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Abstract
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures
with components that have diverse carcinogenic potencies and mostly unknown interactive effects.
Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene
expression in the CYP1 family. To better understand and predict biological effects of complex
mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network
(FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription
in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy
subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting
Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of
skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene
(DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar
extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation.
Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC
treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but
did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to
increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no
effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was
determined to be the most significant input variable for model predictions using back-propagation
and normalization of FNN weights.
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Introduction
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent chemicals prevalent in
the environment as a result of geological processes and incomplete combustion of biofuels.
Although natural processes such as petroleum seepage and forest fires produce PAHs,
anthropogenic processes such as coal burning and oil spills have led to environmental PAH
concentrations significantly larger than naturally occurring levels (Zhang and Tao, 2009).
Benzo[a]pyrene (BaP) and dibenzo[def,p]chrysene (DBC) are classified by the International
Agency on Cancer Research (IARC) as known or probable human carcinogens, respectively,
and induce carcinogenesis in lung, liver, thymus, prostate and skin (IARC, 2010). To date,
more than 100 PAHs have been identified in the atmosphere (Schauer et al., 2003) with a
wide range of carcinogenic potencies.

The first study linking PAH exposure with cancer was performed by Percival Pott in 1775,
noting the prevalence of scrotal (skin) cancer in chimney sweeps. Although environmental
PAH mixtures such as soot have long been considered carcinogenic, variability in PAH
mixture composition, depending on the organic source, combustion temperatures, age, and
surrounding environment (Moldoveanu, 2010), have made understanding and regulating
PAH exposures difficult. Today skin cancer remains prevalent throughout society, being the
highest diagnosed cancer in the United States2. Melanoma skin cancer was responsible for
an estimated 8800 deaths in the US in 2011 (Siegel et al., 2011), and melanoma as well as
non-melanoma skin cancer incidence is increasing both in the US and worldwide (Siegel et
al., 2011; Lomas et al., 2012). A large percentage of these cancers are due to UV exposures
but PAHs may play a contributory role (Burke and Wei, 2009; Toyooka et al., 2006).

Current methods for environmental PAH mixture risk assessment involve the calculation/
estimation of relative potency factors (RPFs). Individual PAHs are assigned a potency value
based on carcinogenic potential relative to the most well studied PAH, BaP, and the RPFs of
all components (with a designated RPF) within a mixture are summed to determine the
potency of the mixture as a whole (Damon, 1997). RPFs provide a clear, transparent method
for risk assessment, at the cost of assuming a common mechanism of action (MOA) and no
interactions between mixture components.

Recent studies in our laboratory utilizing a mouse two-stage skin tumor model have shown
that RPFs grossly underestimate the carcinogenicity of dermal exposure to DBC or mixtures
containing CTE (Siddens et al., 2012). These studies also raise questions regarding possible
alternative MOAs for DBC exposures in contrast to BaP, and have demonstrated interactive
effects occurring at the gene expression level for genes relevant to well-known BaP MOAs,
including Cyp1b1.

BaP and many other high molecular weight PAHs have three well-known MOAs (Cavalieri
and Rogan, 1995; Penning et al., 1999): 1) single electron oxidation by peroxidases, creating
BaP radical cations capable of binding to and depurinating DNA, 2) Production of reactive
oxygen species and electrophilic DNA-binding quinones through aldoketo reductase (AKR)-
mediated catechol formation and subsequent electron redox cycling and 3) formation of (±)-
syn/anti-BaP-7,8-dihydrodiol-9,10-epoxide (BaPDE) isomers that form covalent DNA

2Reports of skin cancer incidence do not distinguish between UV-induced and chemical-induced carcinogenesis
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adducts . CYPs in the 1 family (1A1, 1B1, 1A2) play a critical role in bioactivation of high
molecular weight PAHs such as BaP: redox cycling and BaPDE pathways are dependent on
CYPs for activation of the parent BaP compound through epoxygenation at the 7,8 position
and further BaPDE formation by CYP epoxygenation across the 9,10-double bond.

mRNA expression of several CYP1 isoforms, including CYP1A1, CYP1A2, and CYP1B1,
are induced by high molecular weight PAHs through aryl hydrocarbon receptor (AhR)
activation (Fujii-Kuriyama and Mimura, 2005; Lin et al., 2003). The AhR pathway and
corresponding CYP1B1 up-regulation requires a number of co-activators and co-repressors,
including heat shock protein 90 (HSP90), aryl hydrocarbon receptor nuclear translocator
(ARNT), and aryl hydrocarbon receptor repressor (AhRR), contributing to the regulation of
AhR-mediated CYP1 expression (Hosoya et al., 2008; Hahn et al., 2009). Previous studies
investigating exposures to environmental PAH mixtures and binary PAH combinations have
demonstrated synergistic cyp1b1 and cyp1a1 induction in zebrafish (Billiard et al., 2006;
Timme-Laragy et al., 2007) and Cyp1b1 and Cyp1a1 induction in dermally PAH-treated
mice (Courter et al., 2007a). Our laboratory previously observed highly distinct gene
signatures for several Phase I and II metabolizing enzymes, including differential regulation
of Cyp1a1 and Cyp1b1, in mouse skin after initiation with PAHs and environmental PAH
mixtures suggesting that these enzymes and associated pathways may be important for the
carcinogenic potential of PAHs (Siddens et al, 2012). Despite the importance of CYP1 in
PAH mixture carcinogenesis, currently accepted methods based on RPFs cannot predict
PAH-mediated perturbations of CYP1 gene expression. The ToxCast and Tox21 programs
were created by the Environmental Protection Agency, National Institutes of Health, and
other federal agencies in recognition of the limitations of current RPF methods and the need
to develop high throughput in vitro and in silico methods to predict potential toxicity of
chemicals and chemical mixtures. ToxCast efforts have resulted in a number of first
generation pathway-level predictive models for high-throughput screening of single
chemical exposures (Abdelaziz et. al, 2012, Sipes et. al, 2011). Currently, however, there are
still no known quantitative prediction models which can account for non-interactive effects
within chemical mixtures (Altenburger et. al, 2012).

We created a fuzzy neural network (a neural network model with layers consisting of fuzzy
logic mathematical operations) for utilizing gene expression patterns and applied it in
predicting quantitative changes in CYP1B1 expression in human skin as a function of PAH
mixture composition. The model was trained and evaluated using microarrays of dermal
RNA from mice treated with PAH mixtures, in which the microarray data set was
partitioned into training sets consisting of n-1 treatment groups and testing data sets
consisting of the treatment groups excluded from the training process. Based on the initial
findings, we conclude that neural network modeling, when coupled with fuzzy logic
mathematics and constructed using logic functions, may be useful in predicting interactive
effects of PAH, or other environmental, mixtures on gene expression.

Materials and methods
BaP and DBC were handled in accordance with National Cancer Institute (NCI) guidelines.
All pure PAHs and mixtures were prepared under UV depleted light.

Chemicals
Coal tar extract (CTE) SRM 1597a was purchased from the National Institute of Standards
and Technology (NIST) (Gaithersburg, MD), and was concentrated to 10 mg/ml by
evaporation under nitrogen. Diesel exhaust particulate matter (SRM 1650b) was also
purchased from the NIST. Two hundred mg of diesel particulate were extracted into 200 ml
dichloromethane using a Soxhlet Apparatus at 40° C for 24 h. Dichloromethane extract was
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concentrated, exchanged into toluene, and evaporated under a stream of nitrogen gas to a
final volume of 10 ml. Cigarette smoke condensate (CSC) (40 mg/ml in DMSO) was
generously provided by Dr. Hollie Swanson (University of Kentucky, Lexington, KY). The
CSC was evaporated using a speed vac centrifuge and diluted to 40 mg/ml and 5% DMSO
in toluene. BaP and DBC were purchased from Midwest Research Institute, Kansas City,
MO. Dichloromethane, toluene, acetone, and DMSO were purchased from Fisher Scientific
(Pittsburgh, PA). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO).
An aliquot of diesel particulate extract (DPE) was diluted into vehicle (toluene containing
5% DMSO) to create a 5 mg/mL solution designated as PAH mixture 1 (Mix 1). PAH
mixture 2 (Mix 2) consisted of 5 mg/ml DPE and 5 mg/ml CTE diluted in vehicle, while
PAH mixture 3 (Mix 3) consisted of 5 mg/ml DPE, 5 mg/ml CTE, and 10 mg/ml CSC in
vehicle.

Mouse dermal treatment
All procedures were conducted according to National Institutes of Health guidelines and
were approved by the Oregon State University Animal Care and Use Committee. Six week
old female FVB/N inbred mice were obtained from NCI-Frederick, Frederick, MD, and
housed four mice per cage in micro ventilated racks. Mice were on a 12 h light/dark cycle,
22°C, 40–60% humidity and fed AIN93-G pellets (Research Diets, Inc., New Brunswick,
NJ) for 10 days. At 7.5 weeks mice were shaved on the dorsal side from the front shoulders
to tail and observed for 48 h in order to confirm hair of mice were in the resting phase of
growth. Treatments were delivered by pipetting 200 µl of the designated treatment evenly
over the shaved area according to the dosing scheme shown in Supplemental Table 1. Mice
were euthanized 12 h post-treatment using CO2 and cervical dislocation. Dermal and
epidermal layers of the shaved area were excised and snap frozen in liquid nitrogen for RNA
extraction.

Dermal RNA extraction
One cm2 subsections of the frozen skin were homogenized in 2 ml Trizol® Reagent (Life
Technologies, Carlsbad, CA), using 15 mL disposable conical homogenizers (VWR
International, West Chester, PA). RNA isolation was performed according to commercial
protocol. RNA was further purified using QIAGEN RNeasy mini prep kit according to
protocols provided by the manufacturer (RNeasy Miniprep kit, Qiagen, Valencia, CA).
Nucleic acid purity and concentrations were determined using Nanodrop spectrophotometry
(Thermo Fisher Scientific, Waltham, MA), and Agilent Bioanalyzer (Santa Clara, CA)
analysis, respectively. Samples with A260/280 ratios of 1.9–2.2 and RNA integrity numbers
6.5 or greater were selected for microarray analysis.

Microarray analysis
Individual mouse dermal samples were analyzed by Agilent microarray after initiation with
PAHs (N=4 biological replicates, Supplemental Table 1) or toluene control (N=5 biological
replicates) as previously described (Siddens et al, 2012). Briefly, the RNA was labeled with
Agilent’s 2 color Quickamp kit for hybridization to the Agilent 8 X 60K mouse array. Raw
intensity data were quantile normalized by RMA summarization (Bolstad et al., 2003) and
subject to pairwise analysis of variance (Kerr et al., 2000) with Tukey's post hoc test and 5%
false discovery rate calculation (Benjamini and Hochberg, 1995). Raw and normalized
Agilent data files are available online at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE39455. Microarrays results were confirmed using RT-qPCR on a subset of genes
with decreased, increased, and no significant change in expression levels relative to control
(Supplemental Figure 1).
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Model inputs
To develop a model for quantitative prediction of CYP1B1 expression in skin as a function
of PAH mixture composition, a list of candidate input genes were identified by searching
Pubmed and Google Scholar databases for genes involves in the epithelial perturbation of
human/murine CYP1B1/Cyp1b1, and Cyp1a1/Cyp1a1. The list of genes was filtered to a
short list of candidate input genes from the microarray analysis reported in Siddens et al.,
(2012) The 11 candidate genes from the microarray analysis selected for model inputs are
summarized in Table 1.

Model structure
Traditional neural networks have unconstrained connections between nodes in adjacent
layers. Unconstrained network structures allow for mathematical optimization during model
training, but are considered to be “black boxes” due to the inability to interpret functionality
of the network in a manner that provides insight into the process that is being modeled. The
connections between nodes in our FNN were constrained so that each connection has a well-
understood statistical or biological meaning related to the Cyp1b1 pathway. Model input
genes and corresponding Cyp1b1 values (Table 1) for samples in each training data set were
used to construct the neural network structure prior to model training and testing. The neural
network structure consisted of 5 layers (Fig. 1). The first layer consisted of the model input
gene values. The second layer consisted of gene expression values that were transformed
using fuzzy logic into low, medium, and high fuzzy subsets with membership values defined
by Gaussian membership functions:

Eq. 1

Eq. 2

Eq. 3

where X is the calculated fuzzy subset value and input is the corresponding gene input value
(Fig.2). The low, medium, and high fuzzy logic subsets are related to the likelihood that a
gene expression level is below, at, or above a control treatment group given the observed
expression level observed in the microarrays. Transforming gene expression levels into
fuzzy membership subsets helps prevent model overtraining, reduces model sensitivity to
inaccurate input expression levels, and allows the user to account for uncertainty by altering
the scale parameter of the Gaussian distribution functions. A matrix consisting of all
combinations of low, medium, and high fuzzy subsets with membership values greater than
0.1 for input genes and Cyp1b1 was constructed, and combinations were partitioned based
upon the Cyp1b1 subset (matrices which contained fuzzy subsets with membership values
less than 0.1 were not included to reduce processing time). Combinations within each
partition were then sorted using k-means clustering (5 clusters per partition). Each cluster
was then transformed into a Mamdani logic function, or “If-Then” rule (Mamdani, 1977) for
predicting low, medium, or high Cyp1b1 expression levels. Rules were created using the
most common fuzzy subset within a cluster for each input gene and Cyp1b1 gene The third
layer of the FNN is comprised of the Mamdani If-Then rules, with one node for each rule.
The fourth layer of the FNN consist of the low, medium, and high Cyp1b1 predicted
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expression levels predicted by the If-Then rules in the third layer of the network. The low,
medium, and high Cyp1b1 predictions in the fourth layer were combined or defuzzified into
a single quantitative value of Cyp1b1 expression by applying the inverse of the respective
membership functions. The predicted Cyp1b1 expression is the fifth and final layer of the
network. For a more thorough review of neural network structure design, see the review by
Lee (1990).

Model Training and evaluation
Model training was performed using MATLAB version 2011B with Neural Network
Toolbox algorithms (“train” command using Quasi-Newton formula for minimizing means-
squared error). Connections between the first and second and fourth and fifth layers were
fixed with weight values equal to corresponding fuzzy subset membership values. Model
training was performed using leave one out cross-validation (LOOCV). A data set is
partitioned into a training data set consisting of n-1 treatment groups and a validation data
set consisting of the treatment group excluded from the training data (Agrafiotis et al., 2002,
Lek and Guégan, 1999). Percent relative contribution of each input gene, also referred to in
neural network literature as relative importance or percent influence, towards prediction of
low, medium, and high dermal Cyp1b1 expression was determined through back-calculation
of the neural network connection weights followed by unbiased multi-model averaging and
percent normalization to average (mean) gene contribution (9.09%) (Garson, 1991,Vasilakos
et al., 2009).

The FNN was evaluated by first comparing the qualitative and quantitative predictive
capabilities of the model to microarrays of treatment groups excluded from the training
process using LOOCV. The structure of the model was then evaluated by comparing If-Then
rules to Cyp1b1 expression levels in treatment groups included in the training data set: If-
Then rules for predicting high and low Cyp1b1 expression would be ideally based upon
samples in the training data set with Cyp1b1 expression levels above and below control,
respectively. The model’s ability to identify and emphasize which input genes are most
important for low, medium, and high Cyp1b1 expression was then evaluated by calculating
the relative influence of each input gene on model predictions for low, medium, and high
Cyp1b1 expression, and comparing the importance of the genes most influential in model
predictions to their relative importance in the biological pathway of Cyp1b1 transcriptional
regulation. Lastly, the efficacy of the genes selected for input in capturing Cyp1b1
transcriptional regulation was evaluated repeating the LOOCV studies using three
permutations of randomly selected genes as model inputs for comparing predictive
capabilities of models with an expert selection of inputs to models with randomly selected
inputs.

Results and Discussion
This study develops an FNN model that can be applied to quantitative prediction of Cyp1b1
enzyme expression from environmental PAH mixtures in support of Tox21 and ToxCast
efforts to create in vivo and in silico toxicological methods for the 21st century. Our lab
previously observed complex effects of PAH mixture exposures in CYP activity and
CYP1B1 expression (Courter et al, 2007b) in human cell cultures, as well as Cyp1a1 and
Cyp1b1 protein and activity levels in dermally treated mice (Courter et al, 2007a). Recent
studies in our lab have also demonstrated distinct differences in the carcinogenic potency of
PAHs and environmental PAH mixtures in mouse skin that are not predicted by RPF values
alone (Siddens et al, 2012). To further investigate the Cyp1b1 pathway, we applied a multi-
layer fuzzy neural network model to predict quantitative changes in Cyp1b1 expression as a
function of PAH mixture composition.
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The primary purpose of fuzzy logic or fuzzy expert systems is to evaluate measurements or
other quantitative values in a manner similar to the evaluation process performed by an
individual with expert knowledge of the system of interest (Leondes, 1998). A fuzzy logic
program evaluating the influence of co-activators or co-repressors on a transcription factor
of interest, for example, would use documented network pathways, rules defined from
observations of previous studies, and/or high quality data sets to predict how changes in the
co-activators or co-repressors would change transcription factor activity (Pham and Liu,
1995). Fuzzy logic systems categorize, or fuzzify, quantitative values, similar to the
categorization process performed by scientists when interpreting experimental results. Gene
expression levels after chemical treatment, for example, are fuzzified into categories, called
fuzzy subsets, such as low, medium, or high tumor potency for chemical mixtures relative to
a control group.

Distribution functions such as the normal or Gaussian distribution are used to determine the
value assigned to a fuzzy subset based upon the likelihood that a particular value for a given
observation falls within the fuzzy subset category. Assigning values to fuzzy subsets allows
the system to retain the quantitative information in a data set, which can be used to defuzzify
system outputs (using the mathematical inverse of the distribution function used for
fuzzifying inputs) in order to attain quantitative outputs. Incorporating fuzzy logic
operations into neural networks allow network properties such as layer connections and
weights to be defined based on known or observed correlations between selected variables
rather than by mathematical optimization, which in turn facilitates comparisons between the
behaviors of the neural network and the systems of interest (Halgamuge and Glesner, 1994).

Cyp1b1 prediction in individual treatment groups
Overall, the FNN model accurately predicted Cyp1b1 expression for each PAH treatment
group, including the three environmental PAH mixtures. Model predictions, corresponding
microarray observations, and the root mean squared error (RMSE, the square root of the sum
of the difference between predicted and observed expression levels for all samples in a
treatment group divided by the number of samples in the treatment group) are listed in Table
2. Average model predictions are within one log2- fold unit change of microarrays for all
treatment groups except for DBC, where the model correctly predicted the unexpected result
of DBC differing from the other treatment groups although to a greater extent (−1.34 fold-
change (Log2) predicted compared to −0.28 fold-change (Log2) actual). RMSEs range from
0.36–1.16 log2-fold change units. Treatment groups with the smallest standard deviations in
microarray expression levels are associated with the smallest RMSEs (Mix1 and Mix2,
respectively), whereas treatment groups with the largest microarray SDs also produced the
largest RMSEs (Mix3 and DBC, respectively). Model error appears to be associated with
variances in treatment effects, and treatment groups which have large variances in dose-
response may require larger training data sets.

The discrepancy in magnitude between model predictions and microarray observations for
DBC treatment can be partly attributed to differences between induction, steady-state level,
and repression of Cyp1b1 expression. Cyp1b1 transcriptional regulation is dynamic. The
interactions between regulatory proteins change when Cyp1b1 transcriptional regulation
shifts between repressed, steady-state, and induced expression. As a consequence regulation
of Cyp1b1 gene expression should be viewed as a function with non-identical parameters for
up and down-regulation. Using leave one out cross-validation, the FNN created rules for
predicting Cyp1b1 following DBC treatment using BaP, Mix 1, Mix 2, and Mix 3 treatment
groups, in which Cyp1b1 was induced. Therefore the FNN was unable to create If-Then
rules for low Cyp1b1 prediction and rules for medium Cyp1b1 prediction were based
exclusively on induced Cyp1b1 samples. Without gene expression profiles of treatment
groups with steady-state or repressed Cyp1b1 expression, the FNN extrapolated based on
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induced Cyp1b1 samples, to predict the effects of DBC treatment on Cyp1b1 expression,
levels lower but not significantly less than control (p=0.05). Successful quantitative
prediction of induced Cyp1b1 along with unsuccessful prediction of non-induced Cyp1b1
expression suggests that Cyp1b1 induction and repression are not mirror images of each
other. For that reason, quantitatively predicting the entire range of Cyp1b1 expression
requires including samples with down-regulated and steady-state as well as up-regulated
Cyp1b1 expression in the training set. The lack of If-Then rules for low Cyp1b1 prediction
when DBC is excluded from the training data set and the abundance of If-Then rules for
high Cyp1b1 prediction suggest that the model correctly identifies which samples are
appropriate for developing rules to predict low, medium, or high Cyp1b1. Future models
which include down-regulated and steady-state Cyp1b1 samples in the training data set are
more likely to accurately predict Cyp1b1 expression after DBC treatment.

Model predictions for up-regulated treatments are all closer to control than microarray
observations (bias towards the null hypothesis). Gaussian distribution functions with two or
more parameters belong to the location-scale family of distribution functions. The scale
parameter of the medium fuzzy logic membership function is larger than the low and high
membership functions (7.5, 5, and 5, respectively). The larger scale parameter value adds
bias towards greater influence from the medium subset. Similarly, defuzzifying low,
medium, and high Cyp1b1 subsets is biased towards greater influence from the medium
subset. Bias was intentionally added in order to prevent over-fitting during model training,
as well as to structure model evaluation and interpret results from a null hypothesis
paradigm. Adopting a null hypothesis viewpoint allows results to be better compared and
integrated with scientific studies, and to have greater confidence in predictions of adverse
biological responses at the cost of diverting from current risk assessment paradigms favoring
the precautionary principle, or bias towards overestimation of responses for the purposes of
protecting sensitive members of the population.

Cyp1b1 prediction in adding multiple PAH sources
Comparing the addition of PAH mixtures, in which Mix 2 contains CTE added to Mix 1,
and Mix 3 contains CSC added to Mix 2, model predictions are in agreement with
microarray results, in which adding CTE increases and adding CSC does not increase
Cyp1b1 expression (Table 2). The inverse also applies, in which model predictions of
subtracting CSC from Mix 3 and subtracting CTE from Mix 2 are in agreement with
microarrays. Model predictions of adding or subtracting PAH sources can supplement
current statistical efforts of capturing PAH effects by establishing PAH gene expression
signatures of complex mixtures, then using sufficient similarity to predict how deviations in
composition from the well-studied mixtures correlate to differences in biological responses.

Comparison between expertly selected and randomly selected gene inputs
As mentioned above, expert systems are designed to evaluate measurements in a manner
similar to an individual with expert knowledge in the subject. As described in the methods
section, the structure of our expert system is derived from the relationship between genes
involved in epithelial Cyp1b1 transcriptional regulation and Cyp1b1 gene expression. If the
model is properly structured, connections between network layers and network nodes will
capture the relationships between input genes and Cyp1b1 expression. A properly structured
expert model should therefore provide more accurate predictions of Cyp1b1 expression
compared to models that are structured and trained with a random selection of genes. Figure
3 shows Cyp1b1 expression predicted from models with random gene inputs (described in
Supplemental Table 2) compared to those with expertly selected gene inputs (from Table 1).
For most of the PAH treatment scenarios, the Cyp1b1 expression predicted by the expertly
selected gene inputs most closely followed the actual Cyp1b1 expression patterns from the
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microarray analysis providing validation for the expert-driven approach. Differences
between prediction and microarray expression levels were greater for models with random
inputs for all treatment groups with the exception of DBC, where two of the three models
with random inputs predicted mean Cyp1b1 levels closer to microarrays than the expert
selection model, albeit with large standard errors in model predictions. As discussed above,
this is likely due to the lack of data available for prediction of low Cyp1b1 expression (or
down-regulation) in the testing and training of the FNN model.

Relative percent weights of input genes
Relative percent weights of input genes are shown in Figure 4 for low, medium, and high
Cyp1b1 prediction. Ahrr has the largest relative percent weight across all three Cyp1b1
fuzzy subsets, suggesting that Ahrr is a better indicator than Ahr of changes in Cyp1b1
expression at the sample time point (12 h). Cyp1b1 levels are more strongly correlated with
Ahrr than Ahr in the microarrays (0.92 and −0.74, respectively), supporting the model’s
decision to rely on Ahrr more than Ahr for predicting Cyp1b1 expression. Understanding the
importance of selecting Ahrr over Ahr from a biological context requires a closer look at the
AhR signaling pathway. As described in the introduction section, Ahrr gene expression is
induced by Ahr/Arnt binding to xenobiotic response elements (XREs), and Ahrr
heterodimerizes with Arnt, competitively inhibiting Ahr/Arnt XRE activation (Kawajiri and
Fujii-Kuriyama, 2007). By emphasizing Ahrr over Ahr, the FNN is hypothesizing that at 12
hours post-initiation Cyp1b1 expression is more closely related to Ahrr than Ahr, further
hypothesizing that Cyp1b1 inhibition at 12h is predominant over Cyp1b1 induction, and
Cyp1b1 levels are in general decreasing. Studies investigating AhR induction in cultured
cells have demonstrated peak nuclear localization of Ahr 1–2 h after TCDD exposure
(Pollenz, 2002) and peak expression levels of reporter genes (100-fold induction) 5 h post
TCDD exposure (Fujii-Kuriyama and Mimura, 2005), supporting the model-generated
hypothesis of Cyp1b1 transcriptional regulatory network status. Ahr microarray expression
levels are lower than control for all treatment groups with up-regulated Cyp1b1, again in
agreement with the model-generated hypothesis. The importance of Ahrr in regulating Ahr-
mediated Cyp1 expression has been previously shown using knockout mice as Ahrr-
deficient mice exhibited higher levels of Cyp1a1 expression compared to wild type after
exposure to BaP (Hosoya et al., 2008).

Applications toward Risk Assessment
Risk assessment methods using RPFs assume interactions between mixture components are
strictly additive. The published RPFs for the individual PAHs and mixtures used in this
study are 100, 36, 0.004, 0.34 and 0.47 for BaP (100 µg dose), DBC, and mixtures 1, 2 and
3, respectively (Supplemental Table 1 and Siddens et al., 2012). Comparing the effects of
BaP, DBC, Mix 2 and Mix 3, it is apparent that the RPF but does not correlate will with
Cyp1b1 expression. RPFs do not have a well-defined method for including effects of non-
PAH components present within a mixture, such as heavy metals, non-PAH urban air
particulate matter, or for the effects of PAH components that are non-carcinogenic but may
impact the potency of carcinogenic PAHs. Sufficient similarity is another potential method
that has been proposed for risk assessment. Sufficient similarity involves evaluating the
toxicity of mixtures with complex but well-defined compositions, and using the well-defined
mixtures to predict toxic effects of other mixtures with similar compositions. FNN modeling
can enhance both RPF and sufficient similarity risk assessment methods by predicting the
effects of mixture components suspected to have non-additive interactions or predicting
combinatory effects with metals and other non-PAH components and PAH mixtures. In the
case of sufficient similarity, FNNs can consider a well-defined mixture as a single mixture
and evaluate how adding or subtracting other components will change mixture effects,
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similar to comparing the effects of adding/subtracting CSC to/from Mix 2/Mix 3 or adding/
subtracting CTE to/from Mix 1/Mix 2 from the microarray data mentioned above.

FNNs can be used to identify the best selection of genes to include in Tox screens for
quantitative MOA modeling approaches. Our FNN model hypothesizes that Ahrr is a greater
predictor than Ahr of PAH mediated Cyp1b1 induction in mouse skin at 12h post-exposure.
ToxCast reference databases include a number of assays which screen for human AhR, but
as of yet none of these high-throughput assays include AhRR. If the role of human AhRR is
similar to Ahrr in mice, then the inclusion of AhRR in future ToxCast assays may be
necessary for quantitatively predicting the effects of chemical combinations that perturb
pathways associated with AhR activation.

Model limitations
Expert systems such as FNN, are dependent on accurate, previously obtained knowledge of
the system of interest, and are consequently limited in scope compared to other array
approaches such as modern quantitative structure activity relationship (QSAR) models. The
advantage to using expert systems is the ability to predict outcomes at a quantitative level,
which is an essential component for a high-throughput in silico based approach for
predicting interactive effects of numerous chemical mixture combinations, as desired by the
ToxCast and Tox21 programs. Expert systems are therefore not a replacement for
transcriptome-wide pathway approaches, but rather a complement which allow scientists to
quantitatively model known MOAs.

Current model predictions are based on microarray data from whole dermal samples
collected from mice. Mouse and human skin tissues have several distinct morphological
differences, including differences in epidermal thickness, densities of follicular hairs cells as
well as melanocytes and inter-species differences in enzymatic activities. Nevertheless, the
two-stage mouse skin tumor model has been used extensively for a number of years as a
model for human skin cancer (reviewed in Di Giovanni, 1992; Yuspa and Poirier, 1988).
Mouse microarrays were used for model assessment because the additive PAH dosing
scheme provided the opportunity to compare model predictions and microarray
measurements of gene expression for adding PAH mixtures. The model structure is not
species-specific and can be adapted to other model systems such as zebrafish, human cell
cultures, and human skin.

Our microarray data and model predictions evaluated Cyp1b1 expression at a single time
point post treatment, 12 h. This time point was selected based on previous studies suggesting
DNA adducts in murine epithelial tissue peaks at 12 h (Marsten et al., 2001). Time intervals
for peak PAH metabolism and CYP1B1 expression in human keratinocytes and other human
skin cells are currently unknown and could vary depending on exposure conditions, such as
single vs. repeated dosing interactions or non-PAH components during co-exposures
(Courter et al., 2007b). Previous work by our laboratory and others suggests, that Cyp1b1
expression is important in PAH (including DBC) carcinogenesis (Buters et al., 1999; 2002;
Castro et al., 2008; Uno et al., 2006). The potency of DBC as a skin carcinogen in mouse
seems to be inconsistent with DBC down-regulation of Cyp1b1 mRNA. Tumorigenesis is a
complex process, and we agree that analysis of a single pathway or mechanism of action is
insufficient to predict all of the ways in which a chemical or chemical mixture may
contribute to tumor initiation, promotion, and progression. FNN analysis is not limited
solely to the Cyp1b1 pathway. This model can be used to predict responses that may occur
in numerous pathways or mechanisms of interest. The reason for focusing on a single
transcriptional regulatory network in the paper is to provide a clear example of FNN
analysis in a pathway that is relevant to PAH-mediated carcinogenesis and is well-known to
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most readers. Future studies including multiple time points would capture the temporal
nature of gene regulatory processes and strengthen the predictions made by the algorithm.

The model has only been tested with mixtures that follow an S-shaped dose response curve,
in which increased PAH concentrations produced non-linear increases in gene expression.
The advantage to using a FNN in contrast to a traditional regression model is the ability to
capture complex behavior such as feedback loops. FNNs therefore have the potential to
model complex dose responses such as U-shaped dose response curves, but this ability has
not yet been tested. Predicting complex dose-responses such as U-shaped curves would
require larger training data sets than the data set used in this paper for predicting S-shaped
dose responses.

As with any computational or mathematical model, the accuracy of model predictions are
limited by the ability of a data set to capture the relevant information about the population of
interest: models based on incomplete data, such as missing time points or concentrations, or
data which has lost relevant information during sample and/or data processing are less likely
to accurately simulate or predict conditions in the system of interest.

Conclusions
A Fuzzy Neural Network model was developed and evaluated for predicting PAH mixture-
mediated perturbations of the dermal CYP1B1 transcriptional regulatory network. The
model was evaluated with microarrays of RNA from FVB/N mice dermally treated with
environmental PAH mixtures using leave one out cross-validation. Model predictions were
within 1 log2 fold change unit of the microarrays for all treatment groups with the exception
of DBC, where the unexpected down-regulation was predicted but failed to reach statistical
significance on the microarray. Model predictions of adding coal tar extract (increase in
Cyp1b1) or cigarette smoke condensate (no increase in Cyp1b1) to existing PAH mixtures
were in agreement with microarray data. Ahrr greatly influenced model predictions. Further
development of Fuzzy Neural Networks can supplement sufficient similarity or component-
based risk assessment methods by integrating early, sensitive, and robust biological
responses capable of capturing PAH interactive effects into the risk assessment process.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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CYP cytochrome P450

FNN fuzzy neural network

DBC dibenzo[def,p]chrysene

BaP benzo[a]pyrene

DPE diesel particulate extract

CTE coal tar extract

CSC cigarette smoke condensate

AhR aryl hydrocarbon receptor

AhRR aryl hydrocarbon receptor repressor

ARNT aryl hydrocarbon receptor nuclear translocator

BaPDE B[a]P-7,8-dihydrodiol-9,10-epoxide

HSP90 heat shock protein90

References
Abdelaziz A, Shushko I, Wolfram T, Körner R, Novotarskyi S, Tetko IV. QSAR modeling for In vitro

assays: linking ToxCast™ database to the integrated modeling framework “OCHEM”. J Chem. Inf.
2012; 4:62.

Agrafiotis DK, Cedeno W, Lobanov VS. On the use of neural network ensembles in QSAR and QSPR.
J. Chem. Inf. Comput. Sci. 2002; 42:903–911. [PubMed: 12132892]

Altenburger R, Scholz S, Mechthild S, Busch W, Escher BI. Mixture toxicity revisisted from a
toxicogenomic perspective. Environ. Sci. Technol. 2012; 46:2508–2522. [PubMed: 22283441]

Baird WM, Hooven LA, Mahadevan B. Carcinogenic aromatic hydrocarbon-DNA adducts and
mechanism of action. Environ. Mol. Mutagen. 2005; 45:106–114. [PubMed: 15688365]

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. Roy. Statist. Soc. Ser. B. 1995; 57:289–300.

Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT. The role of the aryl
hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic
aromatic hydrocarbons to zebrafish. Toxicol. Sci. 2006; 92:526–536. [PubMed: 16687390]

Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19:185–193.
[PubMed: 12538238]

Burke KE, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol. Ind. Hlth. 2009;
25(4–5):219–224.

Buters JT, Mahadevan B, Quintanilla-Martinez L, Gonzalez FJ, Greim H, Baird WM, Luch A.
Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyrene-induced tumor formation.
Chem. Res. Toxicol. 2002; 15:1127–1135. [PubMed: 12230405]

Buters JT, Sakai S, Richter T, Pineau T, Alexander DL, Savas U, Doehmer J, Ward JM, Jefcoate CR,
Gonzalez FJ. Cytochrome P450 CYP1B1 determines susceptibility to 7,12-
dimethylbenz[a]thracene-induced lymphomas. Proc. Natl. Acad. Sci. (USA). 1999; 96:1977–1982.
[PubMed: 10051580]

Castro DJ, Baird WM, Pereira CB, Giovanini J, Löhr CV, Fischer KA, Yu Z, Gonzalez FJ, Krueger
SK, Williams DE. Fetal mouse Cyp1b1 and transplacental carcinogenesis from maternal exposure
to dibenzo(a,l)pyrene. Cancer Prev. Res. 2008; 1:128–134.

Cavalieri EL, Rogan EG. Central role of radical cations in metabolic activation of polycyclic aromatic
hydrocarbons. Xenobiotica. 1995; 25:677–688. [PubMed: 7483666]

Larkin et al. Page 12

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Courter LA, Musafia-Jeknic T, Fischer K, Bildfell R, Giovanini J, Pereira C, Baird WM. Urban dust
particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1.
Toxicol. Sci. 2007a; 95:63–73. [PubMed: 17060372]

Courter LA, Pereira C, Baird WM. Diesel exhaust influences carcinogenic PAH-indued genotoxicity
and gene expression in human breast epithelial cells in culture. Mut. Res. 2007b; 625:72–82.
[PubMed: 17612574]

Damon DA. Toxic equivalency factor approach for assessment of polycyclic aromatic hydrocarbons.
Toxicol. Environ. Chem. 1997; 64:81–108.

DiGiovanni J. Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 1992; 54:63–128. [PubMed:
1528955]

Fujii-Kuriyama Y, Mimura J. Molecular mechanisms of AhR functions in the regulation of
cytochrome P450 genes. Biochem. Biophys. Res. Commun. 2005; 338:311–317. [PubMed:
16153594]

Garson GD. Interpreting neural-network connection weights. AI expert. 1991; 6:46–51.

Hahn ME, Allan LL, Sherr DH. Regulation of constitutive and inducible AHR signaling: complex
interactions involving the AHR repressor. Biochem. Pharmacol. 2009; 77:485–497. [PubMed:
18848529]

Halgamuge SK, Glesner M. Neural networks in designing fuzzy systems for real world applications.
Fuzzy Set. Syst. 1994; 65:1–12.

Hosoya T, Harada N, Mimura J, Motohashi H, Takahashi S, Nakajima O, Morita M, Kawauchi S,
Yamamoto M, Fujii-Kuriyama Y. Inducibility of cytochrome P450 1A1 and chemical
carcinogenesis by benzo[a]pyrene in AhR repressor-deficient mice. Biochem. Biophys. Res.
Commun. 2008; 365:562–567. [PubMed: 18022386]

IARC. Some non-heterocyclic polycyclicaromatic hydrocarbons and some related exposures.
Monographs on the evaluation of carcinogenic risks to humans Lyon, France. 2010. [http://
monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf].

Kawajiri K, Fujii-Kuriyama Y. Cytochrome P450 gene regulation and physiological functions
mediated by the aryl hydrocarbon receptor. Arch. Biochem. Biophys. 2007; 2:207–212. [PubMed:
17481570]

Kerr MK, Martin M, Churchill GA. Analysis of variance for gene expression microarray data. J.
Comput. Biol. 2000; 7:819–837. [PubMed: 11382364]

International Agency for Research on Cancer. Some non-heterocyclic polycyclic aromatic
hydrocarbons and some related exposures. IARC Monographs. 2010; 92:7–465.

Lee CC. Fuzzy logic in control systems: fuzzy logic controller. IEEE. Trans. Syst. Man. Cybern. 1990;
20:404–418.

Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S. Application of neural networks to
modelling nonlinear relationships in ecology. Ecol. Model. 1996; 90:39–52.

Lek S, Guégan JF. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol.
Modell. 1999; 120:65–73.

Leondes, CT. Fuzzy logic and expert systems applications. San Diego: Academic Press; 1998.

Lin P, Hu SW, Chang TH. Correlation between gene expression of aryl hydrocarbon receptor (AhR),
hydrocarbon receptor nuclear translocator (Arnt), cytochromes P4501A1 (CYP1A1) and 1B1
(CYP1B1), and inducibility of CYP1A1 and CYP1B1 in human lymphocytes. Toxicol. Sci. 2003;
71:20–26. [PubMed: 12520072]

Lomas A, Leonardi-Bee J, Bath-Hextall F. A Systematic Review of worldwide incidence of non-
melanoma skin cancer. Br. J. Dermatol. 2012; 166:1069–1080. [PubMed: 22251204]

Mamdani EH. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE.
Trans. Comput. 1977; 100:1182–1191.

Marston CP, Pereira C, Ferguson J, Fischer K, Hedstrom O, Dashwood WM, Baird WM. Effect of a
complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH)
on the tumor initiation, PAH–DNA binding and metabolic activation of carcinogenic PAH in
mouse epidermis. Carcinogenesis. 2001; 22:1077–1086. [PubMed: 11408352]

Moldoveanu S. Toxicological and environmental aspects of polycyclic aromatic hydrocarbons (PAHs)
and related compounds. Tech. Instrum. Anal. Chem. 2010; 28:693–699.

Larkin et al. Page 13

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf
http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf


Penning TM, Burczynski ME, Hung C-F, McCoull KD, Palackal NT, Tsuruda LS. Dihydrodiol
dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox-
active o-quinones. Chem. Res. Toxicol. 1999; 12:1–18. [PubMed: 9894013]

Pham, D.; Liu, X. Neural Networks for Identification, Prediction, and Control. London: Springer-
Verlag; 1995.

Pollenz RS. The mechanism of AH receptor protein down-regulation (degradation) and its impact on
AH receptor-mediated gene regulation. Chem. Biol. Interact. 2002; 141:41–61. [PubMed:
12213384]

Schauer C, Niessner R, Pöschl U. Polycyclic aromatic hydrocarbons in urban air particulate matter:
decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ. Sci. Technol.
2003; 37:2861–2868. [PubMed: 12875387]

Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC, Pereira CB, Löjr CV, Arlt
VM, Phillips DH, Williams DE, Baird WM. Polycyclic aromatic hydrocarbons as skin
carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental
mixtures in the FVB/N mouse. Toxicol. Appl. Pharmacol. 2012; 264:377–386. [PubMed:
22935520]

Siegel R, Ward E, Brawley O, Jeimal A. Cancer Statistics, 2011. The impact of eliminating
socieoeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 2011;
61:212–236. [PubMed: 21685461]

Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ,
Kavlock RJ, Knudsen TB. Predictive models of prenatal developmental toxicity from ToxCast
high-throughput screening data. Toxicol. Sci. 2011; 124:109–127. [PubMed: 21873373]

Timme-Laragy AR, Cockman CJ, Matson CW, Di Giulio RT. Synergistic induction of AHR regulated
genes in developmental toxicity from co-exposure to two model PAHs in zebrafish. Aquat.
Toxicol. 2007; 85:241–250. [PubMed: 17964672]

Toyooka T, Ibuki Y, Takabayashi F, Goto R. Coexposure to benzo[a]pyrene and UVA induces DNA
damage: first proof of double-strand breaks in a cell-free system. Environ. Molec. Mutagen. 2006;
47:38–47. [PubMed: 16094660]

Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S, Miller ML, Shertzer HG, Gonzalez FJ, Nebert
DW. Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication,
CYP1B1 metabolism required for immune damage independent of total-body burden and
clearance rate. Molec. Pharmacol. 2006; 69:1103–1114. [PubMed: 16377763]

Van den Berg M, Birnbaum L, Bosveld A, Brunström B, Cook P, Feeley M, Giesy JP, Hanberg A,
Hasegawa R, Kennedy SW. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for
humans and wildlife. Environ. Health Perspect. 1998; 106:775–792. [PubMed: 9831538]

Vasilakos C, Kalabokidis K, Hatzopoulos J, Matsinos I. Identifying wildland fire ignition factors
through sensitivity analysis of a neural network. Nat. Hazards. 2009; 50:125–143.

Yuspa SH, Poirier MC. Chemical carcinogenesis: from animal models to molecular models in one
decade. Adv. Cancer Res. 1988; 50:25–70. [PubMed: 3287845]

Zhang Y, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs)
for 2004. Atmos. Environ. 2009; 43:812–819.

Larkin et al. Page 14

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Tested a model to predict PAH mixtures-mediated changes in Cyp1b1
expression

• Quantitative predictions in agreement with microarrays for Cyp1b1 induction

• Unexpected difference in expression between DBC and other treatments
predicted

• Model predictions for combining PAH mixtures in agreement with microarrays

• Predictions highly dependent on aryl hydrocarbon receptor repressor expression
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Fig. 1.
Five layer fuzzy neural network structure for quantitative prediction of Cyp1b1 expression.
Layer 1 consists of input gene expression values (input genes 1–11). Layer 2 fuzzifies input
values into low, medium, and high fuzzy subsets. Layer 3 creates Mamdani “If-Then” rules.
Layer 4 predicts low, medium, and high Cyp1b1 expression, and layer 5 (output) consists of
a single quantitative prediction of Cyp1b1 mRNA expression (output gene 12).

Larkin et al. Page 16

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Graph of membership functions used to fuzzify input genes. Note that the scale parameter of
the medium Gaussian membership function is larger than low and high membership
functions (7.5, 5, and 5, respectively), increasing bias towards control level predictions.
Low, medium, and high membership values are related to the likelihood that a treatment
group is expressed below, at, or above the control treatment group, respectively, given the
observed expression level.
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Fig. 3.
Comparison of randomly selected versus expertly selected gene lists as input for the FNN
model and prediction of Cyp1b1 expression. Differences between predicted and observed
Cyp1b1 expression levels were greater for models with randomly selected gene inputs
(described in Supplemental Table 2) than for models with an expert selection of gene inputs
(Table 1) for all treatment groups with the exception of DBC.

Larkin et al. Page 18

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Heatmap of percent gene input weights for low, medium, and high Cyp1b1 prediction in the
1st, 2nd and 3rd columns, respectively. Weights are normalized relative to the average
(mean) input weight (9.09%). Dark green indicates an above average (higher) relative input
weight, whereas dark blue indicates a below average (lower) relative input.
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