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Abstract
Several factors combine to make it feasible to build computer simulations of the cerebellum and to
test them in biologically realistic ways. These simulations can be used to help understand the
computational contributions of various cerebellar components, including the relevance of the
enormous number of neurons in the granule cell layer. In previous work we have used a simulation
containing 12000 granule cells to develop new predictions and to account for various aspects of
eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate
the feasibility of scaling up this simulation to over one million granule cells using parallel graphics
processing unit (GPU) technology. We observe that this increase in number of granule cells
requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that
this simulation, like its smaller predecessor, can emulate certain basic features of conditioned
eyelid responses, with a slight improvement in performance in one measure. We also use this
simulation to examine the generality of the computation properties that we have derived from
studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level
of performance in a classic machine learning task, the cart-pole balancing task. These results
suggest that this parallel GPU technology can be used to build very large-scale simulations whose
connectivity ratios match those of the real cerebellum and that these simulations can be used guide
future studies on cerebellar mediated tasks and on machine learning problems.
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1. Introduction
The cerebellum is remarkable owing in part to the large number of granule cells that it
contains. Estimates indicate that approximately half of the neurons in the human brain are
cerebellar granule cells. A satisfying understanding of the cerebellum must therefore include
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a clear picture of the computational significance of this vast cell layer. Several factors
combine to enhance the feasibility of analyzing the computational properties of the
cerebellum and its cellular components: i) the synaptic organization and synaptic physiology
of the cerebellum are especially well characterized (Eccles, Ito, & Szentágothai, 1967; Ito,
1984) and ii) there are several experimentally tractable behaviors that engage the cerebellum
relatively directly, such as eyelid conditioning and adaptation of the vestibule-ocular reflex.

The relationship between eyelid conditioning and the cerebellum in particular has enabled
both the construction and biologically relevant evaluation of computer simulations of the
cerebellum. Eyelid conditioning involves the paired presentation of a neutral conditioned
stimulus (CS) such as a tone and a reinforcing unconditioned stimulus (US), typically an air
puff directed at the eye or peri-orbital electrical stimulation. With many CS+US pairings the
CS acquires the ability to elicit a conditioned response – the eyelids close in response to the
tone. Previous work has revealed that the CS is conveyed to the cerebellum via mossy fiber
inputs (Lewis, LoTurco, & Solomon, 1987) and the US by activation of climbing fiber
inputs (Mauk, Steinmetz, & Thompson, 1986), and that output from the cerebellum via the
anterior interpositus nucleus drives the expression of the learned responses (McCormick &
Thompson, 1984). Eyelid conditioning can thus be used to evaluate a computer simulation
of the cerebellum by providing the simulation with CS-like and US-like inputs over mossy
fibers and climbing fibers respectively. The rich repertoire of well-characterized behavioral
properties of eyelid conditioned then serves as a stringent test of the performance of a
simulation.

We have previously shown that a biologically constrained simulation of the cerebellum
containing 12,000 granule cells can replicate many (but not all) behavioral properties of
eyelid conditioning (Medina, Garcia, Nores, Taylor, & Mauk, 2000). Although this
simulation has been the source of new predictions that were born out with experimental tests
it remains an open question which (if any) limitations of the simulation are attributable to
the relatively small number of granule cells. Toward the ability to address such issues, we
report the initial development of a much larger simulation that contains over one million
granule cells. This expansion is made feasible by parallel implementation on modern multi-
processor graphics processing units (GPUs, e.g. Nvidia GTX 580). Here, we compare the
basic performance of the simulation to its smaller predecessor and use the larger simulation
to begin to address the issue of task generality. While previous simulations have only been
tested against the behavioral properties of eyelid conditioning, we have tested the million-
cell simulation with eyelid conditioning and with a classic machine learning task: balancing
a pole by moving a cart (Cart-Pole task). We show that the larger simulation is able to
replicate eyelid conditioning and show that it readily learns robust performance in the cart-
pole task.

2. Methods
The new simulation is based on the original simulation of Buonomano and Mauk (1994) as
modified later by Medina et al. (Kalmbach, Voicu, Ohyama, & Mauk, 2011; Medina et al.,
2000; Medina & Mauk, 1999). The principle change is the nearly 100 fold increase in the
number of granule cells, from 12,000 to 1,048,567. Consequently the divergence/
convergence ratios of granule cell connectivity could be modified to more closely
approximate the ratios observed in the cerebellum (Eccles et al., 1967; Ito, 1984).

2.1 Simulation Connectivity
Figure 1A shows the synaptic relationship among the cells in the cerebellum as implemented
in the simulation. As with the previous simulation, the connectivity of the present simulation
attempts to capture not only the numerical, divergence and convergence ratios, but also the
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known spatial relationships between the cell types. The algorithm that converts these
constraints to the actual cell-by-cell connectivity of the network is identical to that in the
previous simulation (Buonomano & Mauk, 1994; Medina et al., 2000). The only difference
in connectivity between the 2 networks is the different connectivity ratios provided to the
algorithm, which is discussed below.

The increase of granule cell population from 12,000 to 1,048,576 in the simulation enabled
the observed numeric ratios of granule cell connectivity to be more closely approximated
than was possible in the previous simulation. Figure 1B compares the convergence-
divergence ratios of connectivity between the previous simulation, the expanded simulation,
and the observed ratios in cerebellum (Palkovits, Magyar, & Szentágothai, 1971a, 1971b).
Most notably, the increase in granule cell numbers enabled much closer convergence ratio of
granule cell to Purkinje cell synapses. Whereas the previous simulation can only achieve
1/160 of the observed ratio, the expanded simulation achieves 1/3 of the observed ratio. The
same is true for convergence ratios of granule cell to basket cell connectivity. In addition,
the expanded granule cell population allowed for much closer approximation of connectivity
ratios between granule cells, Golgi cells, and mossy fibers. Most notably, the expanded
simulation was able to achieve 1/2 of the divergence ratio of Golgi cell output to granule
cells. The previous simulation suggested that the connectivity among these 3 types of cells is
necessary to produce behaviors that require the cerebellum, thus it is crucial that we are able
to closely approximate these ratios observed in the cerebellum.

The expansion of number of granule cells allowed us to more closely approximate the
convergence ratio of granule cell-Purkinje cells. The simulation modeled a single strip of 32
Purkinje cells without overlapping dendrites, thus each Purkinje cell received a unique set of
32,768 granule cell inputs. We decided to only model a single layer of Purkinje cells
because it captured inputs from all granule cells and was more computationally efficient. We
also modeled a strip of 128 basket cells and a strip of 512 stellate cells in the same manner
as the Purkinje cells. Thus, each granule cell in our simulation output to exactly one Purkinje
cell, one basket cell, and one stellate cell.

2.2 Representation of neurons
The cells in the simulation are implemented identically to that in the previous simulation,
with the exception that instances where there are now a greater number of synaptic inputs
required rescaling the synaptic inputs (decreasing the maximum synaptic conductance).
Briefly, the cells are implemented using a single compartment leaky integrate and fire
representation (Buonomano & Mauk, 1994; Medina et al., 2000). In this representation,
membrane potential is calculated from synaptic conductances, leak conductances and
membrane capacitance. These individual conductances are modeled based on known
physiological data for each cell types. The leaky integrate-and-fire representation gains a
great deal of computational efficiency by omitting explicit calculation of active (voltage-
dependent) conductances. Instead, the influence of these conductances is approximated by 1)
action potentials occur when the calculated membrane potential exceeds threshold – these
spikes are broadcast as output to the appropriate follower neurons, and 2) threshold
increases when an action potential occurs to emulate the absolute and relative refractory
periods. After these spike-initiated increases, the threshold decays exponentially back to its
normal level. In addition, the synaptic delay is modeled at one millisecond in the simulation.
This representation can give rise to a phenomenological model that can be fine-tuned to
match published physiological properties of each neuron type. This procedure yields
representations that are highly computationally efficient and are suitable for studying the
emerging network behavior.
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2.3 Mossy fiber-granule-Golgi input network
Mossy fibers provide one of the two major inputs into the cerebellum. The mossy fibers are
thought to carry information about the internal and external state of the world, such as limb
positions, commands for motor and premotor cortices, tone stimuli, etc. The mossy fibers
diverge extensively onto the granule cell population in the cerebellar cortex. The granule
cells then connect to Purkinje cells. Thus, signals from mossy fibers indirectly affect
Purkinje cell activity. In addition, the granule cells excite Golgi cells and receive inhibitory
inputs from Golgi cells, thus forming a recurrent feedback loop. It is thought that this mossy
fiber-granule-Golgi input network performs input pattern separation and timing (Bullock,
Fiala, & Grossberg, 1994; Fujita, 1982; Marr, 1969; Maex & De Schutter, 1998; Medina &
Mauk, 2000; Moore & Choi, 1997). As discussed previously, the increase in the number of
granule cells in the simulation enabled a much closer approximation of the convergence-
divergence ratios observed among the three types of cells.

2.4 Climbing fiber inputs
The other major input to the cerebellar cortex is climbing fibers from inferior olivary cells.
The climbing fibers make extensive synaptic connection to the Purkinje cell dendrites.
Compared to the massive convergence (80,000:1) ratio of granule cell to Purkinje cell
synapses, each Purkinje cell only receives input from one climbing fiber. The climbing fiber
activity has been shown to be the signal that induces plasticity in the granule to Purkinje cell
synapses (Ito & Kano, 1982; Ito, 1989; Lev-Ram, Mehta, Kleinfeld, & Tsien, 2003; Medina,
Nores, & Mauk, 2002; Simpson, Wylie, & De Zeeuw, 2011).

2.5 Relationship between eyelid conditioning and cerebellum
The cerebellum is necessary for several well-characterized types of motor learning such as
eyelid conditioning (Garcia, Steele, & Mauk, 1999; Mauk & Thompson, 1987; Perrett, Ruiz,
& Mauk, 1993; Raymond, Lisberger, & Mauk, 1996), adaptation of the vestibular ocular
reflex (DuLac, Raymond, Sejnowski, & Lisberger, 1995; Lisberger, 1988), and learning
smooth pursuit eye movements (Li & Lisberger, 2011; S. G. Lisberger, 2010; S. G.
Lisberger, Morris, & Tychsen, 1987). In eyelid conditioning, the animal is presented with a
conditioning stimulus (CS, e.g., tone) for a fixed duration, and at the end of the tone a
reinforcing unconditioned stimulus (US) such as a puff of air into eye or peri-orbital
electrical stimulation is presented. After repeated presentation of the CS and US, the animal
learns to close its eyelid prior to the onset of the US. What makes this learning useful for
testing the performance of cerebellar simulations is the relationship between these stimuli
and the inputs to the cerebellum. The presentation of the tone CS is conveyed to the
cerebellum via the mossy fiber inputs – that is, mossy fiber inputs are necessary and
sufficient to convey the CS (Lewis et al., 1987; Steinmetz, Lavond, & Thompson, 1989).
Similarly, activation of climbing fiber inputs to the cerebellum is necessary and sufficient to
convey the US (Mauk et al., 1986; Türker & Miles, 1986). In addition, recording studies
have revealed how mossy fibers and climbing fibers respond to the CS and US, respectively
(Aitkin & Boyd, 1978; Sears & Steinmetz, 1991). On the output side, previous work
demonstrates that cerebellar output via activity of neurons in the anterior interpositus
nucleus is necessary and sufficient to drive the expression of the learned eyelid responses
(McCormick & Thompson, 1984). Combined, these factors reveal that cerebellar
simulations can be rigorously tested with eyelid-conditioning-like inputs over the mossy
fibers and climbing fibers. The well-characterized behavioral properties of eyelid
conditioning then serve as the test bed for simulation performance.
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2.6 Cerebellar plasticity involved in eyelid conditioning
Two sites of plasticity in the cerebellum are known to be involved in eyelid conditioning:
climbing fibers control the induction of plasticity at granule cell to Purkinje cell synapses
(Gilbert & Thach, 1977; Ito, 1989; Ito & Kano, 1982; Wang, Denk, & Häusser, 2000), and
Purkinje cells appear to control the induction of plasticity at mossy fiber to nucleus synapses
(Garcia & Mauk, 1998; Garcia et al., 1999; Kalmbach et al., 2010; Medina, Garcia, & Mauk,
2001; Medina & Mauk, 1999; Ohyama, Nores, Medina, Pugh and Raman, 2006, 2008;
Riusech, & Mauk, 2006; Perrett & Mauk, 1995). The implementation of these rules for
plasticity for the expanded simulation is identical to the previous simulation.

2.7 Parallel implementation
Owing to the expanded granule cell numbers, we found that a traditional single threaded
implementation took around 600 seconds to process five seconds of simulated time with
one-millisecond time steps, which would limit the simulation’s usefulness. In order to
exploit the modern multi-core processors, we switched our implementation to C++. This
allowed us to use multi-threading with OpenMP. We tested this implementation on an eight
core Intel Xeon workstation. However, we could only achieve a 2× speed up, instead of 6–
8× we were hoping for. By profiling the simulation to determine the performance-limiting
factor we realized that memory bandwidth is a significant issue. We tallied the amount of
data for granule cells, and found that each granule cell required 128 bytes of data, which
meant 128 MB of data for a million granule cells. During each time step, all 128 MB of data
have to be either read and/or written to. Thus, the memory bandwidth required for the
simulation to compute in real time would be 128 GB/s.

On the other hand, we realized that calculating the granule cell activities mostly involved
applying identical instructions to large arrays of data. This computation pattern matches the
single instruction multiple data (SIMD) pattern particularly well. Modern vector processors
such as the Nvidia graphics processing units (GPU) being developed for general
computation purposes should excel at this computation. The GPU we used at the time
(GTX275) had more than 150 GB/s of memory bandwidth and 240 cores. Utilizing the
CUDA C programming extensions we were able to accelerate the simulation to 30 seconds
for five seconds of simulation time, which is in the realm of the runtime we were aiming for.
The final challenge was updating the activity of the cells according to their connectivity
patterns. This is especially problematic because the connectivity among mossy fibers, Golgi
cells, and granule cells is highly random. Consequently, the memory access patterns for
these interactions are also very random, and memory latency becomes the primary limiting
factor. Fortunately, there is no communication among granule cells, only the large
divergence and convergence from mossy fibers and Golgi cells. In addition, there are only
1024 mossy fibers and Golgi cells, so that their action potentials can be stored entirely in the
L1 cache of the GPU that has the low latency we needed. Currently, using an Nvidia Fermi
GTX580 GPU with the above optimizations, our simulation takes 9 seconds to run five
seconds of simulation time. We also tested how well the simulation scales across multiple
GPUs by comparing the performance of the simulation on 1 GTX470 and 2 GTX470 GPUs.
We found that 2 GTX470 GPUs were able to accelerate the simulation run time from 12
seconds to 6 seconds for five seconds of simulation time, which was almost scaling linearly.
Finally, we tested how well the performance of the algorithm would scale with fewer cells.
We found that, on the GTX580, a 16 thousand cells simulation takes 0.5 seconds to perform
five seconds of simulation time. However, if the scaling were linear, the 16 thousand cells
simulation should only take 0.14 seconds. The sublinear scaling suggests that the
performance is CPU bound for small number of cells.
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3. Results
3.1 Eyelid conditioning

To examine simulation performance, we tested its ability to emulate proper learning and
response timing for eyelid conditioning. We compared the performance of the large
simulation to the small simulation to examine the timing performance (Figure 2). To mimic
presentation of a tone CS a small subset of mossy fibers was made to fire in a way that is
consistent with published peri-stimulus histograms of mossy fiber responses to auditory
stimuli (Aitkin & Boyd, 1978). Briefly 20 of the 1024 mossy fibers had a tonic increase in
activity in the presence of the tone CS and 30 of the 1024 mossy fibers had a phasic increase
in activity during the “tone” CS. To implement the US input, each climbing fiber underwent
a small depolarization sufficient to elicit a spike from the inferior olivary cells on most
presentations. The summed output of the 8 deep nucleus cells, integrated over a time span of
five ms was used at the “eyelid response” output of the stimulation.

As a preliminary test, we first examined whether the simulation is capable of acquiring
eyelid responses. Figure 2B (left panel) shows that the large simulation was able to respond
robustly to a CS-US interval of 250 ms. To test the ability of the larger simulation to mimic
the learned timing of the responses, we next trained it using CS-US intervals of either 750
ms or 1000 ms. The simulation’s response after learning a 750 ms interval was delayed
compared to the 250 ms interval response, but less delayed than the 1000 ms interval
response (Figure 2B). This data generally captures the timing behavior of animals, where the
onset of the learned response is delayed depending on the CS-US interval.

Finally, we tested the large simulation on two long intervals at 1150 ms (Figure 2B) and
1500 ms (data not shown). The simulation could not learn to either of the two intervals,
which is not consistent with the rabbit data. These results are generally consistent with the
results from the previous smaller simulation, with one exception: the smaller simulation
shows learning with the 750 ms interval and unreliable responses with the 1000 ms interval
whereas the larger simulation is capable of more robust responses with the 1000 ms interval.
Thus, the expanded simulation shows similar behavior to the previous simulation, with an
apparent improvement in its ability to mimic the rabbit data in terms of longer CS-US
intervals. Subsequent work will focus on the differences in the simulations that make this
improvement possible.

3.2 Cart-pole balancing
In order to examine the generalization of our simulation to other tasks, we choose to apply
the simulation to a classic inverted pendulum balancing task (Anderson, 1989). The inverted
pendulum rests on a cart that can move on a one dimensional track. The objective is to
balance the inverted pendulum for as long as possible by applying forces that move the cart
left or right. This task is analogous to balancing tasks that require the cerebellum (Morton &
Bastian, 2004). The task involves the coordination of multiple forces to achieve a single
task, which is very distinct from eyelid conditioning where there is only a single force
(closure of the eyelid) to control. Thus, this was an excellent problem to test the generality
of our simulation.

We have connected the simulation to the cart-pole domain as illustrated by figure 3A. The
state of the cart-pole world, such as pole angle (Figure 3B) and pole velocity is transmitted
by mossy fibers to the simulation. The parallel fibers from the input network (granule cell
axons) then connect to two independent output networks. Each network is identical to the
network used in eyelid conditioning, containing a full set of Purkinje, basket, and stellate
cells that receive input from the entire granule cell population. Each network also contains
the full complement of nucleus cells and inferior olivary cells. Each network has identical
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parallel fiber-Purkinje cell and mossy fiber-Nucleus cell plasticity rules as that used in
eyelid conditioning. Each output network controls pushing the cart in a single direction. The
force of the output is simply extracted as the voltage of a leaky integrate model that received
all nucleus cell spikes without any delay (as long as the scaling factors are appropriate the
actual kinetics of the model had no significant impact). The forces from both output
networks are subtracted from each other to yield the net force acting on the cart (Figure 3C
and D, bottom panel). Finally, the error signals about the failure of maintaining pole balance
are transmitted back to the inferior olivary cells of each output network without any delay.
The output network that is responsible for pushing the cart to the left receives an error when
the pole falls to the left, and vice versa. Thus, we assume no explicit communication
between the two output networks. With this setup, we explored the various encoding
schemes to examine if the simulation can perform this task without tuning the simulation
itself.

We first assumed a very simple binary firing rate encoding scheme for the cart-pole world to
explore if the simulation can learn appropriately by tweaking the error signals. We chose to
encode 3 variables: pole angular position, angular velocity, and angular acceleration. For
simplicity we did not place any physical limits on the velocity or the position of the cart,
thus we did not encode these variables. We randomly chose 30 mossy fibers to encode each
of the pole variables, out of 1024 mossy fibers. For example, the 30 mossy fibers for pole
position are divided into 3 groups of 10. Each of the 3 groups has a preferred pole angle
range from the upward midline. Each group has two firing rates: a baseline rate and a
response rate that is higher than baseline. When the pole is in the preferred angle range of
that group the mossy fibers fire at the response rate. Otherwise the mossy fibers in the group
fire at baseline rate. The preferred angle ranges are divided into 3 parts: left, right, and
middle, corresponding to when the pole angle is less than −.0025 radians, between −.0025
radians and .0025 radians, and greater than .0025 radians. The pole angular velocity and
angular acceleration are encoded similarly. Using this scheme, we next explored the timing
of the error signal onset.

Considering that there is a finite limit on the forces that can be generated to push the cart,
the physics of the system defines a certain pole angle (symmetrical to the upward midline on
each side) where the pole is no longer recoverable. We examined the timing of the error
signal relative to this point of no return. We discovered that when the error signal is given
after the point of no return, the simulation was able to learn initially to balance the pole. As
shown in figure 4A, the simulation was able to learn to balance the pole in the 3rd trial,
where the pole stayed close to vertical throughout the trial. However, after that successful
trial, the simulation fails to retain its performance. After a few more trials, the simulation is
able to learn again to balance the pole, but again fails to retain its performance. This
appeared to be similar to extinction we observed in eyelid conditioning. When we examined
the output network again, we realized that after learning, the nucleus cells increase their
firing rate during a successful balancing trial. However, this increase in nucleus cell activity
inhibits the inferior olivary cells, and disrupts their equilibrium firing rates, which is a signal
to extinguish the responses (Medina et al., 2002). The failure of this system suggested that
the inferior olivary cells must maintain a certain a level activity even when the nucleus cells
are responding appropriately.

Thus, we tried to encode the error signal as proportional to the pole angle. Specifically, the
probability than the inferior olivary cells are stimulated is proportional to the pole angle
relative to midline. This ensured that even during successful trials where the pole is balanced
by the nucleus cell output, inferior olivary cells could still be active to prevent extinction.
Figure 4B illustrates that this encoding scheme was able to retain the ability to balance the
pole.
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We next explored the encoding schemes for the world state variables. We first explored
Gaussian encoding of the pole angular position (Figure 3B), angular velocity, and angular
acceleration. Again, we use pole angular position as an example to illustrate the encoding
scheme. Each of the 30 mossy fibers for angular position was assigned a preferred angle
where the firing rate is maximal. The actual firing rate of the mossy fiber is then dependent
on how far the angular position of the pole is from the preferred angle, transformed with the
Gaussian function. We find that the simulation could learn robustly in the presence of both
binary rate encoding and Gaussian rate encoding (Figure 4C). We also explored an encoding
scheme similar to that observed in VOR (Lisberger & Pavelko, 1986), where pole angular
velocity, angular acceleration, and an angular pulse velocity (linear combination of velocity
and acceleration) was encoded. The pole angular position was not encoded in this scheme.
As shown in Figure 3d (no theta), the simulation could not learn very robustly with this
encoding scheme. This would indicate that our knowledge about how the cerebellum
achieves coordination between multiple output networks is still incomplete.

4. Discussion
We have demonstrated the ability to increase the scale of a well-characterized computer
simulation of the cerebellum. Through the application of GPU parallel processing the
number of granule cells in this simulation can be increased from 12,000 to over one million.
In doing so, the execution speed has been maintained at a level that permits sensible analysis
and progress. On a high performance workstation the smaller simulation runs at real time or
slightly better – four seconds of execution to simulate five seconds. Although the larger
simulation that we characterized here implements almost 100-fold more granule cells, it
requires approximately twice the execution time using the Nvidia Fermi GTX580 GPU.
Moreover, in current work we find that execution time decreases proportionally with 2 GPU
boards. With this scaling factor we estimate that a simulation that implements 10 million
granule cells can run at 0.5× to 1× real time on a standard workstation computer with eight
next generation GPUs, if we are to assume that the scaling can be maintained for 8 GPUs,
that the next generation GPUs are faster than the current models, and there are no additional
overhead when dealing with 10 million granule cells. If we are to take that a para-saggital
module of the cerebellum involves around 150 million granule cells, it is imaginable that we
will be able to build such a simulation within the next 2–4 generations of computer
hardware. These advances highlight that it is now possible to address with computer
simulations the question of the computational value of the cerebellum’s enormous layer of
granule cells.

The ability to expand the number of granule cells by 100 fold over the original simulation
has the important advantage of allowing a closer approximation of the connectivity ratios
observed in the real cerebellum. The motivation for better approximating connectivity ratios
is to begin exploring the question of the computational properties of the unique connectivity
observed with cerebellar granule cells. Given that the cerebellar granule cells account for
over 50% of all neurons in the entire human central nervous system, and that this
characteristic of very large numbers is remarkably well conserved in evolution, it is
conceivable that there are underlying characteristic computational functions behind such
connectivity. In fact, Marr (1969) in the first coherent theory about the cerebellar cortical
computation, hypothesized about the role of this connectivity in mossy fiber input pattern
separation. Understanding the computational functions of this connectivity will be a
significant step forward in our understanding of how the cerebellum functions.

As a result, the expanded simulation’s ability to learn more robustly to longer inter-stimulus
intervals could be due increase in reliability of having a larger granule population output to
Purkinje cells, On the other hand, the lack of improvement in the timing response to both
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750ms and 1000ms intervals also points to the possibility that there are features in the
connectivity of the input network that we do not yet fully appreciate.

We have also used this larger cerebellar simulation to begin to explore the issue of task
generality. The different areas of the cerebellum are known to perform different motor
functions such as balance and fine movements (Ito, 1984). The network architecture of the
cerebellum is remarkably uniform throughout its entire structure (Eccles et al., 1967; Ito,
1984). In addition, the network connectivity is evolutionarily well conserved in mammals,
and the principal features of parallel fibers, Purkinje cells, climbing fibers are observed in
the cerebellum of other vertebrates. This suggests that this particular network architecture
performs a characteristic computation that can be applied to a variety of tasks. However, it is
certainly not obvious that we could elucidate this computation, if it exists, by studying
eyelid conditioning. Considering that cart-pole balancing is arguably a completely different
task from eyelid conditioning, it was not expected that our simulation-that was constructed
entirely from understanding eyelid condition-could work for cart-pole balancing. The fact
that the simulation, without tuning its intrinsic parameters, succeeded in performing this task
suggests that such a characteristic computation for the cerebellar network architecture exists.
This common computation could be determining the timing and the amplitude (Kreider and
Mauk, 2010) of the commands necessary for correct motor output. In addition, this
computation would need to include mechanisms to adapt to new motor tasks as well as
fluctuations in the motor output system. The success of the simulation suggests that we can
study this computation with eyelid conditioning.

Applying the simulation to cart-pole balancing also let us to begin to address a feature of
more complex motor movements that is missing in eyelid conditioning: multiple muscle
coordination. It is known that the cerebellum is necessary for smooth coordination between
multiple muscles. It is thought that each muscle is driven by a specific part of the cerebellum
(Ito, 1984). We examined this coordination issue in the simulation with cart-pole by starting
with a naïve assumption, that there is no explicit communication between the two output
networks that control the two forces on the cart. The simulation’s success at cart-pole
suggests that this naïve assumption is sufficient for this particular task. This does not
exclude the possibility that such communication might make the simulation perform better
in this task, and that such communication might be necessary for more complex
coordination tasks. The expanded simulation provides us with the tool to explore further into
this question, as well as the computational properties of large granule cell populations and
their network connectivity.
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Highlights

• One million cell simulation using GPGPU for reasonable execution time

• Tool to begin address the computational role of large number of granule cells

• Examined generality of simulation that is derived from eyelid conditioning
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Figure 1. Connectivity of cells in the cerebellum
A. Synaptic connections among cells. The mossy fibers are thought to carry information
about the state of the world and climbing fibers are thought to carry teaching signals. MF:
mossy fibers, GO: Golgi cells, GR: granule cells, SC: stellate cells, BC: basket cells, PC:
Purkinje cells, IO: inferior olivary cells, NC: nucleus cells, CF: climbing fibers. Arrows
indicate excitatory connections and round ends indicate inhibitory connections. B. Ratios of
granule cell connectivity. Presyn:postsyn: presynaptic cell to post synaptic cell connectivity.
Mauk 2000: previous smaller simulation. Expanded: expanded simulation discussed here.
Actual: connectivity ratios observed in the cerebellum, with blank fields indicating
unknown. The ratios are listed as convergent:divergent. For example, for mossy fiber output
to granule cells observed in the cerebellum, each granule cell receives 4.2 mossy fiber inputs
on average and each mossy fiber connects to 400–1800 granule cells.
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Figure 2. A comparison of eyelid conditioning performance of the smaller (12,000 granule cell)
simulation and the larger (1,048,576 granule cell) simulation
Each sweep is the eyelid response predicted by the output of the simulation, as conveyed by
its deep nucleus neurons. Each panel shows 100 trials from well-trained simulations, where
each upward deflection is the predicted (learned) closure of the eyelid. The black portion of
each sweep indicates the time over which the mossy fiber inputs were active to mimic a
conditioned stimulus and thus the upward deflection of the traces in the black portions
shows a learned response by the simulation. A. Performance of the smaller simulation
trained using inter-stimulus intervals ranging from 250 ms to 1150 ms. Robust conditioned
responding is predicted by the simulation for the 250 ms and 750 ms intervals. Very poor
responding is seen at the 1000 ms interval and essential no learning is evident at 1150 ms. B.
By comparison, performance of the larger simulation over a similar range of inter-stimulus
intervals. Like eyelid conditioning results from rabbits and the smaller simulation (data not
shown) the larger simulation does not learn with an interval of 100 ms. Like rabbits and the
smaller simulation, the larger simulation shows robust and well timed responses for 250 ms
and 750 ms intervals. The larger simulation shows more robust learning at the 1000 ms
interval than does its smaller predecessor, but falls short of rabbit performance by showing
no learning at all at an interval of 1150 ms.
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Figure 3. The simulation setup as applied to the cart-pole balancing problem
A. Schematic of the simulation setup for cart-pole balancing. Information about the pole is
encoded as mossy fiber inputs (MF). The mossy fibers indirectly connect to Purkinje cells
(PC) through granule cells (GR). Unlike in eyelid conditioning, there are two sets of
Purkinje cells, nucleus cells (NC), and inferior olivary cells (IO). The output of nucleus cells
in each set is responsible for pushing the cart in one direction (FR: force right, FL: force
left). When the pole exceeds certain position threshold (grey lines on either side of the pole),
error signals (ER, error right, EL, error left) are sent to the associated inferior olivary cells.
B. Pole angle population mossy fiber firing rate evolution over time for pole position of a
failed train as in (C). Scale bar is in Hz. The mossy fibers shown are using the Gaussian
encoding (see figure 4 and results). C. Evolution of pole states and simulation output over
time for a single trial. Top: angle difference in degrees between the pole and upright.
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Positive is towards the left and negative is to the right. Middle: d(angle)/d(t) in degrees/
second. Same signs as pole angle. Bottom: the output forces on the cart from the two output
networks from the simulation. Left: force pushing the cart to the left, Right: force pushing
the cart to the right, Net: the left and right forces are subtracted from each other to arrive at
the actual net force acting on the cart. D. Same as in (C), for a successful trial. Note the
difference in scales.
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Figure 4. The simulation is generalizable from eyelid conditioning to cart-pole balancing
A. Pole balance performance where the error is only sent after point of no return. Pole
position relative to upright is plotted against time. Each line represents a trial, which
terminates at point of failure, or exceeding 10 seconds. B. Pole balance performance where
the error rate is proportional to pole position deviation from upright. C. Pole balance
performance for 3 mossy fiber encoding schemes. Top: success percentage as a function of
trial number for 10 repetitions. Success is defined as keeping the pole balanced for 10
seconds. Bottom: average angular deviation of pole from upright for each trial. Standard:
binary encoding of pole position, pole velocity, and pole acceleration. Gaussian: Gaussian
encoding of the same variables. No theta: Gaussian encoding of pole velocity, acceleration,
and a linear combination of pole velocity and acceleration, see section 3.2 for more details.
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