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Abstract
New methodology has been proposed in recent years for evaluating the improvement in prediction
performance gained by adding a new predictor, Y, to a risk model containing a set of baseline
predictors, X, for a binary outcome D. We prove theoretically that null hypotheses concerning no
improvement in performance are equivalent to the simple null hypothesis that Y is not a risk factor
when controlling for X, H0: P (D = 1|X, Y) = P (D = 1|X). Therefore, testing for improvement in
prediction performance is redundant if Y has already been shown to be a risk factor. We also
investigate properties of tests through simulation studies, focusing on the change in the area under
the ROC curve (AUC). An unexpected finding is that standard testing procedures that do not
adjust for variability in estimated regression coefficients are extremely conservative. This may
explain why the AUC is widely considered insensitive to improvements in prediction performance
and suggests that the problem of insensitivity has to do with use of invalid procedures for
inference rather than with the measure itself. To avoid redundant testing and use of potentially
problematic methods for inference, we recommend that hypothesis testing for no improvement be
limited to evaluation of Y as a risk factor, for which methods are well developed and widely
available. Analyses of measures of prediction performance should focus on estimation rather than
on testing for no improvement in performance.
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1. Introduction
Prediction modeling has long been a mainstay of statistical practice. The field has been re-
energized recently due to the promise of highly predictive biomarkers identified through
imaging and molecular biotechnologies. Accordingly, there has been renewed interest in
methods for evaluating the performance of prediction models. In particular, statisticians
have been examining methods for evaluating improvement in performance that is gained by
adding a novel marker to a baseline set of predictors.

For example, novel markers for predicting risk of breast cancer beyond traditional factors in
the Gail model [1, 2] include breast density [3, 4] and genetic polymorphisms [5, 6, 7]. For
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cardiovascular outcomes, numerous studies have been performed in recent years to evaluate
candidate markers for their capacities to improve upon factors in the standard Framingham
risk score [8]. Tzoulaki et al. [9] recently performed a meta-analysis of 79 such published
studies.

A typical approach to analysis is to first determine the statistical significance of an observed
association between the novel marker, Y, and the outcome, D, controlling for the baseline
predictors that we denote by X. The p-value is usually derived from regression modeling
techniques. If the contribution of Y to the risk model is found to be statistically significant,
the second step in the typical approach is to test a null hypothesis about improvement in
prediction performance for the model that includes Y in addition to X compared with the
baseline model that includes only X. The most popular statistic for testing improvement in
prediction performance is the change in the area under the receiver operating characteristic
(ROC) curve [9]. Alternate measures are also used, including risk redistribution metrics [10,
11] and risk reclassification metrics [12, 13, 14, 15, 16].

In this paper we question the strategy of testing the null hypothesis about no improvement in
prediction performance after testing the statistical significance of Y in the risk model. Our
main theoretical result is that the null hypotheses are equivalent. This implies that if Y is
shown to be a risk factor, the prediction performance of the model that includes Y cannot be
the same as the performance of the baseline model, and there is no point to a second,
redundant hypothesis test.

In Section 2 we prove our main result that the null hypothesis about Y as a risk factor can be
expressed equivalently as a variety of null hypotheses about the improvement in
performance of the expanded model compared with the baseline model. In Sections 3 and 4
we consider the choice of methodology for testing the common null hypothesis. We
recommend use of standard statistics derived from regression modeling of the risk as a
function of X and Y. This recommendation is based partly on the superior power achieved
with likelihood based tests, but also on the new finding corroborated by other recent reports
in the literature [14, 17, 18], that standard hypothesis testing methods to compare
performances of nested models appear to be invalid. We emphasize that estimation of the
increment in prediction performance is more important than testing the null hypothesis of no
improvement. The results are discussed in Section 5 in the context of a real dataset
concerning risk of renal artery stenosis as a function of baseline predictors and a biomarker,
serum creatinine.

2. Equivalent Null Hypotheses
Suppose that the outcome is binary, D = 1 for cases or D = 0 for controls, which could
represent occurrence of an event within a specified time period, say breast cancer within 5
years. Let risk(X) = P(D = 1|X) and risk(X, Y) = P(D = 1|X, Y) be the baseline and
enhanced model risk functions respectively, which we assume have absolutely continuous
distributions. To evaluate the incremental value of Y for prediction over use of X alone, the
first step is often to test the null hypothesis

(1)

We use subscripts (X, Y) and X to indicate entities relating to use of risk(X, Y) and risk(X),
respectively. For example, ROC(X,Y) is the ROC curve for risk(X, Y) while ROCX is the
ROC curve for risk(X). The ROC curve for W is a plot of P(W > w|D = 1) versus P(W > w|
D = 0) and it is a classic plot for displaying discrimination achieved with a variable W [19]
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(Chapter 4). To test if discrimination provided by risk(X, Y) is better than that provided by
risk(X), one could test

(2)

In ROC analysis the area under the ROC curve (AUC) is typically used as the basis of a test
statistic. Then the null hypothesis is more specifically stated as

(3)

In the ROC framework another approach is to assess if, conditional on X, the ROC curve for
Y is equal to the null ROC curve [20]. This is particularly relevant when controls are
matched by design to cases on X [21]. The corresponding null hypothesis is

(4)

Several authors have proposed alternatives to ROC analysis for comparing nested prediction
models. The predictiveness curve displays the distribution of risk as the risk quantiles [10,
22, 23]. We write the cumulative distribution of risk as F(X,Y)(p) = P(risk(X, Y) ≤ p) and
FX(p) = P(risk(X) ≤ p). One can test if the risk distributions based on X or on (X, Y) are
different by testing the null hypothesis

(5)

Another view is to consider the risk distributions in the case population (denoted with
superscript D) and in the control population (superscript D̄), separately. We could test

(6)

The integrated discrimination improvement statistic is a summary measure based on the
difference in average risks between cases and controls, MRD = E(risk(·)|D = 1) − E(risk(·)|D
= 0). The MRD has many interpretations, for example as the proportion of explained
variation, as an R2 statistic, as Yates slope, and as an average Youden’s index [14, 24, 25].
Pencina and others [12] define the integrated discrimination improvement (IDI) as IDI =
MRD(X,Y) − MRDX and propose testing H0: IDI = 0. That is, they propose testing

(7)

Another interesting summary of the difference between the case and control risk
distributions concerns proportions with risk above the average population risk, ρ = P(D = 1).
The above average risk difference is AARD = P(risk(·) > ρ|D = 1) − P(risk(·) > ρ|D = 0).
Like the MRD, the AARD has multiple interpretations and relates to existing measures of
prediction performance. The AARD is the continuous net reclassification index (NRI (>0),
defined below) [13] for comparing a risk model with the null model that has no predictors in
which all subjects are assigned risk P(D = 1) = ρ. The AARD is also equal to the two-
category NRI for comparing a model with the null model when the two risk categories are
defined as: low risk ‘risk≤ρ’ and high risk≡‘risk> ρ’. The AARD can also be considered as a
measure relating to the risk distribution in the population, F in equation (5). In particular
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Bura and Gastwirth [26] defined the total gain statistic as the area between the
predictiveness curve for risk(·) and the horizontal line at ρ, which is the predictiveness curve
for the null model. Gu and Pepe [25] showed that the standardized total gain, total gain/2ρ(1
− ρ), is AARD. One can compare the performance of two risk models by evaluating the
AARD values and testing the null hypothesis

(8)

The medical decision making framework has also been used to compare risk models.
Vickers and Elkin [27] suggested use of decision curves that plot the net benefit,

 against t, the risk threshold.
One could envision testing the equality of decision curves

(9)

to compare performance of a model that includes Y with one that does not. Baker [28, 29]
suggests standardizing the net benefit by the maximum possible benefit resulting in a
relative utility measure. Testing equality of relative utility curves is the same as testing
equality of decision curves in (9).

Risk reclassification methodology is yet another approach to comparing risk models. In this
framework, for each individual indexed by ı, risk(Xı, Yı) is compared directly with risk(Xı).
The NRI statistic is a risk reclassification measure that has gained tremendous popularity
since its introduction by Pencina and colleagues in 2008 [12]. The continuous NRI [13] is
defined as

The final null hypothesis that we consider testing is

(10)

Our key result is that all of the null hypotheses in equations (1) through (10) are equivalent.
The only condition required for this equivalence is that the distributions of risk(X) and
risk(X, Y) are absolutely continuous. Before stating the main theorem we state a result used
to prove the theorem, a result that is important in its own right.

Result 1

Proof
A fundamental result from decision theory is that decision rules of the form ‘risk(X, Y) > c’
have the best operating characteristics in the sense that when c is chosen to yield a false-
positive rate f, f = P(r(X, Y) > c(f)|D = 0), the corresponding true-positive rate t = P(r(X, Y)
> c(f)|D = 1) cannot be exceeded by the true positive rate of any other decision rule based on
(X, Y) that has the same false positive rate f (see Green and Swets [34]). This result follows
from Neyman-Pearson [32] and is discussed in detail in McIntosh and Pepe [33].
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It follows that the ROC curve for risk(X, Y) is at least as high at all points as the ROC curve
for any other function of (X, Y). In particular, the ROC curve for the function risk(X) cannot
exceed the ROC curve for risk(X, Y), namely, ROC(X,Y)(·), at any point.

Theorem 1
The following null hypotheses are equivalent

Proof

That  implies each of  is obvious. Therefore we focus on showing that each of

 imply . We start with  and work in reverse order through , , …, .

Then we show , , .

i.  implies 

Pepe, Feng and Gu [24] write

and because E(risk(X, Y)) = E(risk(X)) = Prob(D = 1) it follows that

Since E{risk(X, Y)|X} = risk(X) we have E(risk(X)risk(X, Y)) =
E(risk(X)E(risk(X, Y)|X)) = E(risk(X))2. Therefore

Therefore if MRD(X,Y) − MRDX = 0 it follows that E{risk(X, Y) − risk(X)}2 = 0

and so risk(X, Y) = risk(X) with probability 1. That is,  follows.

ii.  implies 

Equality of the case specific distributions implies that the case specific means are
equal: E(risk(X, Y)|D = 1) = E(risk(X)|D = 1). Similarly E(risk(X, Y)|D = 0) =

E(risk(X)|D = 0). Therefore,  implies  which we have shown implies .

iii.  implies 
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The case specific distribution of risk can be derived from the population
distribution of risk using Bayes’ theorem [30].

A similar argument applies to the control specific distributions. Therefore equality

of population risk distributions in  implies equality of case and control specific

risk distributions in  which in turn implies .

iv.  implies 

 states that, conditional on X, the distributions of Y in the case and control
populations are equal:

Using Bayes’ theorem it follows that

and so P(D = 1|Y, X) = P(D = 1|X). That is  holds.

v.  implies 

Huang and Pepe [31] derived the one-one mathematical relationship between the
ROC curve for risk(·) and the predictiveness curve which characterizes the risk
distribution. Therefore equality of ROC curves for risk(X, Y) and risk(X) implies

equality of the risk distributions, , which in turn implies .

vi.  implies 

We now show that equality of AUCs for risk(X, Y) and risk(X) implies equality of

the ROC curves, i.e. , from which  follows. This follows from Result 1
that states ROC(X,Y)(·) ≥ ROCX(·). If the areas under ROC(X,Y)(·) and ROCX(·) are

equal, Result 1 implies that the functions must be equal at all points. That is 
must hold.

vii.  implies 

In the Appendix, Theorem A.1 considers the entity  where

. But, by definition of  and the ROC curve, we

recognize . Therefore Theorem A.1 states that
if P(risk(X, Y) > ρ|D = 1) − P(risk(X, Y) > ρ|D = 0) = P(risk(X) > ρ|D = 1) −

P(risk(X) > ρ|D = 0) it follows that ROC(X,Y)(t) = ROCX(t) ∀ t. That is,  implies

, which in turn implies .

viii.  implies 
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If NB(X,Y)(t) = NBX(t) ∀ t, then in particular we have equality at t = ρ: NB(X,Y)(ρ)
= NBX(ρ). Recall that NB(t) is defined as

so at t = ρ we have

Therefore  implies , which in turn implies .

ix.  implies 

We show below that P(risk(Y) > ρ|D = 1) ≥ P(risk(Y) > ρ|D = 0). An analogous
proof that conditions each component on X implies that

But

So if NRI(> 0) = 0 it follows that for all X with probability 1 we have

The corollary to Theorem A.1 in the Appendix then implies that the ROC curve for
Y conditional on X is the null ROC curve. That is, for all X with probability 1,
ROCY|X(f) = f ∀ f.

In other words  holds, which in turn implies .

To complete the proof we need to prove our assertion that P(risk(Y) > ρ|D = 1) ≥
P(risk(Y) > ρ|D = 0). Using Bayes’ theorem this can be restated as

But this holds because we have a ≥ b, implying that 1 − a ≤ 1 − b, from which it
follows that a/b ≥ 1 ≥ (1 − a)/(1 − b).

Theorem 1 is a mathematical result involving the functions risk(X, Y) and risk(X) and
performance measures that are functionals of them. No modeling of the risk functions is
assumed. No data sampling is involved in Theorem 1. In the next sections we consider
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practical implications of Theorem 1 for data analysis in which models for risk(X, Y) and
risk(X) may be fit to data.

3. Properties of Hypothesis Testing Procedures
The equivalence of the various null hypotheses in Theorem 1 should not be confused with
the equivalence of different hypothesis tests. Two tests can have the same null hypothesis
but still be different tests and give different results on a dataset because they are based on
different test statistics with different statistical properties. However, it does not make sense
to test the same null hypothesis twice — a single test should be chosen. How does one
choose the statistical test for the null hypothesis of no incremental predictive value?

There are many possible choices. Here we focus on the choice between a test for the
coefficient for Y in a regression model of the risk function risk(X, Y) and the change in the
AUC for the ROC curves associated with estimated risk functions, risk(X) and risk(X, Y).
To make the discussion concrete, we consider the likelihood ratio test for βY, which is the
coefficient for Y in a model for risk(X, Y), and a test based on the difference

 where  is calculated with the empirical distributions of the
fitted values for the risk function in subjects with D = 1 and D = 0.

3.1. Testing the regression coefficient has highest power
When the data are independent identically distributed observations, the likelihood ratio test

is asymptotically the most powerful test for testing , and so, at least in this classic
setting, the test based on βY is to be preferred. We see the power advantage demonstrated in
the second row of the simulation results in Table 1 where the procedure based on  is
fixed to have size equal to the nominal level of 0.05. It is also instructive to consider the
special case where there are no baseline covariates. In that setting  is equivalent to the

nonparametric two-sample Wilcoxon statistic while  from a linear logistic risk model is
asymptotically equivalent to the difference in means and so is equivalent to a two-sample Z-
statistic. The Z-test is well known to have superior performance compared with the

Wilcoxon test for normal data. That is, testing using  is well known to be superior to
testing using  for normally distributed data and no baseline covariates.

3.2. Standard tests of performance measures may not be valid
From a practical point of view, there are additional issues that make the likelihood ratio test
more desirable than the  test. In particular, procedures for fitting risk regression
models and for testing coefficients in regression models are highly developed. In contrast,
surprisingly little work has been done regarding properties of tests that are based on
estimates of performance improvement measures. The typical approach to testing with

 uses the fitted values for risk(X, Y) and risk(X) as data inputs to a test of equal AUCs
for two diagnostic tests such as the DeLong test [35] or the resampling based test [39]. The
fact that the coefficients in the fitted values are estimated from the data is ignored in these
testing procedures.

We used simulation studies to investigate the properties of these tests in a simple scenario.
We generated data for X and Y as independent and normally distributed with standard
deviation 1 in cases (D = 1) and controls (D = 0). The mean of X was 0.74 in cases and 0 in
controls yielding an AUC of 0.7 for the baseline risk model. The mean of Y was 0 in cases
and in controls under scenarios simulating the null setting for evaluating size, while the
means were 0.37 or 0.74 in cases and 0 in controls under scenarios simulating the alternative
setting for evaluating power. We see from the third and fourth rows in Table 1 that standard
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tests ignoring sampling variability in the estimated risk regression coefficients are extremely
conservative. Both the DeLong test [35] that uses the normal approximation with a standard
error formula and the test using percentiles of the bootstrap distribution [39] have size less
than .005 with sample sizes as large as 100 cases and 900 controls. The problem is due to
estimating the coefficients in the nested models since the same tests comparing X alone to
another independent marker with equal performance were not conservative with comparable
sample sizes (data not shown). Demler et al. [18] recently provided some theoretical
arguments for poor performance of the DeLong test. Tests using  standardized by the
bootstrap variance had similar properties (data not shown).

We implemented an alternative version of the  test in the hope that acknowledging
sampling variability in the estimated regression coefficients would lead to a test with correct
size. This approach used the bootstrap, rejecting the null hypothesis if the 2.5th percentile of
the bootstrap distribution exceeded 0. In these simulations we resampled observations from
the original dataset, fit the risk models, and calculated  for each resampled dataset.

Results are shown in line 5 of Table 1 as . These tests were less
conservative than procedures not adjusting for variability in regression coefficients but
remained conservative nevertheless. Therefore, simply acknowledging variability of the
estimated regression coefficiences in the bootstrap procedure does not rectify the problem.
Rather, it appears that estimating the regression coefficients leads to non-normality of the
distribution of  under the null, which in turn invalidates use of the bootstrap
procedure. This non-normality was reported previously for the  statistice [18]. Kerr et
al [40] found a similar phenomenon for the IDI statistic under the null.

We conclude that all currently available procedures for testing incremental value based on
 in the full dataset are unacceptably conservative in the classic scenarios we studied.

From Table 1 we observe that as a consequence they have extremely low power compared
with the likelihood ratio test for βY.

Note that a simple split sampling approach can yield valid inference about ΔAUC. In
particular, if the dataset is split into a training set where the risk models are fit, and a test set
where fitted values are calculated, standard methods for inference about ΔAUC can be
applied in the test set using those fitted values because they are fixed functions of the test set
observations. However, the power of this split sample ΔAUC approach is compromised by
the reduced sample size of the test set relative to the full dataset. The power will be much
lower than that of a test based on βY that uses the entire dataset.

4. Recommendations for practice
When risk functions fit a dataset reasonably well, Result 1 and Theorem 1 hold
approximately in the data. There are at least two important implications of these results and
of the simulation results described earlier for practical data analysis.

i. If parametric risk models are employed and if there are no over-fitting issues that
could invalidate inference, one should use likelihood based methods for testing if
coefficients associated with Y are zero in order to test the null hypothesis of no
performance improvement. The rationale is that likelihood based procedures have
optimal power and that highly developed, well performing methods for inference
are available.

ii. If risk models are fit using alternatives to parametric models, Theorem 1 implies

that methods to test : risk(X, Y) = risk(X) can be based on performance
measures mentioned in Theorem 1, such as AUC(X,Y) − AUCX or IDI or
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AARD(X,Y) − AARDX or NRI(> 0). However, we need to develop valid methods
for inference about these performance measures under the null hypothesis before
we can implement such hypothesis testing procedures.

The estimated risk model, , is considered to fit the data well if, within subgroups SX

defined by X, the frequency of events, , is approximately equal to the average
estimated risk:

This is also called good calibration of the model . Similarly the fitted model for
risk(X, Y) is considered well calibrated if

where S(X,Y) denotes a subset of observations defined by X and Y. It is our opinion that risk
models should be shown to be well calibrated in the dataset before proceeding to evaluate
their prediction performances. Poorly calibrated models, by definition, are known to
misrepresent the risk functions in the population and are therefore inappropriate as risk
calculators for use in practice. Consequently the prediction performance of poorly calibrated
models is not important. There is a large literature on methods to estimate well fitting
models and to evaluate calibration. See for example textbooks by Harrell (2001) and
Steyerberg (2010) [36, 37]. The focus of this paper is on settings where the dimensions of X
and Y are low. Ensuring good calibration is tenable when X and Y are low dimensional.

Overfitting is a concern primarily when the number of predictors is large. Overfitting yields
estimated risks that are likely to be biased towards values more extreme than the true risks.
Techniques such as penalized likelihood can be used to address this issue. Another approach
is to use a subset of the data to reduce the dimensions of X and Y to one before fitting and
evaluating risk models for X and (X, Y) in the remaining data. We demonstrate this
approach in the context of an example in Section 5.

In summary, if one employs parametric risk models, our recommendation is to ensure the
use of well calibrated models and to base hypothesis testing on βY rather than on ΔAUC.
Current procedures based on ΔAUC do not have correct size. Kerr et al [40] found similar
problems for the IDI statistic under the null. It is possible that new approaches to testing
based on ΔAUC could be developed to properly account for estimation of the risk values
and thereby yield appropriately sized tests. However, even if such procedures were
developed, we have argued and observed in Table 1 (line 2) that tests based on βY are still
likely to be more powerful, at least when likelihood based procedures are used to estimate
parameters in the risk models. Therefore testing based on βY would still be the better choice.

More important than testing if there is any increment in prediction performance is estimating
the size of the gain in performance. The sizes of the regression coefficients for Y and X in
risk(X, Y) are not sufficient because prediction performance depends on the population
distribution of the predictors (X, Y) in addition to the conditional probability function P(D =
1|X, Y) = risk(X, Y). A variety of measures to quantify the prediction performance of a risk
model were described in Section 2 and a comparison of the measures calculated with risk(X)
and risk(X, Y) constitutes the corresponding increment in performance due to Y. The field
of risk prediction however has not yet settled debates about which are the best measures for
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quantifying performance increment and we do not debate this question further here. Our
recommendation is to focus on estimating a compelling measure of increment in prediction
performance. Any testing should be limited to testing whether Y is a risk factor when
controlling for X in a regression model.

We note that one further implication of Theorem 1 is that if Y is found to be statistically
significant as a risk factor at the α-level, then 0 should be excluded from confidence
intervals for changes in AUC, MRD and AARD statistics and for the NRI (> 0) statistic. The
effect on confidence interval coverage probabilities caused by excluding 0 when H0 is
rejected is a subject for future study. Nevertheless the practice seems intuitively reasonable
and provides internal consistency for data analysis results.

5. Application to a Renal Artery Stenosis Dataset
Diagnosis of stenosis in the renal artery involves a risky surgical procedure and is only
undertaken for patients deemed likely to have a positive finding. The risk of having renal
artery stenosis is estimated from clinical data in order to guide decisions about undergoing
invasive surgery for definitive diagnostic procedures. Data for 426 patients who were
surgically assessed for renal stenosis were reported by Janssens and others [41]. We
consider the improvement in prediction performance that is gained by adding serum
creatinine to the baseline predictors.

We randomly chose one third of the observations (n = 142; 33 of the 98 cases and 109 of the
328 controls) as a training set to generate a baseline risk predictor X that is a combination of
the candidate clinical variables. Using linear logistic regression we found that age, body
mass index (BMI) and abdominal bruit (bruit) were highly significantly associated with
renal stenosis but that gender, hypertension and vascular stenosis were not. We refit the
model including only age (in years), BMI (kg/m2) and bruit (yes=1, no=0) to derive the
linear combination

We then evaluated the performances of risk models based on this one-dimensional predictor
X and on the combination of X and Y = log (serum creatinine) using the remaining two
thirds of the data (n = 284), the evaluation dataset.

Linear logistic models were fit in the evaluation dataset:

The predictiveness curves in Figure 1 show that these models are well calibrated to the
evaluation study cohort since observed event rates in each decile of modeled risk (shown as
open circles) are approximately equal to the average modeled risks (shown as the points on
the solid predictiveness curves). Hosmer-Lemeshow goodness of fit statistics [10, 38, 43] do
not provide any evidence against the null of good calibration (p-values of 0.42 for the
baseline model, risk(X), and 0.51 for the enhanced model, risk(X, Y)).
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As an aside we also calculated risk estimates in the evaluation dataset using the model for
risk(X) originally fit in the one-third dataset that generated X. The dashed predictiveness
curve in Figure 1 shows that the original model does not fit the evaluation dataset. There is
evidence that the original model suffers from over-fitting since the risk quantiles are more
extreme than the observed event rates within each decile of X. One can think of the model
for risk(X) fit in the evaluation dataset as a recalibrated version of the original model fit in
the one-third dataset. This approach has been previously described. See, for example, van
Houwelingen [44]. Recalibrating the risk model is a step missing from the usual split sample
approach that simply evaluates the performance of the original model fit in the training
dataset. If that model is over fit, however, we have argued that its prediction performance is
not of interest as the risk estimates derived from it are biased towards extreme values. We
recommend recalibration before evaluating prediction performance in the evaluation set.

Consider now the comparison between the risk functions risk(X) and risk(X, Y) in the
evaluation dataset.

The likelihood ratio test for H0: β2 = 0 is highly significant with p = 0.0003 (Table 2).
According to Theorem 1 we can conclude that prediction model performance is improved by
addition of Y to the model. Nevertheless we implemented tests based on ΔAUC as well to
compare inference. The test for equality of AUCs is also significant but with much weaker
p-value, p = 0.034, using the DeLong variance formula and p = 0.026 using percentiles of
the bootstrap distribution. Recall that these tests do not acknowledge variability in the

estimated regression coefficients ( , ) and are extremely conservative. Bootstrapping that
incorporated refitting the risk model in each resampled dataset is also not valid according to
our simulations. It yielded p-value= 0.07, which was even more conservative in contrast to
results of our simulation study. In accordance with our recommendation in Section 4, the
test based on β2 yielded the strongest evidence against H0 that prediction performance is not
improved by including serum creatinine as a predictor.

We repeated the analysis using a weaker marker, Y*, for illustration. Here Y* = Y + ε
where ε is a standard normal random variable, adding noise to Y. In this analysis the
coefficient for Y* is highly statistically significant (p = 0.006 with the likelihood ratio test,
Table 2) while the standard tests based on ΔAUC are not (p = 0.21 using either the DeLong
variance formula or using percentiles of the bootstrap distribution). The bootstrapped
adjusted ΔAUC test that refits the models in each bootstrap sample is not significant either,
p = 0.28. Again, this supports our recommendation for testing the null hypothesis of no
performance improvement on the basis of the regression coefficient for Y in the enhanced
risk model, risk(X, Y).

Estimates of prediction performance are shown in Table 3 for the baseline and enhanced risk
models. Confidence intervals were calculated using 2.5th and 97.5th percentiles of bootstrap
distributions with models refit in each bootstrapped dataset. We estimated that the area
under the ROC curve increased from 0.78 to 0.81 with addition of serum creatinine. We also
considered a point on the ROC curve. In particular, setting the risk threshold so that 80% of
the cases are sent for the invasive diagnostic renal arteriography, we find that the proportion
of controls who unnecessarily undergo the procedure, denoted by ROC−1(0.8) in Table 3,
decreases from 0.36 to 0.33. Note that Pfeiffer and Gail [42] recommend calculating the
percent needed to follow (PNF) that is a simple function of ROC−1(f): PNF(f) = ρf + (1 −
ρ)ROC−1(f). Therefore the PNF decreased from 0.46 to 0.44. The IDI statistic is the change
in the MRD statistic and is calculated as 0.05 while the conceptually similar change in the
AARD is 0.014. The continuous-NRI statistic is NRI(> 0) = 0.45. Note that the NRI is
measured on a scale from 0 to 2, unlike most other measures that are restricted to (0,1). We
calculated the net benefit using a risk threshold of 0.25. This threshold implicitly assumes
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that the net benefit of diagnosis for a subject with renal artery stenosis is 3 times the net cost
of the diagnostic procedures for a subject without stenosis since the cost-benefit ratio = risk
threshold/(1-risk threshold) [27]. The maximum possible benefit of a risk model in this
population would be that associated with diagnosing all 67 (24%) subjects who have renal
stenosis and not sending any controls for the diagnostic procedure. We calculate that the net
benefit is 35.4% of maximum with use of the baseline model and 40.5% of maximum with
use of the model that includes serum creatinine. We see that 95% confidence intervals for
most measures of improvement in performance exclude the null value of 0. The bootstrap
confidence interval for the change in AARD was modified to exclude values ≤ 0 because the
null hypothesis H0: β2 = 0 was rejected, implying that the null hypothesis H0: ΔAARD = 0
is also rejected.

6. Discussion
The main result of this paper is that the common practice of performing separate hypothesis
tests, for the coefficient of Y in the risk prediction model and for the change in performance
of the model, is literally testing the same null hypothesis twice. Vickers et al. [17] make a
heuristic argument for this point. We have proven the result with formal mathematical
theory. Testing the same null hypothesis in multiple ways is poor statistical practice and
should be replaced with a more thoughtful strategy for analysis that employs a single test of
the null. Arguments in favor of basing the single test on the regression coefficient for Y in a
risk model include: (i) such tests are most powerful asymptotically; and (ii) techniques are
well developed and widely available for performing such tests. This strategy relies on
employing risk models that are well calibrated in the data. We have argued that good
calibration is a crucial aspect of risk model assessment. If necessary models should be
recalibrated to the population of interest prior to assessing model performance. We
demonstrated this in the renal artery stenosis dataset.

The split sample recalibration approach that we employed fit a risk model to the baseline
predictors U = (U1, …, UK) to derive a univariate score that we denoted by X = ΣγkUk. We
then fit and evaluated models for risk(X) and risk(X, Y) in the evaluation dataset. Note that
the model risk(X, Y) = P(D = 1|X, Y) should not be interpreted as a model for risk(U, Y) =
P(D = 1|U1, …, UK, Y). The former fixes the combination of {U1, …, UK} considered in
joint modeling with Y and therefore may be less predictive than r(U, Y) that allows the
contributions of {U1, …, UK} each to vary in the presence of Y. That is, our strategy that
evaluates risk(X, Y) rather than risk(U, Y) might lead to a somewhat pessimistic assessment
of the incremental value of Y over the baseline prediction model risk(X) = P(D = 1|X) = P(D
= 1|U1, …, UK). The advantage of our approach is that it offers a way around calibration and
performance assessment problems associated with over fitting, but admittedly a potentially
pessimistic evaluation of incremental value is a possible downside of this approach.

After testing if there is any improvement in prediction performance, the next task is to
estimate the extent of improvement achieved. How to quantify the improvement in
performance is a topic of much debate in the literature. A multitude of metrics exist,
including ΔAUC, ΔMRD, ΔAARD, approaches based on risk reclassification tables [13,
15, 16], approaches based on the Lorenz curve [42] and approaches based on medical
decision making [7, 27, 29, 45]. This paper does not seek to provide guidance on the choice
of measure, but we emphasize that estimating the magnitude of improvement is far more
important than testing for any improvement. Moreover, if hypothesis testing based on
performance measures is employed, it should be with regard to a null hypothesis concerning
minimal improvement, H0: performance improvement ≤ minimal, rather than any
improvement, H0: performance improvement = 0. The exercise of setting standards for
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minimal improvement may have the added benefit of helping us to choose a clinically
relevant measure of performance improvement.
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Appendix
We use the following notation

We also assume that the distributions of risk(X, Y) and risk(X) are absolutely continuous.
This implies that their ROC curves have second derivatives.

Theorem A.1

(A.1)

Proof
For W = risk(X) or W = risk(X, Y) it is well known that ROCW (t) − t is a concave function
(Pepe 2003, page 71 [19]). Therefore ROC(X,Y)(t) − t has a unique maximizer. Moreover,

the maximizer occurs when . Arguments below in the proof of Corollary A.1

show that this implies ROC(X,Y)(t) − t is maximized at .

Since ROC(X,Y)(t) ≥ ROCX(t) ∀ t, we have

and equation (A.1) implies therefore that

It follows that  because, as noted above, ROC(X,Y)(t) − t has a unique maximizer at

. This also implies by equation (A.1) that ROC(X,Y)(tρ) = ROCX(tρ) where we now use

the notation tρ for the common value of  and .
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Next we show that  when t < tρ. To show this we suppose that

 for some t < tρ and show a contradiction by constructing decision rules
based on (X, Y) that have an ROC curve exceeding ROC(X,Y) on a subinterval of (0, tρ). If

 at some point t, by continuity of  and  we have

 on an interval (a, b) ⊂ (0, tρ). Let ra denote the risk threshold
corresponding to the false positive rate a and consider the family of decision rules that

classify positive if {‘ ’ or [‘  and  and risk(X) > k]’

for }. These decision rules vary in K. They have an ROC curve equal to ROC(X,Y)(t) at t

= a and ROC derivative equal to  which we assume is higher than  over (a, b).
Therefore this ROC curve exceeds ROC(X,Y) over (a, b). But this is impossible because the
Neyman-Pearson lemma implies that ROC(X,Y)(t) is optimal at all t. In particular

ROC(X,Y)(t) ≥ ROCX(t) at all t. Therefore we cannot have  for any t <
tρ.

Recall from above that

But having shown that the integrand is ≥ 0, we must conclude that the integrand is 0,

Moreover equality of ROC(X,Y)(t) and ROCX(t) at t = 0 and at t = tρ implies

Similar arguments show that ROC(X,Y)(t) = ROCX(t) ∀ t > tρ.

Corollary A.1
Let ROCω(·) be the ROC curve for the risk function risk(ω) = P (D = 1|ω). We show that

(A.2)

Proof

ROCω(t) − t is maximized at the point where . Bayes’ theorem implies that

where . When  therefore, P(D = 1|risk(ω) = r) = ρ. That
is, the point that maximizes ROCω(t) − t is . We write
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(A.3)

but (A.2) then implies that sup|ROCω(t) − t| = 0. In other words (A.2) implies ROCω(t) = t
∀ t ∈ (0, 1). Note that equation (A.3) also follows from the fact that both sides of (A.3) were
show to equal the standardized total gain statistic (see equations (6) and (7) of Gu and Pepe
[25]).
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Figure 1.
Predictiveness curves to assess calibration of baseline and enhanced risk models for renal
artery stenosis in the evaluation dataset (n = 284). Shown are the modeled risk quantiles (as
curves) and the observed event rates within each decile of modeled risk (as open circles).
Hosmer-Lemeshow statistics corresponding to the plots have p-values equal to 0.43
(baseline model) and 0.51 (enhanced model). The quantiles of the risk function fitted in the
one-third dataset used to generate X is also shown as the dashed curve and appears steeper
than the model recalibrated in the evaluation dataset.
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Table 2

Logistic regression models for risk of renal artery stenosis fit to data for 284 patients. The addition of Y =
log(serum creatinine) to a model including the baseline covariate X is assessed. Also shown are results for a
model including Y* = Y + ε where ε ~ N(0, 1) random variable. Log odds ratios are displayed along with
standard errors and p-values calculated with likelihood ratio tests.

Intercept X Y or Y*

Baseline Model (X)

 coefficient −0.12 0.76 –

 se 0.21 0.12 –

 p-value 0.56 <0.001 –

Enhanced Model (X, Y)

 coefficient −0.32 0.67 0.62

 se 0.22 0.12 0.18

 p-value 0.15 <0.001 <0.001

Enhanced Model (X, Y*)

 coefficient −0.19 0.73 0.31

 se 0.21 0.12 0.12

p-value 0.38 <0.001 0.006
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Table 3

Performance of baseline and enhanced models for prediction of renal artery stenosis and performance
improvement with 95% confidence interval calculated with 1000 bootstrap samples.

Performance Measure
Baseline Model

X
Enhanced Model

(X, Y) Performance Improvement
†

ROC Area AUC 0.78 0.81 0.03 (0.01,0.07)

FPR at TPR=0.8 ROC−1(0.8) 0.36 0.33 −0.03 (−0.26,0.07)

Mean Risk Difference MRD 0.20 0.25 0.05* (0.011,0.116)

Above AverageRisk Difference AARD** 0.43 0.47 0.014(0,0.11)

Continuous NRI NRI (> 0) — — 0.45 (0.17,0.79)

Net Benefit at 0.25 NB (0.25) 8.1% 9.3% 1.2% (−1.6%,3.4%)

†
Performance improvement is defined as the difference between the measure for the enhanced model and that for the baseline model for all

measures except for the NRI.

*
Also known as the IDI statistic.

**
Also known as the Total Gain statistic.
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