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Abstract
Although high-density lipoprotein-cholesterol (HDL-C) levels in large epidemiological studies are
inversely related to the risk of coronary heart disease (CHD), increasing the level of circulating
HDL-C does not necessarily decrease the risk of CHD events, CHD deaths, or mortality, HDL can
act as an anti- or a proinflammatory molecule, depending on the context and environment. Based
on a number of recent studies, it appears that the anti- or proinflammatory nature of HDL may be a
more sensitive indicator of the presence or absence of atherosclerosis than HDL-C levels. The
HDL proteome has been suggested to be a marker, and perhaps a mediator, of CHD.
Apolipoprotein A-1 (apoA-I), the major protein in HDL is a selective target for oxidation by
myeloperoxidase, which results in impaired HDL function. Improving HDL function through
modification of its lipid and/or protein content maybe a therapeutic target for the treatment of
CHD and many inflammatory disorders. HDL/apoA-I mimetic peptides may have the ability to
modify the lipid and protein content of HDL and convert dysfunctional HDL to functional HDL.
This review focuses on recent studies of dysfunctional HDL in animal models and human disease,
and the potential of apoA-I mimetic peptides to normalize the composition and (function of
lipoproteins.
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Developing Apolipoprotein A-1 (ApoA-I) Mimetic Peptides
Improvement of atherosclerosis in animal models1,2 and in preliminary human studies
makes apoA-I an interesting therapeutic candidate; however, the complexity of large-scale
synthesis of apoA-I, with its 243 amino acid residues, resulting in high cost and need for it
to be given intravenously, makes it less attractive. In the initial studies, weekly intravenous
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doses for 5–6 weeks pointed to potential therapeutic benefit,3 hut subsequent larger clinical
trials did not fully confirm these promising results.4 This seems to be an unlikely therapy for
the millions of patients with atherosclerosis if longer periods of intravenous administration
are required.

In 1985 an 18-amino-acid (AA) peptide that did not have sequence homology with apoA-I,
but mimicked the class A amphipathic helixes contained in apoA-I, was designed and
synthesized by Segrest, Anantharamaiah and colleagues.5–7 There were 2 phenylalanine
residues on the hydrophobic face and hence the peptide was called 2F. Although many of
the lipid-binding properties of apoA-I were mimicked by 2F, it was not able to alter lesions
in a mouse model of atherosclerosis.8 A series of 88-AA peptides were then tested for their
ability to inhibit low-density lipoprotein (LDL) oxidation by artery wall cells in culture and
for production of monocyte chemotactic protein-1 (MCP-1) in response to LDL-derived
oxidized lipids.9,10 Two peptides with 4 or 5 phenylalanine residues, namely 4F and 5F,
were chosen for testing in animal models.

The peptide 5F synthesized from L-amino acids (L-5F) and injected into mice improved the
anti-inflammatory properties of high-density lipoprotein (HDL) in mice and significantly
protected the mice from diet induced atherosclerosis.11 When the peptide 4F was
synthesized from all D-amino acids 11 (D-4F) bland administered orally in the drinking
water the anti-inflammatory properties of HDL were significantly improved and
atherosclerotic lesions were significantly reduced in both apoE-null mice on a chow diet and
in LDL receptor-null mice on a Western diet.12 Interestingly, this occurred without any
alteration in the plasma cholesterol or HDL-cholesterol level.12

In animal models, administration of the 4F peptide improved a number of model
pathological processes, including type I diabetes,13,14 type II diabetes and obesity,15,16

influenza A pneumonia,17 scleroderma,18 hyperlipidemia and sickle cell-induced vascular
dysfunction,19,20 hepatic fibrosis,21 Alzheimer disease.22 vascular dementia.23 and
hyperlipidemia-induced renal inflammation.24 Buga et al reported that, in hyperlipidemic
mice. L-4F decreases platelet aggregation by binding plasma-oxidized lipids that cause
platelet hyperreactivity.25 The 4F peptide was found to synergize with statins and cause
regression of atherosclerotic lesions in old apoE-null mice.26 It additionally inhibited
accelerated vein graft atherosclerosis in a mouse model27 and markedly reduced chronic
rejection in a heart transplant mouse model.28 In humans with coronary heart disease
(CHD), a single oral dose of D-4F significantly improved the anti-inflammatory properties
of HDL.29

Woo et al30 recently demonstrated that HDL is pro-inflammatory in apoE−/−Fas−/− mice that
spontaneously develop IgG autoantibodies, glomerulonephritis, osteopenia, and
atherosclerotic lesions on a normal chow diet. They observed that the level of dysfunctional
HDL was decreased following an injected dose of L-4F, but not alter scrambled L-4F
administration. The authors reported that L-4F treatment, alone or with pravastatin,
significantly reduced IgG anti-dsDNA and IgC anti-oxidized phospholipids (anti-oxPLs),
proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated
atherosclerosis. The authors further elaborated that despite the enlarged aortic lesions, the
presence of increased smooth muscle content, decreased macrophage infiltration, and
decreased pro-atherogenic chemokines in mice treated with L-4F plus pravastatin suggest
protective mechanisms on the lupus-like disease. Charles-Schoeman et al reported that
combination D-4F/pravastatin reduced disease activity in rat collagen-induced arthritis, an
animal model of rheumatoid arthritis.31 Favorable changes in cytokines were observed with
treatment, and D-4F/pravastatin therapy was associated with improvement in HDL anti-
inflammatory properties.31
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Watanabe et al reported that administration of 4F converted pro-inflammatory HDL to anti-
inflammatory HDL by lowering the levels of hemoglobin (Hb)/haptoglobin (Hp) associated
with HDL in hyperlipidemic mice.32 After treatment of ApoE null mice with 4F. some of
the Hb/Hp associated with HDL appeared to return to the non-lipoprotein fractions of the
serum. They hypothesized that the decrease in HDL-associated Hb/Hp by 4F treatment may
be related to a 4F mediated reduction of tissue inflammation.

Anti-Inflammatory Properties of the Mimetic Peptides
In the aforementioned studies it was difficult to explain why it was that while the
concentration of apoA-I in most of the animal models and in the humans was 35 μmol/L, 4F
concentrations of 4 nmol/L in humans and 130 mol/L in animal models could be
biologically active.

In cultures of human aortic endothelial cells, adding only 4 nmol/L of L-4F together with 35
μmol/L of apoA-I significantly reduced the LDL-induced MCP-1, whereas this was not
achieved following the addition of human apoA-I at a concentration of 35 μmol/L.33

The 4F peptides and apoA-I bind non-oxidized lipids such as 1-palmiloyl-2-arachidonoyl-
sn-glycero-3-phosphotyleholine (PAPC) with similar affinities. Oxidation of PAPC
produces a series of oxidation products, including 1-palmitoyl-2-(5,6-epoxyisoproslane E2)-
sn-glycero-3-phosphorylcholinc (PEIPC), which potently stimulate human aortic endothelial
cells to produce MCP-1.33 It was found that the binding affinity of PEIPC for L-4F was
approximately 5 million-fold greater than it was for apoA-I33

A series of apoA-I mimetic peptides were designed and tested and it was hypothesized that
apoA-I mimetic peptides that bind pro-inflammatory oxidized lipids similarly to apoA-I will
not be anti-inflammatory and those that bind oxidized lipids with much higher affinity than
is the case for apoA-I will be.33

HDL and apoA-I reduce inflammatory responses to lipo-polysaccharide (LPS). Dai et al34

reported that the apoA-I mimetic peptide, 4F. prevents LPS-induced changes in blood
pressure and vascular reactivity. The authors proposed that 4F results in endotoxin
neutralization by promoting the localization of LPS to the HDL fraction. They also
suggested that 4F may therefore prevent hemodynamic changes associated with the nitric
oxide synthase 2 (NOS2) induction that results from LPS administration.34

HDL and its major protein component, apoA-I, and apoA-I mimetic peptide 4F exert anti-
inflammatory effects, inhibit monocyte chemotaxis/adhesion, and reduce the vascular
macrophage content in inflammatory conditions (Figure 1). Smythies et al35 showed that by
regulating the expression of key cell surface receptors on monocyte-derived macrophages
(MDMs), 4F modulates the function of MDMs. They provided evidence that 4F. similar to
apoA-I. induces profound functional changes in MDMs, possibly because of differentiation
to an anti-inflammatory phenotype.

Effect of 4F on Serum Paraoxonase 1 (PON1) and Oxidized Lipids
PON1 is a HDL-associated enzyme and responsible for the antioxidativc properties of HDL.
Forte el al showed that ApoE−/− mice had elevated levels of lysophosphatidylcholine and
bioactive oxidized phospholipids compared with controls on a chow diet.36 Elevated
oxidized phospholipids may have, in part, contributed to Spontaneous lesions in these mice
on a chow diet. A Western diet decreased PON1 activity in these mice by 38%.36 It has been
suggested that the removal of oxidized fatty acids from HDL might cause the return of
PON1 activity.
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Although PON1 has the ability to prevent lipid oxidation and may even inactivate oxidized
lipids once formed under conditions of excess inflammatory pressure,37,38 the ability of
HDL to protect itself and other lipid containing molecules and structures can be reduced.
Reduction of lipid and protein oxidation by agents such as HDL mimetic peptides may
prove to be an effective way of supporting the protective role of HDL.39

Recently Imaizumi et al40 reported that injecting L-4F into apoE null mice resulted in a
significant reduction in plasma levels of 15 hydroxyeicosatetraenoic acid (HETF), 5-HETE,
13-hydroxyoctadecadienoic acid (HODE) and 9-HODE. Plasma levels of 14,15-
epoxyeicosatrienoic acid, which are derived from the cytochrome P450 pathway, were
elevated and plasma levels of 20-HETE were unchanged following injection of L-4F. An
increase in the plasma levels of 13-HODE and 9-HODE was observed following injection of
13(S)-hydroperoxyoctadecadienoic acid (HPODE) into wild-type C57BL/6J mice. This was
accompanied by a significant reduction in the anti-inflammatory properties of HDL.
Injection of 13(S)-HPODE into atherosclerosis-resistant C3H/HeJ mice resulted in a similar
but much more blunted response. When L-4F was injected at a site different from that at
which the l3(S)-HPODE was administered, it resulted in significantly lower plasma levels of
13-HODE and 9-HODE and significantly less loss of HDL’s anti-inflammatory properties in
both atherosclerosis-susceptible or-resistant mouse strains. The authors concluded that L-4F
administration differentially alters mouse plasma levels of oxidized fatty acids. The
additionally suggested that the reduced reaction of the C3H/HeJ mouse to these potent lipid
oxidants may play a role in the resistance of this line of mice to atherosclerosis.40

The liver is the organ with the highest accumulation of oxidized lipids. Previous studies
have shown that there is a selective hepatic uptake of oxidized LDL and HDL cholesterol
esters mediated by scavenger receptors on the liver.41,42 Morgantini et al reported that the
livers of diabetic mice contained high levels of oxidized fatty acids, which were
significantly reduced by treatment with the 4F peptide.43 Concomitant with the decrease in
hepatic levels of oxidized fatty acid, there was also a significant decrease in aortic
atherosclerosis in the 4F-treated diabetic mice.43

Morgantini et al showed ex-vivo incubation of plasma samples from diabetic patients with
L-4F induced a significant improvement in HDL’s anti-inflammatory properties, as well as
in samples from healthy volunteers.44 Together with the fact that administration of the 4F
peptide improved HDL function in various animal models, these results may indicate that
oxidized lipids in HDL are strongly related to HDL function because the effect of the apoA-I
mimetic is related to its ability to avidly bind oxidized lipids.33

Effect of ApoA-l Mimetic Peptides on Cancer
Kozak et al reported that apoA-I, transthyretin, and transferrin, can better predict early-stage
ovarian cancer than serum CA-125.45 However, it was not clear whether the reduced level of
these markers in ovarian cancer patients was the result of cancer development or was causal
in disease progression.

Lipid transport, inflammation, and oxidative stress play a major role in the initiation and
progression of cancer. Camuzcuoglu et al reported that decreased serum paraoxonase
activity and increased serum lipid hydroperoxide levels correlated with stage, grade and the
level of tumor marker CA-125 of ovarian cancer.46 As mentioned before, apoA-I mimetic
peptides strongly bind oxidized lipids and mimic the anti-inflammatory and antioxidant
functionalities of apoA-I. Su et al reported that overexpression of human apoA-I in
transgenic mice significantly improved survival and decreased tumor size in a mouse model
of ovarian cancer.47 In addition, treatment with the apoA-I mimetic peptide 4F or 5F
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reduced in vitro viability and proliferation of mouse and human ovarian cancer cells and
inhibited in vivo tumor growth in a mouse model of ovarian cancer.47

It has been demonstrated that the pro-inflammatory lysophospholipid, lysophosphalidic acid
(LPA), stimulates tumor development, increases angiogenesis and promotes metastasis of
cancer.48 Su et al reported that although both apoA-I and 4F bind LPA, the binding affinity
of 4F for LPA is more than 6 orders of magnitude greater than is the binding affinity for
LPA by apoA-I.47 They reported from in vitro experiments that LPA-induced ovarian cancer
cell growth was significantly reduced by 4F, and also showed that plasma levels of LPA
were significantly reduced in an ovarian cancer mouse model that received 4F or 5F.47

Binding and removal of LPA may be one of the mechanisms for the inhibition of tumor
development by apoA-I mimetic peptides. Gao et al reported that the apoA-I mimetic
peptide, L-5F, reduced tumor angiogenesis in vivo and inhibited vascular endothelial growth
factor (VEGF)/basic fibroblast growth factor (bFGF)-stimulated proliferation, migration,
and invasion, as well as the tube formation of human umbilical vascular endothelial cells.49

They demonstrated that L-5F inhibits angiogenesis by mechanisms that may involve the
removal of LPA-like bioactive lipids from the tumor environment. L-5F significantly
suppressed LPA-stimulated proliferation of ovarian cancer cells and production of VEGF.49

They also showed that in vivo VEGF levels were reduced in both tumor tissue and the
circulation after treatment with L-5F. and that L-5F inhibited LPA-stimulated cell viability
and VEGF secretion from ovarian cancer cell lines. L-5F also inhibited VEGF-and bFGF-
induced activation of their corresponding receptors, VEGFR2 and FGFR1, as well as
downstream signaling pathways.49 Those authors hypothesized that apoA-I mimetic
peptides may not only remove LPA-like bioactive lipids but also alter lipid composition/
structure of cellular membranes and may thus lead to alteration in the function of
membranes receptors such as VEGF2 and FGFR1.

Ganapathy et al reported that 4F reduced the viability and proliferation of ID8 cells, a mouse
epithelial ovarian cancer cell line, With a concomitant improvement of the antioxidant status
of ID8 cells, as measured by lipid peroxide, protein carbonyl, superoxide anion, and
hydrogen peroxide levels.50 They also showed that inhibition of ID8 cell proliferation by 4F
required the upregulation of MnSOD protein and activity, which is a tumor suppressor
protein that increases the dismutation rate of superoxide anion to hydrogen peroxide and
inhibits cancer cell growth.50 They postulated that apoA-I mimetic peptides may be utilized
as novel therapies for the treatment of diseases that are regulated by pro-oxidant processes,
including cardiovascular disease and cancer.

Human Clinical Trials of the 4F Peptides
Bloedon et al29 reported that oral doses of D-4F of 4.3 mg/kg and 7.14 mg/kg significantly
improved the HDL-inflammatory index HII) in patients with CHD who were already taking
statins, but doses of 0.43 mg/kg and l.43 mg/kg did not. The improvement in HII with the
former doses of D-4F occurred with Cmax plasma peptide levels of only 15.9±6.53 ng/ml.29

Because Van Lenten et al51 demonstrated that when given by injection D-4F and L-4F were
equally efficacious, Watson el al52 designed clinical trials using L-4F in patients with CHD
on a stable dose of statins. When L-4F was administered intravenously at a dose ranging
from 0.042 to 1.43 mg/kg for 7 consecutive days there was no significant improvement in
HII, despite achieving peptide plasma levels of 3,255+640 ng/ml for the dose used for
statistical analysis (0.43 mg/kg).52 Subsequently, Navab et al53 determined that the dose
administered and not the plasma level of the 4F peptide determined efficacy. They
concluded that the failure of the 4F peptide to improve HII in the studies by Watson et al52

was because the doses used were below the threshold of efficacy established in the studies of
Bloedon et al.29 Moreover, Navab et al53 found that regardless of whether the peptide was
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administered by injection or given orally, the concentration of peptide in the feces and the
amount of peptide excreted in the feces for each dose administered was similar for similar
doses, despite differences in plasma peptide levels of 1,000-fold.53 Navab et al concluded
that the intestine maybe a major site of action for the 4F peptide, regardless of the route of
administration.53

Summary and Conclusion
The levels and function of lipoproteins (HDL and LDL) are important determinants of
cardiovascular health.54,55 Lipid oxidation products can increase the susceptibility of LDL
to oxidative modification and reduce the anti-inflammatory capacity of HDL. The apoA-I
mimetic peptides, 4F and 5F, have a high affinity for oxidized phospholipids and oxidized
tatty acids. Removal of seeding molecules in LDL and inhibitory factors in HDL can help
normalize the composition and function of lipoproteins, which could have a beneficial effect
on HDL function, on lipoprotein metabolism, on endothelial function, and on platelet
activation (Figure 2). Overall, the usefulness of several apolipoprotein mimetic peptides as
research tools to understand and perturb the basic mechanisms of HDL metabolism, HDL
function, atherosclerosis and more than a dozen inflammatory disorders has been firmly
established in multiple animal models. Determining the role of apolipoprotein mimetic
peptides as therapeutic agents in humans, however, will take years and many studies in a
variety of patient populations.
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Figure 1.
Pleiotropic effects of the apoA-I mimetic peptide 4F.
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Figure 2.
The apoA-I mimetic peptide, 4F, improves a number of pathological processes in animal
models, probably by removing oxidized lipids.
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