Skip to main content
. Author manuscript; available in PMC: 2014 Mar 1.
Published in final edited form as: Scand Stat Theory Appl. 2012 Jul 26;40(1):119–137. doi: 10.1111/j.1467-9469.2012.00795.x

Table 1.

Estimates of β, ψ and R2 and maximal values of the composite likelihoods CL1 and CL2. For each species, the first four rows in the last three columns correspond to the log linear model with Gaussian, Cauchy, Matérn and LG-Matérn covariance functions. The next four rows are for the additive model with the same covariance models. For LG-Matérn, abusing notation, ψ̂ denotes the parameter estimate for the covariance function of the Gaussian field Y. In the first column, the estimate ρ̂ is given by N(W)/|W|. The second column also shows estimates of σ^expZ2 and σ^Z2.

Species β̂1:2/CL1(β̂)
ψ^=(σ^02,η^,ν^)
CL2(ψ̂|β̂) – C R2
(0.02, 0.005) (13.7, 4.4, ∞) 27438.39 0.01
(11.9, 4.9, –) 28744.97 0.01
−4117.7 (8.5, 4.7, 0.69) 28507.05 0.01
Acalypha
σ^expZ2=0.13×106
(2.4, 5.6, 1.02) 28675.13 0.01

(15.5, 4.9)×10−6 (11.6×10−6, 4.1, ∞) 0 0.01
(8.1×10−6, 5.2, –) 1724.32 0.01
ρ̂ = 1056×10−6 −4119.7 (6.1×10−6, 5.8, 0.56) 1128.50 0.02
C = −6291053.0
σ^Z2=0.11×106
(6.1×10−6, 5.8, 0.56) 1128.50 0.02

(−0.03, −0.16) (1.1, 28.4, ∞) 82006.98 0.11
(1.8, 18.4, –) 82174.76 0.07
−6117.6 (2.0, 14.0, 0.65) 82326.85 0.06
Lonchocarpus
σ^expZ2=0.45×106
(1.1, 14.8, 0.86) 82344.08 0.06

(−38.2, −193.3)×10−6 (1.5×10−6, 36.6, ∞) 0 0.17
(2.1×10−6, 27.4, –) 934.78 0.12
ρ̂ = 1672×10−6 −6121.9 (2.8×10−6, 23.1, 0.41) 702.26 0.09
C = −6168628.5
σ^Z2=0.29×106
(2.8×10−6, 23.1, 0.41) 702.26 0.09

(0.03, 0.004) (0.25, 69.8, ∞) 5012.70 0.28
(0.43, 43.1, –) 5223.48 0.18
−19693.0 (0.76, 48.2, 0.22) 5342.78 0.11
Capparis
σ^expZ2=4.84×106
(0.59, 49.7, 0.26) 5361.99 0.11

(193.2, 24.8)×10−6 (10.0×10−6, 70.2, ∞) 0 0.29
(15.0×10−6, 48.7, –) 285.51 0.21
ρ̂ = 6598×10−6 −19700.1 (28.8×10−6, 51.6, 0.21) 466.02 0.12
C = −5089810.54
σ^Z2=4.06×106
(28.8×10−6, 51.6, 0.21) 466.02 0.12