, Ridenour W, Luo H, Hunt R, DePaoli D, Ren R. Room temperature ionic liquids for
separating organics from produced water. Separation science and technology. 2005; 40:1245–
1265.

106. Visser AE, Swatloski RP, Rogers RD. pH-Dependent partitioning in room temperature ionic
liquids provides a link to traditional solvent extraction behavior. Green Chemistry. 2000; 2:1–4.

107. Orlien V, Boserup L, Olsen K. Casein micelle dissociation in skim milk during high-pressure
treatment: Effects of pressure, pH, and temperature. Journal of dairy science. 2010; 93:12–18.
[PubMed: 20059898]

108. Pan D, Guo Y. Optimization of sour milk fermentation for the production of ACE-inhibitory
peptides and purification of a novel peptide from whey protein hydrolysate. International Dairy
Journal. 2010; 20:472–479.

109. Guinee T, Feeney E, Auty M, Fox P. Effect of pH and calcium concentration on some textural
and functional properties of Mozzarella cheese. Journal of dairy science. 2002; 85:1655–1669.
[PubMed: 12201515]

110. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G. Using cheese whey
for hydrogen and methane generation in a two-stage continuous process with alternative pH
controlling approaches. Bioresource technology. 2009; 100:3713–3717. [PubMed: 19231170]

111. Demetriades K, Coupland J, McClements D. Physical properties of whey protein stabilized
emulsions as related to pH and NaCl. Journal of Food Science. 1997; 62:342–347.

112. Montville, TJ.; Matthews, KR. Food microbiology: an introduction. Amer Society for
Microbiology; 2008.

113. Jørgensen F, Hansen TB, Knöchel S. Heat shock-induced thermotolerance in< i> Listeria
monocytogenes</i> 13–249 is dependent on growth phase, pH and lactic acid. Food
microbiology. 1999; 16:185–194.

114. Ma, H.; Zhou, G.; Yu, X.; Zhao, C. The relationship between pH and Aw and its effetcs of the
flavor of chinese-style fermented sausage. Food Research and Development; 2009. p. 1

115. Oh SE, Van Ginkel S, Logan BE. The relative effectiveness of pH control and heat treatment for
enhancing biohydrogen gas production. Environmental science & technology. 2003; 37:5186–
5190. [PubMed: 14655706]

116. Van Ginkel S, Sung S, Lay JJ. Biohydrogen production as a function of pH and substrate
concentration. Environmental science & technology. 2001; 35:4726–4730. [PubMed: 11775145]

Petukh et al. Page 16

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



117. Wang Z, Delaune R, Masscheleyn P, Patrick W. Soil redox and pH effects on methane production
in a flooded rice soil. Soil Science Society of America Journal. 1993; 57:382–385.

118. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF
Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;
25:1605–12. [PubMed: 15264254]

Petukh et al. Page 17

Curr Pharm Des. Author manuscript; available in PMC 2013 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Cartoon (A) and real case (B) representation of protein-protein complex formation, where 1
– recognition stage (proteins sense each other while being large distance separated due to
electrostatic force); 2 – orientation stage (each protein experiences conformational changes
and electrostatic perturbations due to electrostatic repulsion and attraction of charged
groups); and 3 – physical binding stage occurs due to electrostatic, van der Waals and
interactions with water molecules and the change of the system entropy.
Protein1 (MAPK2) and protein2 (MAPK14) are shown in yellow and green. Red and blue
represents negatively and positively charged residues respectfully. In grey are residues
which protonation state changes after complex formation. Red/blue open circles show
residues which protonation state might be changed after complex formation. For real case
visualization was made with Chimera software [118]
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Figure 2.
Importance of protonation states for various science and industry areas.
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