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Abstract
The objective of this study was to create constitutively active mutant human A3 adenosine
receptors (ARs) using single amino acid replacements, based on findings from other G protein-
coupled receptors. A3 ARs mutated in transmembrane helical domains (TMs) 1, 3, 6, and 7 were
expressed in COS-7 cells and subjected to agonist radioligand binding and phospholipase C (PLC)
and adenylyl cyclase (AC) assays. Three mutant receptors, A229E in TM6 and R108A and R108K
in the DRY motif of TM3, were found to be constitutively active in both functional assays. The
potency of the A3 agonist Cl-IB-MECA (2–chloro-N6-(3–iodobenzyl)adenosine-5′-N-
methyluronamide) in PLC activation was enhanced by at least an order of magnitude over wild
type (EC50 951 nM) in R108A and A229E mutant receptors. Cl-IB-MECA was much less potent
(>10-fold) in C88F, Y109F and Y282F mutants or inactive following double mutation of the DRY
motif. The degree of constitutive activation was more pronounced for the AC signaling pathway
than for the PLC signaling pathway. The results indicated that specific locations within the TMs
proximal to the cytosolic region were responsible for constraining the receptor in a G protein-
uncoupled conformation.
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Introduction
The most recently identified member of the adenosine receptor (AR) family, the A3 AR, has
already been shown to play a crucial role in some of the important physiological effects of
adenosine. These include cardioprotection (1–4), eosinophil function (5), and
neuroprotection (6). The local concentration of adenosine rises dramatically from the
nanomolar to the micromolar range during ischemia and other stress to an organ, which has
been shown to activate the A3 and other AR subtypes and thus limit damage in both the
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heart and brain. In cardiac myocytes this protection is associated with activation of specific
phospholipases, C or D (7). The A3 AR couples to Gi and Gq proteins (8).

Recently, it has been established that many G protein-coupled receptors (GPCRs) may exist
in a spontaneously active form in the absence of agonist (9,10). An inverse agonist acting at
a constitutively active A3 AR may be useful in modulating cell death in cancer, stroke and
neurodegenerative diseases. This agonist-independent constitutive activity of receptors has
been most readily observed in cell lines in which receptors were either overexpressed or
mutated within the transmembrane helical domain (TM) or intracellular loops (11, 12). A
number of amino acids or amino acid sequences were reported to be involved in regulating
the active vs. inactive conformations of certain GPCRs (11). For example, constitutive
activity was produced by mutation of the DRY motif, which is conserved among many
GPCRs and occurs near the cytoplasmic end of TM3, in α1B-adrenergic (13) and H2
histamine receptors (14). Mutation of Ala293 (6.34) in the α1B-adrenergic receptor (10) and
the corresponding Cys322 in the 5-HT2A receptor (15) also induced a constitutively active
state of these receptors (10). The fact that various amino acid replacements at these
particular homologous sites resulted in increased basal activity suggested that these regions
function to constrain the unstimulated receptor in a conformation unfavorable for G protein
coupling. However, in contrast to α1B and 5-HT2A receptors, the m5 muscarinic receptor,
when mutated in the same region, was devoid of constitutive activity (16). Thus, some of the
above mentioned regions might not be critical determinants in receptor function among
members of the rhodopsin-Hke GPCR family in general.

The constitutive activity of GPCRs was first demonstrated convincingly in the δ-opioid
receptor (17), but was only extensively investigated after the report of the constitutive
activity of mutant am receptors (18). As constitutive activity of G protein-coupled receptors
is involved in a wide range of physiological and pathophysiological processes (19), intensive
efforts are being directed towards this study (10, 20). A more complete understanding of the
roles of constitutively active GPCRs in human disease and the elucidation at the molecular
level of how these receptors could be inactivated may allow for reasonable development of
drugs, such as inverse agonists. We were particularly interested in determining whether the
A3 AR could be rendered constitutively active using single amino acid replacements, the
location of which was based on homology to other GPCRs.

EXPERIMENTAL PROCEDURES
Materials

Full-length cDNA encoding the human adenosine A3 receptor was kindly provided by M.
Atkinson, A. Townsend-Nicholson, and P.R. Schofield (Garvan Medical Institute, Sydney,
Australia) and were subcloned in pcDNA3 as pcDNA3/hA3R. The vector pcDNA3 was
obtained from Invitrogen (Carlsbad, CA). All the enzymes used in this study were obtained
from New England Biolabs (Beverly, MA). The QuickChange™ site-directed mutagesis kit
was purchased from Stratagene (La Jolla, CA). Myo-[3H]inositol (20 Ci/mmol) was
obtained from American Radiolabeled Chemicals (St. Louis, MO). The Sequenase Kit,
version 2.0, DEAE-dextran, and [125I]N6-(4–amino-3-iodobenzyl)adenosine-5’-N-
methyluronamide ([125I]I-AB-MECA; 2000 Ci/mmol) were obtained from Amersham
Pharmacia Biotech Inc. (Piscataway, NJ). Fetal bovine serum (FBS) was from Life
Technologies, Inc (Rockville, MD). All oligonucleotides were synthesized by Bioserve
Biotechnologies (Laurel, MD). A monoclonal antibody (12CA5) against a hemagglutinin
epitope (HA) and adenosine deaminase (ADA) were obtained from Boehringer Mannheim
Biochemicals (Indianapolis, IN), and goat anti-mouse IgG antibody conjugated with
horseradish peroxidase and 2-chloro-N6-(3–iodobenzyl)adenosine-5'-N-methyluronamide
(Cl-IB-MECA) were from Sigma (St. Louis, MO).
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Transient expression of wild type (WT) and mutant ARs in COS-7 cells—4 X
106 COS-7 cells were seeded into 100-mm culture dishes containing 10 ml of DMEM
supplemented with 10% fetal bovine serum, 100 units/ml penicillin, 100µg/ml streptomycin,
and 2 µmol/ml glutamine. Cells were transfected approximately 24 h later with plasmid
DNA (4 µg of DNA/dish) by the DEAE-dextran method (21) for 1 h, followed by treatment
with 100 µM chloroquine for 3 h, and grown for an additional 24 h at 37 °C and 5% CO2.
Indirect cellular ELISA measurements using the HA-specific monoclonal antibody (12CA5)
were carried out as described (36).

lnositol phosphate determination—The assay was carried out according to the general
approach of Harden et al. (33). About 24 h after transfection, the cells were split into six-
well plates (~0.75 X 106 cells/well; Costar, Cambridge, MA) in DMEM culture medium
supplemented with 3 µCi/ml of myo-[3H]inositol. After a 24 h labeling period, cells were
preincubated in the presence of 3 U/ml ADA for 30 min at 37° with 10 mM LiCl and for 20
min at room temperature. The mixtures were swirled to ensure uniformity. Following the
addition of the agonist Cl-IB-MECA, the cells were incubated for 30 min at 37° and 5%
CO2. The supernatants were removed by aspiration, and 750 µl of cold 20 mM formic acid
was added to each well. Cell extracts were collected after a 30-min incubation at 4°C and
neutralized with 250 µl of 60 mM NH4OH. The inositol monophosphate fraction was then
isolated by anion exchange chromatography (22). The content of each well was applied to a
small anion exchange column (AG-1-X8; BioRad, Hercules, CA) that had been pretreated
with 15 ml of 0.1 M formic acid/3 M ammonium formate, followed by 15 ml of water. The
columns were then washed with 15 ml of a solution containing 5 mM sodium borate and 60
mM sodium formate. [3H]Inositol phosphates (IP) were eluted with 4.5 ml of 0.1 M formic
acid/0.2 M ammonium formate and quantified by liquid scintillation counting (LKB Wallace
1215 Rackbeta scintillation counter).

Pharmacological parameters were analyzed using the Prizm program (version 3.0,
GraphPAD, San Diego, CA). Data were expressed as mean ± standard error for the number
of experiments indicated.

Measurement of production of3',5'- cyclic AMP (cAMP)—The basal cAMP levels
were measured by using a commercially available cAMP (low pH) Immunoassay Kit (R&D
Systems, Inc., Minneapolis, MN), Briefly, COS-7 cells expressing WT and mutant human
A3 ARs were grown in 24 well plates to approximately 70% confluence. The medium was
removed and replaced with 50 mM HEPES buffer at pH 7.4 in DMEM containing 3 U/ml
ADA. After 30 min, the cells were then treated with 1 ml 0.1 N HC1, and cellular debris was
removed by centrifugation for 5 min at 10,000Xg. The level of cAMP was measured using a
Bio-kinetics reader (Bio-TEK instruments Inc, VT).

Membrane Preparation—Transfected cells were washed twice with phosphate-buffered
saline and scraped from the plate into ice-cold lysis buffer (50 mM Tris, pH 7.4, at it,
containing 10 mM MgCl2 and 1 mM EDTA). Harvested cells were homogenized using a
Polytron homogenizer then centrifugated at 16,000Xg for 20 min. The cell membrane pellet
was resuspended in the same buffer. The protein concentration was measured using the
Bradford assay (23). Membranes were aliquoted and stored at −80°C.

[125I]I-AB-MECA Binding Assay—For competitive binding experiments, each tube
contained 50 µl of membrane suspension, 25 µl of [125I]I-AB-MECA (final concentration
1.0 nM), and 25 µl of increasing concentrations of Cl-IB-MECA in TrisHCl buffer (50 mM,
pH 7.4) containing 10 mM MgCl2, and 1 mM EDTA. Nonspecific binding was determined
using 30 µM NECA in buffer. The mixtures were incubated at 37°C for 60 min. Binding
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reactions were terminated by filtration through Whatman GF/B filters under reduced
pressure using a MT-24 cell harvester (Brandel, Gaithersburg, MD). Filters were washed
three times with ice-cold buffer (9 ml total). Radioactivity was determined using a Beckman
5500B γ-counter.

For saturation analysis of [125I]I-AB-MECA binding, radioligand concentrations ranging
from 0.1 to 12 nM were used. The Kd values of the radioligand were determined for all
mutant ARs.

RESULTS
Expression of human WT and mutant A3 ARs

A nonapeptide HA-tag, as an epitope for ELISA detection, was introduced between the
initial and second amino acids of the WT A3 AR using PCR techniques. We then used site-
directed mutagenesis to create the following mutations (Table 1): N30A (TM1), C88F
(TM3, near exofacial side), A229E (TM6), and Y282F (TM7). The DRY motif, located on
the cytosolic end of TM3, was also mutated. Mutant and WT A3 ARs were detected
immunologically at the plasma membrane surface by virtue of the HA-tag using the 12CA5
monoclonal antibody (Table 1). This assay was specific for receptor proteins in which the
amino-terminal sequence was readily accessible extracellularly. Except for the R108H
mutant receptor with 29%, expression levels for the various mutants determined by this
method generally ranged from 79% to 163% of the HA-tagged WT receptor.

Effect of the mutations on phosphoinositide hydrolysis
Basal IP levels of the various expressed receptors (Table 2) ranged from 71 % to 160 % of
the level of WT. Three mutant ARs, A229E in TM6 and R108K and R108A in the DRY
motif of TM3, were found to be constitutively active mutants (CAMs).

To measure the agonist-induced IP accumulation of the investigated mutants we used Cl-IB-
MECA, because its binding affinity was not dramatically impaired by the mutations under
study and because it was one of the most potent agonists for A3 ARs. COS-7 cells
transiently expressing the WT human A3 AR displayed a substantial increase of IP in
response to CI-IB-MECA (EC50 = 951 nM) that was not observed in control cells. Cl-IB-
MECA potently induced accumulation of IP in both WT and most of the mutant A3 ARs.
The potency of Cl-IB-MECA in PLC activation was enhanced over WT by at least an order
of magnitude in A229E (EC50 = 25.6 nM) and R108A (EC50= 37.5 nM) mutant ARs. The
potency of this agonist and the maximal IP levels achieved were greatly decreased (>10-
fold) in the C88F, Y109F and Y282F mutant ARs. Following double mutation of the DRY
motif (D107K/R108K and D107K/R108E), Cl-IB-MECA was completely inactive.
Therefore, agonist activity at these two mutant ARs was not investigated further.

Basal cAMP production in COS-7 cells expressing WT and mutant human A3 ARs
Basal cAMP accumulation was measured after transient expression of A3 AR constructs in
COS-7 cells (Table 3). Cells transfected with R108A, R108K and A229E mutant A3 ARs
showed 3.7-, 2.5- and 1.7-fold lower basal cAMP accumulation compared to the WT A3
ARs, showing a more pronounced change of basal values than those obtained from the PLC
assay. By comparison, the basal cAMP levels in cells transfected with other mutant ARs
were similar to that of the WT AR. The AC results were generally consistent with the results
from PLC assay.
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Radioligand binding assay
To further characterize the AR mutants, ligand binding studies were performed on
membranes from COS-7 cells expressing the WT or mutant ARs (Table 3). Saturation
binding analysis of [125I]I-AB-MECA indicated that the Kd values were similar at the WT
and DRY motif mutant ARs, ranging from 0.55 to 2.0 nM. By contrast the decrease of
agonist affinity was more pronounced in N30A, C88F and Y282F mutant ARs.

DISCUSSION
This was the first study to describe either single amino acid replacement or CAMs of the A3
AR. Previously, ligand recognition and activation were studied using site-directed
mutagenesis in A1 A2A and A2B, but not A3 adenosine receptors. In this study we have
investigated both agonist-dependent and agonist-independent activity of mutant A3 ARs.
Three mutant ARs, A229E in TM6, R108A and R108K in the DRY motif of TM3, were
found to be CAMs. The results indicated that specific locations within the TMs proximal to
the cytosolic region were responsible for maintaining a conformation of the human A3 AR
that was able to couple to G proteins.

In contrast to the very different values for specific constitutive activity for other ARs and
very different levels of receptor cell surface expression (24, 25), the basal IP accumulation
determined in transfected COS-7 cells was relatively uniform for most of the mutants
constructed in this study. Only three of the mutant ARs constitutively activated the
phospholipase cascade. The cAMP assay was generally consistent with the PLC assay,
except that the change in basal values by mutation was much larger than the change in basal
IP production, suggesting the cAMP pathway played a major role in the constitutive
activation of A3 ARs.

An Asn residue in TM1 is highly conserved within the GPCR family (26). In the α1B-
adrenergic receptor, the mutation of the Asn residue to an Ala was found to produce
constitutive activity (13). Mutation of the corresponding N30 to Ala in the A3 AR did not
lead to a constitutively active state of A3 ARs, suggesting that this residue probably does not
play as critical a role in the A3 AR as in the α1B adrenergic receptor. The initial finding that
mutation of Ala293 in the α1B adrenergic receptor by any other amino acid residue enhances
agonist-independent activity has led to the hypothesis that a number of residues play critical
roles in maintaining the receptor under an inactive conformation (18).

Only a limited, but increasing, number of mutant GPCRs have been found to be
constitutively active to date. Constitutively activity of various GPCRs has been intensively
studied through the mutation of residues in the DRY motif (TM3) (14, 25). It has been
demonstrated that various substitutions of R143 resulted in α1B adrenergic receptor mutants
having increased constitutive activity, impairment, or complete loss of receptor-mediated
response (13, 25). On the other hand, substitution in the positively charged R135 of the
DRY motif in rhodopsin has led to a mutant receptor totally impaired in receptor-G protein
coupling, although showing normal Gt binding (27). Thus, this highly conserved arginine
within the DRY motif plays an important role in the activation process of these receptors.
R108 of the A3 AR in the DRY motif of TM3 is equivalent to R143 in the α1B adrenergic
receptor, which was also demonstrated to play an important role in receptor activation.

The originally proposed ternary agonist-receptor-G protein complex theory (28), as well as
the allosteric ternary complex model (29), predicted that agonist binding increases binding
affinity of the G protein for the receptor and vice versa. As a consequence, CAM receptors
presumably simulate the agonist-activated state of the receptor and are likely to bind agonist
ligands with higher affinity, in a so-called "high affinity state." In accordance with this
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hypothesis, the three CAMs found in this study bound [125I]I-AB-MECA with affinity equal
to or greater than WT.

In conclusion, CAMs of the A3 AR have been constructed. The degree of constitutive
activation was more pronounced for the AC signaling pathway than for the PLC signaling
pathway. It is hoped that the further exploration of constitutive activity in ARs may help to
clarify the mechanisms of GPCR activation and highlight the specific agonist binding and
activation processes of A3 ARs.
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Table 1

Location of mutations in the TMs and detection by ELISA of HA-tagged A3 human A3 AR mutants expressed
on the surface of COS-7 cells. Data are presented as means ± standard deviation of eight independent
determinations.

Construct Location (TM.residue)a Expression (% of WT)c

N30A 1.50 110 ± 5

C88F 3.30 127 ± 18

D107N 3.49b 138 ± 32

D107K 3.49b 112 ± 16

D107R 3.49b 142 ± 39

R108K 3.50b 107 ± 5

R108A 3.50b 98 ± 4

R108N 3.50b 121 ± 23

R108E 3.50b 79 ± 26

R108H 3.50b 29 ± 22

Y109F 3.50b 137 ± 13

D107K/R108K 3.49/3.50b 133 ± 25

D107K/R108E 3.49/3.50b 126 ± 34

A229E 6.34 96 ± 7

Y282F 7.53 163 ± 41

a
using notation of van Rhee and Jacobson (26). Homologous sites in other GPCRs were mutated resulting in CAMs (13, 24, 25, 34, 35).

b
DRY motif.

c
Expression level as percentage of HA-tagged A3 WT (100 %).
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Table 2

Activation of PLC in WT and mutant human A3 ARs. Maximal IP values are expressed as percentage increase
above the basal levels of control IP formation set at 100% (n =3).

Construct EC50 (nM) Basal IP (% of WT) Max. IP (% above basal)

WT 951 ± 35 100 502 ± 32

N30A 1574 ± 116 95 ± 3 375 ± 76

C88F 39,300±1,700 104 ± 7 273 ± 25

D107N 1,690 ± 230 103 ± 28 453 ± 44

D107K 187 ± 23 87 ± 21 465 ± 53

D107R 1,420 ± 130 71±17 424 ± 41

R108K 341 ± 39 130 ± 15* 454 ± 63

R108A 37.5 ± 8.6 150 ± 18* 431 ± 56

R108N 1,860± 150 90 ± 9 387 ± 28

R108E 279 ± 56 99 ± 6 425 ± 53

R108H l,150 ± 110 88 ± 14 402 ± 52

Y109F 11,600 ± 400 106 ± 8 342 ± 23

D107K/R108K NA 102 ± 7 115 ± 16

D107K/R108E NA 89 ± 5 103 ± 13

A229E 25.6 ± 5.2 160 ± 17* 413 ± 47

Y282F 27,600 ± 2,300 94±11 287 ± 35

*
indicates constitutive activity, basal value significantly higher than WT (p < 0.05).

NA: no activation detectable for 100 µM Cl-IB-MECA
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Table 3

Agonist binding affinities determined in saturation and competition experiments and basal cAMP production
in COS-7 cells that express WT and mutant human A3 ARs (n = 3-4).

[125I]AB-MECA
(Kd. nM)

Cl-IB-MECA
(Ki binding, nM)

Basal cAMP
(pmol/ml)

WT 1.2 ± 0.2 3.8 ± 0.6 256 ± 32

N30A 9.8 ± 2.3 137 ± 46 232 ± 28

C88F 8.3 ± 2.1 53.6 ± 7.8 240 ± 44

D107N 0.55 ± 0.13 1.3 ± 0.4 248 ± 34

D107K 0.90 ± 0.24 2.1 ± 0.5 220 ± 30

D107R 0.86 ± 0.11 1.8 ± 0.3 216 ± 52

R108K 0.95 ± 0.08 4.1 ± 1.0 149 ± 42*

R108A 0.70 ± 0.12 0.9 ± 0.1 101 ± 22*

R108N 0.68 ± 0.07 2.4 ± 0.4 238 ± 50

R108E 0.86 ± 0.09 5.4 ± 0.8 232 ± 58

R108H 0.85 ± 0.14 3.7 ± 1.1 252 ± 39

Y109F   2.0 ± 0.21 17 ± 4.6 236 ± 48

D107K/R108K        a 224 ± 43

D107K/R108E        a 242 ± 32

A229E 0.64 ± 0.08 2.7 ± 0.4 69 ± 12*

Y282F   9.3 ± 2.7 33.6 ± 4.7 250 ± 48

a
specific binding of radioligand at 1 nM <20% of WT.

*
basal value significantly lower than WT (p < 0.05).
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