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Abstract

A common polymorphism in the complement factor H gene (rs1061170, Y402H) is associated with a high risk of age-related
macular degeneration (AMD). In the present study we hypothesized that healthy young subjects homozygous for the high-
risk haplotype (CC) show abnormal choroidal blood flow (ChBF) regulation decades before potentially developing the
disease. A total of 100 healthy young subjects were included in the present study, of which 4 subjects were excluded due to
problems with genotyping or blood flow measurements. ChBF was measured continuously using laser Doppler flowmetry
while the subjects performed isometric exercise (squatting) for 6 minutes. The increase in ChBF was less pronounced than
the response in ocular perfusion pressure (OPP), indicating for some degree of choroidal blood flow regulation. Eighteen
subjects were homozygous for C, 47 subjects were homozygous for T and 31 subjects were heterozygous (CT). The increase
in OPP during isometric exercise was not different between groups. By contrast the increase in ChBF was more pronounced
in subjects homozygous for the high risk C allele (p = 0.041). This was also evident from the pressure/flow relationship,
where the increase in ChBF in homozygous C carriers started at lower OPPs as compared to the other groups. Our data
indicate that the regulation of ChBF is abnormal in rs1061170 CC carriers. So far this polymorphism has been linked to age
related macular degeneration (AMD) mainly via inflammatory pathways associated with the complement system
dysfunction. Our results indicate that it could also be related to vascular factors that have been implicated in AMD
pathogenesis.
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Introduction

Age-related macular degeneration is the leading cause of

blindness in the industrialized countries [1]. Major risk factors

for the disease include increasing age, smoking and a family

history of AMD [2,3,4]. In the recent years evidence has

accumulated indicating that genetic factors are associated with

AMD [5,6,7,8]. A polymorphism of factor H (HGNC:4883),

a complement control protein, was the first gene shown to be

involved in the development and progression of AMD

[9,10,11,12]. A single nucleotide polymorphism (SNP),

rs1061170 (also known as Y402H), located within the chromo-

some 1q32 region and corresponding to the human complement

factor H gene, was found to be associated with AMD. This

supports the hypothesis that a local inflammatory process is

involved in AMD pathogenesis. This was already assumed earlier

based on the observation that drusen contain inflammatory

materials including complement system components [13,14].

Recently the results of a population-based study have shown

that the homozygous C allele (CC) of rs1061170 entails

a significant risk of mortality in Finnish nonagenarians [15]. In

young healthy male subjects the relationship between SNPs in

both, factor H and C-reactive protein, and early atherogenic

vascular changes was studied. Interaction between C-reactive

protein haplotypes and CC allele of rs1061170 were associated

with increased carotid artery stiffness [16]. These results link factor

H with atherosclerosis. Animal data show that CFH also plays

a crucial role in the integrity of the ocular circulation. In

complement factor H deficient mice C3 and C3b are progressively

deposited on ocular vessels, subsequently leading to endothelial

damage and restricted perfusion [17]. Alterations in the retinal

and choroidal vessels were already visible in 3 month old animals

and became more pronounced after 12 months.

Based on these results we hypothesized that choroidal blood

flow (ChBF) regulation is abnormal in young healthy carriers,

homozygous for the C risk-allele of rs1061170. This hypothesis

was tested by studying the response of ChBF, as measured with
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laser Doppler flowmetry, during an isometric exercise-induced

increase in blood pressure [18,19,20,21].

Results

The baseline characteristics of the subjects are presented in

Table 1. In 1 subject genotyping was not successful. In 3 other

subjects no adequate laser Doppler flowmetry readings could be

obtained. As such data from 96 subjects were included in the final

analysis. The results of rs1061170 genotyping showed that 18

subjects were homozygous for the risk allele C, 47 subjects were

homozygous for T and 31 subjects were heterozygous CT. The

results did not deviate from the Hardy Weinberg equilibrium.

The effect of isometric exercise on MAP and PR is shown in

Figure 1. A pronounced increase in both MAP and PR was seen

during isometric exercise (p,0.001 versus baseline). This response

was comparable between the 3 groups (MAP: p= 0.33, PR:

p= 0.088). Isometric exercise did not alter IOP (p= 0.76, data not

shown). Figure 2 presents the response in OPP and ChBF during

isometric exercise. As expected, OPP increased significantly during

squatting (p,0.001 versus baseline). The increase in OPP was,

however, comparable between the 3 groups (p = 0.23). The

increase in ChBF was also significant during squatting (p,0.001

versus baseline) although less pronounced than the increase in

OPP (p,0.001 versus baseline). The response in choroidal blood

flow was, however, significantly more pronounced in carriers of

the homozygous C allele as compared to carriers of the

homozygous T allele or heterozygous CT subjects (p = 0.041).

Figure 3 depicts the pressure/flow relationship during isometric

exercise. In TT carriers ChBF values were not significantly

different from baseline up to OPP values 58% above baseline.

Thereafter ChBF values started to increase almost linearly. In

heterozygous subjects the pressure/flow relationship was almost

similar. ChBF was constant up to OPP values of 57% above

baseline and increased thereafter. In CC carriers, however, the

increase in ChBF took place at lower OPP values. In these subjects

ChBF remained constant until an OPP change of 39% from

baseline. At higher OPP values ChBF rose linearly. The 95%

confidence intervals of the curves, however, still overlapped.

Discussion

When OPP is raised the choroid shows a vasoconstrictor

response in order to keep blood flow constant [22]. The present

study indicates significant differences in the regulatory behavior of

ChBF during an increase in OPP depending on rs1061170

genotyping. This is seen decades before these rs1061170 positive

subjects are at increased risk of potentially developing AMD.

The early onset of findings in young healthy subjects might be

explained by the concurrence of various aspects. As mentioned

before hypoxia and local inflammatory processes involving the

complement system represent one aspect of this multifactorial

process. In particular, we know from animal models, that C3 and

Table 1. Demographic and baseline characteristics of the subjects (n = 96, mean 6 SD).

Homozygous CC (n=18) Heterozygous CT (n =31) Homozygous TT (n=47) p-value

Age (years) 24.664.9 24.866.0 25.666.2 0.75

Sex (M/F) 9/9 14/17 23/24 0.93

MAP (mmHg) 80.367.5 78.668.2 80.168.5 0.69

PR (beats per minute) 69.1611.7 72.4610.7 73.669.8 0.29

IOP (mmHg) 14.161.8 14.462.2 14.862.2 1.00

OPP (mmHg) 38.665.3 38.866.5 38.965.4 0.98

Flow (arbitrary units) 16.963.9 17.763.8 17.264.4 0.78

(MAP = mean arterial pressure, PR = pulse rate, IOP = intraocular pressure, OPP = ocular perfusion pressure, Flow = choroidal blood flow as measured using LDF).
doi:10.1371/journal.pone.0060424.t001

Figure 1. Effect of squatting on mean arterial blood pressure
(MAP) and pulse rate (PR). Data are presented separately according
to the results of rs1061170 genotyping (n = 96; means 6 SD) p,0.001
versus baseline.
doi:10.1371/journal.pone.0060424.g001
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C3b complement protein deposition on vascular endothelial

surfaces takes place over time in CFH deficient mice. The damage

of the endothelial surface further leads to narrowing and dying out

of vessels. This is also in accordance with findings in CFH deficient

mice, where not only the choroid endothelium but also the overall

choroid thickness itself was significantly reduced. Finally also

restricted vascular perfusion, leading to local ischemia, has been

shown in these mice, leading to increased oxidative stress, local

release of vasoactive substances such as VEGF and the activation

of the immune system [17]. The active contribution of the immune

system might be questionable in the beginning, as it has been

reported that remnants of phagocytosis in the retinal pigment

epithelium have the potential to activate the alternative comple-

ment pathway [23]. This might indicate that vascular beds affected

by this multifactorial process become impaired in their auto-

regulatory capacity.

A recent review has proposed a relation between complement

activation and endothelial dysfunction that may provide a link

between AMD and atherosclerosis [24]. Indeed markers of

endothelial dysfunction such as sICAM-1, von Willebrand factor

and plasminogen activator inhibitor type 1 (PAI-1) are elevated in

AMD patients and are related to formation of drusen and

choroidal neovascularization (CNV) [25].

Some studies have also shown an association between the

rs1061170 (Y402H) polymorphism and the incidence of myocar-

dial infarction and coronary artery disease [26,27]. Indeed several

clinical trials using complement inhibitors in both AMD and

atherosclerosis are currently under way [24].

In the present study abnormalities in choroidal blood flow

regulation were observed in homozygous C allele carriers of

rs1061170 long before AMD potentially develops. Our results are,

furthermore, compatible with an above-mentioned study showing

reduced vascular elasticity in young Finnish men [16]. This raises

the question whether homozygous carriers of the C allele should

already be treated or closely observed before the clinical onset of

the disease. So far the only proven treatment for non-exudative

AMD is a combination of supplements including vitamin C,

vitamin E, beta-carotene and zinc [28]. In a subgroup of

participants that were at high risk for progression, an interaction

between treatment and rs1061170 polymorphism was found, with

carriers of the CC allele being less responsive due to the zinc

component of the medication [29]. On the other hand the

Rotterdam study has shown that dietary intake of very high

amounts (highest tertile) of zinc, beta-carotene, lutein/zeaxanthin

and omega-3 free fatty acids, reduces the risk of developing early

AMD in homozygous risk allele carriers including rs1061170 [30].

Several previous studies have shown that AMD is associated

with reduced choroidal blood flow [31,32,33,34,35,36,37]. In an

Figure 2. Effect of squatting on ocular perfusion pressure
(OPP) and choroidal blood flow (Flow). Data are presented
separately according to the results of rs1061170 genotyping (n = 96;
means 6 SD). Asterisks indicate significant differences between the
different groups (repeated measures ANOVA), p,0.001 versus baseline.
doi:10.1371/journal.pone.0060424.g002

Figure 3. Pressure flow relationship during isometric exercise.
Data are sorted according to ascending ocular perfusion pressure (OPP)
values and the means as well as the 95% confidence intervals are
shown. The upper graph shows the comparison for homozygous C and
homozygous T subjects, the lower graph for homozygous C and
heterozygous CT subjects. The data are displayed separately to increase
legibility.
doi:10.1371/journal.pone.0060424.g003
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experiment which used a protocol almost similar to our study

a reduced regulatory capacity of the choroidal vasculature was

observed in AMD patients during a squatting-induced increase in

OPP [38]. Two longitudinal studies revealed that reduced

choroidal blood flow is a risk factor for the development of

choroidal neovascularization (CNV) in AMD. Metelitsina and co-

workers [39] studied 193 eyes with AMD and followed them for

a period of one to 5 years. Of those, 28 eyes developed CNV

during the observation period. These eyes had reduced choroidal

baseline values as compared to the eyes that did not develop CNV.

Boltz et al. [40] studied 41 patients with unilateral CNV for an

observation period of 3 years and followed the contralateral eye

for 3 years. In this period 17 eyes developed CNV. Multivariate

time-dependent Cox regression analysis revealed that these eyes

had significantly lower ChBF than eyes that did not develop CNV.

These clinical data are well compatible with animal experiments in

mice in which the hypoxia response element (HRE) was deleted

from the vascular endothelial growth factor (VEGF) promoter. As

compared to wild-type mice the amount of CNV after laser-

induced rupture of Bruch’s membrane in HRE 2/2 animals was

more than 10 times smaller [41], highlighting the role of hypoxia

in the pathogenesis of AMD and CNV.

Several limitations need to be considered when interpreting the

present data. Most importantly we have focused on one specific

polymorphism associated with AMD. Several other complement

pathway-related genes including complement factor B, comple-

ment component 2 and C3 were linked to the disease, as well as

variants in the ARMS2, PLEKHA1, and HTRA 1 genes [7].

Deeper analysis has also shown that CFH intronic SNPs are more

significantly associated with AMD than rs1061170. Structural

variations and SNPs in the RCA gene cluster including two

common deletions: DCNP147, which removes all of CFHR3 and

CFHR1, and DCNP148, which removes CFHR1 and CFHR4 in

addition to a large segment of flanking non-coding sequence, were

linked to the disease. The present study was, however, not

designed to study the potential impact of other AMD-associated

SNPs on choroidal blood flow regulation, which would require

larger sample sizes. In addition, we did not measure plasma

complement components or activation fragments that have been

shown to be associated with AMD indicating ongoing complement

activation [42]. The mechanism by which rs1061170 polymor-

phism increases the risk for AMD is not fully understood. Most

likely it alters the binding of CFH to sulfated glycosaminoglycans

thereby inactivating C3b that becomes deposited [43]. In addition,

the rs1061170 polymorphism reduces the ability of CFH to bind to

malondialdehyde thereby inducing oxidative stress and enhanced

lipid peroxidation [44]. Finally, although the time course of ChBF

was different between groups, the 95% confidence intervals still

overlapped in the pressure/flow curve, although a clear tendency

towards a difference was seen. A larger sample size would be

required to show a difference in the choroidal pressure-flow

relationship between groups.

In conclusion the data of the present study show that a common

rs1061170 polymorphism is associated with choroidal blood flow

dysregulation in healthy young subjects. This polymorphism has

been shown to be linked to AMD in a variety of previous studies

where the main focus was directed towards inflammatory pro-

cesses triggered by complement system dysfunction. Our study

shows that rs1061170 may also be associated with vascular

dysregulation and ischemia/hypoxia, which has been implicated

in the pathogenesis of AMD.

Materials and Methods

Ethics Statement
The present study was performed in adherence to the

Declaration of Helsinki and the Good Clinical Practice (GCP)

guidelines. The study protocol was approved by the Ethics

Committee of the Medical University of Vienna. (Clinicaltrials.-

gov: NCT00708929, http://www.clinicaltrials.gov/ct2/show/

NCT00708929).

Changes to the original study protocol
The approved study protocol originally included a second group.

These would have been women and men aged between 46 and 65.

But due to difficulties in performing the measurements during

squatting and the very poor data quality, this group was

discontinued. Flicker light stimulation data are published separately.

Experimental Design
A total of 100 healthy male and female subjects aged between

18 and 45 years were enrolled in this study. The sample size of this

pilot study was based on the genotype frequency for homozygous

risk allele carriers of the rs1061170, which is approximately 14%

in previous studies [45,46].

Subjects were recruited fromMay 2010 till July 2011. The nature

of the study was explained to all subjects and they gave written

consent prior to participation. Each subject passed a screening

examination including medical history and physical examination.

Subjects were excluded if any abnormality was found during

screening, unless the investigators considered the abnormality to be

clinically irrelevant. Moreover, visual acuity was assessed using

ETDRS charts and an ophthalmic examination, including slit lamp

biomicroscopy and indirect funduscopy, was performed. Inclusion

criteria were normal ophthalmic findings, ametropia of less than 3

diopters and anisometropia of less than 1 diopter.

All measurements were performed at the Department of Clinical

Pharmacology/Medical University of Vienna, Austria and after

a resting period of at least 20 minutes in a sitting position. Stability of

blood pressure and pulse rate was verified by repeated measure-

ments before the actual experiments were started.

The isometric exercise experiments comprised a three minutes

continuous baseline recording of ChBF in a sitting position,

followed by a six minutes recording with isometric exercise, which

consisted of squatting in a position where the upper and the lower

legs formed approximately a right angle in order to increase mean

arterial blood pressure. At the beginning and at the end of the

ChBF recording IOP was assessed. Blood pressure and pulse rate

were measured every minute throughout the experiment.

Measurements
Systemic hemodynamics. Systolic blood pressure (SBP),

diastolic blood pressure (DBP), and mean arterial blood pressure

(MAP) were monitored on the upper arm by an automated

oscillometric device. Pulse rate (PR) was automatically recorded

from a finger pulse-oxymetric device (HP-CMS patient monitor,

Hewlett Packard, Palo Alto, CA, USA). The performance of this

system has been reported previously [47].

Laser Doppler flowmetry. Continuous measurement of

ChBF was performed by laser Doppler flowmetry as described

by Riva et al. [18,48]. With this technique, the vascularized tissue

is illuminated by coherent laser light. From the laser Doppler

power spectrum hemodynamic parameters can be determined

based on a theory of light scattering in tissue. The following blood

flow parameters were obtained: blood flow, velocity and volume.

Velocity is the mean velocity of the red blood cells moving in the

Complement Factor H in Ocular Blood Flow
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sampled tissue proportional to the mean Doppler frequency shift.

Volume is the number of moving red blood cells in the sampled

tissue proportional to the amount of Doppler shifted light. Blood

flow was calculated as the product of velocity and volume. In the

present study, a laser Doppler flowmeter, which has been

described in detail previously, was used for the ChBF measure-

ments [49,50].
Intraocular pressure. A slit-lamp mounted Goldmann

applanation tonometer was used to measure intraocular pressure

(IOP).
Genotyping of rs1061170. DNA was isolated continuously

from fresh EDTA-anticoagulated whole blood using a GentraH
PuregeneH Blood Kit (Qiagen GmbH, Hilden, Germany).

Samples were subsequently stored within the MedUni Vienna

Biobank facility at 280uC until measurement. Genotyping was

performed by means of real-time polymerase chain reaction (RT-

PCR) on an ABI 7900HT Fast-Realtime thermocycler (Applied

Biosystems, Rotkreuz, Switzerland) using sequence-specific, fluo-

rescence-labeled TaqManH probes with a minor groove binder

and a non-fluorescent quencher. Oligonucleotide sequences were

obtained from Goverdhan et al. [51]. RT-PCR was conducted in

384-well plates with a total volume of 5 mL per reaction consisting

of 2.5 mL TaqManH Genotyping Mastermix (Applied Biosystems),

500 nM of each primer (VBC Genomics, Vienna, Austria),

200 nM of each probe (Applied Biosystems) and 10 ng DNA.

PCR conditions were 10 min at 95uC followed by 40 cycles of 15 s

at 95uC and 1 min at 60uC. Data was analyzed using SDS 2.3

sequence detection software (Applied Biosystems).

Data analysis
Ocular perfusion pressure was calculated as OPP =2/3*MAP-

IOP [52]. We obtained IOP levels at baseline and at the end of the

squatting period. From these data the IOP values during every single

minute of squatting were calculated using linear regression analysis.

A repeated measures ANOVA model was used to analyze data.

Grouping of subjects was done according to the results of

rs1061170 genotyping. Differences between subjects were calcu-

lated based on the interaction between time and group. Post hoc

analyses were done using planned comparisons. For this purpose

the time effect was used to characterize the effect of squatting on

the outcome parameters.

In addition, pressure-flow relationships were calculated. For this

purpose the data were expressed as %change in OPP and

choroidal blood flow values over baseline. The OPP values were

then sorted according to ascending values and grouped into 9

intervals. A statistically significant deviation from baseline flow was

defined when the 95% confidence interval did not overlap with the

baseline value any more.

For data description percent changes from baseline were

calculated. A p-value ,0.05 was considered the level of

significance. Statistical analysis was carried out using CSS

Statistica for WindowsH (Statsoft Inc., Version 6.0, Tulsa,

California).
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