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Abstract Experimental data and advanced imaging

techniques are increasingly enabling the extraction of

detailed vascular anatomy from biological tissues. Incor-

poration of anatomical data within perfusion models is

non-trivial, due to heterogeneous vessel density and dis-

parate radii scales. Furthermore, previous idealised net-

works have assumed a spatially repeating motif or periodic

canonical cell, thereby allowing for a flow solution via

homogenisation. However, such periodicity is not observed

throughout anatomical networks. In this study, we apply

various spatial averaging methods to discrete vascular

geometries in order to parameterise a continuum model of

perfusion. Specifically, a multi-compartment Darcy model

was used to provide vascular scale separation for the fluid

flow. Permeability tensor fields were derived from both

synthetic and anatomically realistic networks using (1)

porosity-scaled isotropic, (2) Huyghe and Van Campen,

and (3) projected-PCA methods. The Darcy pressure fields

were compared via a root-mean-square error metric to an

averaged Poiseuille pressure solution over the same

domain. The method of Huyghe and Van Campen per-

formed better than the other two methods in all simula-

tions, even for relatively coarse networks. Furthermore,

inter-compartment volumetric flux fields, determined using

the spatially averaged discrete flux per unit pressure

difference, were shown to be accurate across a range of

pressure boundary conditions. This work justifies the appli-

cation of continuum flow models to characterise perfusion

resulting from flow in an underlying vascular network.

Keywords Parameterisation � Perfusion � Multi-

compartment Darcy � Homogenisation � Discrete vascular

anatomy

1 Introduction

Perfusion is essential for the healthy function of biological

tissues. Blood flowing through the vasculature provides the

means of metabolite exchange, delivery of energy sources,

and removal of harmful by-products. The importance of the

perfusion process is highlighted by the serious conse-

quences of related pathologies, e.g. cardiac and cerebral

ischaemia and infarction. A principal determinant of per-

fusion is the vascular anatomy, which is inherently multi-

scale in nature. Previous computational simulations of

blood flow have analysed the implications of this anatomy

via statistically generated networks and rule-based net-

works [25, 33]. Such generated networks have been

recently superceded by those derived from direct imaging

techniques and subsequent image processing, e.g. micro-

CT [12, 17] and cryomicrotome [37]. This latter technique

has produced whole-organ vascular trees with vessels in the

order of 10 lm in diameter.

While many 1D blood flow models have been success-

fully applied to large anatomical models [22, 26], there is a

significant computational expense associated with the

number of vessel segments in a whole-organ high resolu-

tion vascular model. Furthermore, the vascular anatomy

obtained in a clinical setting typically reveals little beyond
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the largest epicardial vessels [14], and the determination of

suitable intramural pressure/flow boundary conditions

(BCs) is difficult. Hence, flow models that require detailed

vascular and BC knowledge cannot be applied clinically

due to this lack of available data. This paper outlines an

approach to obtaining a flow solution that overcomes the

issue of unknown BCs.

In this context, porous flow models, such as Darcy’s Law,

provide a promising alternative framework, as evidenced by

previous perfusion models for biological tissues [3, 30]. The

Darcy model is simple in comparison to explicit nonlinear 1D

flow models and it can account for the close spatial relation

between vessels of disparate scales via the assumption of

multiple spatially co-located porous domains [5, 16]. How-

ever, a suitable method for mapping multi-scale vessel data

onto a set of point-wise parameters remains thus far unclear,

with the exception of idealised situations, e.g. assuming a

periodic material structure [4, 20]. A formal averaging the-

orem has been previously used to derive material parameters

for porous flow models [9, 31]. However, this theorem is

exact only in the limit of infinite vessels, and to date this

approach has not been studied with regard to vessel density or

the size of the spatial averaging volume. This volume, or

representative volume element (RVE), is often used within

spatial homogenisation techniques. Typically, the RVE is

defined by the minimum volume within which the property of

interest remains largely constant [2]. The technique of spatial

averaging within an RVE is extensively applied within the

Huyghe and Van Campen permeability parameterisation

method. However, this method assumes a homogeneous

distribution of the property of interest across the RVE, e.g. it

is assumed that the vascular space is evenly distributed

throughout the material. Experimental evidence and physio-

logical knowledge suggest that this assumption is not valid

at the scale of transmural and large arteriolar vessels

[28]—hence the need for further analysis in this study.

Motivating the current work, we hypothesise that a

significant proportion of 3D discrete vascular data can be

incorporated into continuous porous flow domains via

spatial parameterisation, and still provide a pressure solu-

tion that is sufficiently close to the discrete flow solution.

For this application, we determine permeability tensor

fields from the network morphology with the long-term

goal of averaging these fields determined from several

same-phenotype experimentally derived networks, in order

to provide a clinically useful permeability field. However,

the relation of the Darcy parameters, such as permeability,

to the vascular anatomy is not clear. Furthermore, the level

of anatomical detail required is also unknown. For these

reasons, in this study, we directly address this issue of how

to parameterise the Darcy domains using vascular ana-

tomical data.

2 Methods

2.1 Model descriptions

2.1.1 Vascular model

A mathematical representation of the vascular network is

required to both parameterise and provide a comparison

with the Darcy model outlined below. Typically the vas-

cular model is derived from the image processing of

experimental data [7, 37]. However, for the purposes of in

silico testing in this study, a synthetic vascular model was

created. In brief, the bifurcating, area-filling network gen-

eration of Wang and Bassingthwaighte [33] was extended

to three dimensions [29]. Subdomain volumes were cal-

culated using Monte Carlo integration [34]. Once the vessel

centrelines distributed throughout the target domain X ¼
½�1; 1�3 mm were constructed, mass-conserving fluxes

were assigned to vessels by assuming (1) all terminal

vessels have a flow rate of 1, and (2) the flux through a

parent vessel is equal to the total flux of its daughter ves-

sels. Vessel radii were then assigned based on the follow-

ing flux–radii relation

ri ¼ ½ðqi=a1Þð1=a2Þ�a3; ð1Þ

where ri (qi) is the ith vessel radius (flux), and the following

parameter values were used—a1 = 1, a2 = 3, and

a3 = 0.001. Details of the lengths and radii of the created

vessels can be seen in Table 1. This constructed model is used

in preference to a more physiological model as it: (i) allows

for a controlled definition of the ‘parent–daughter’ vessel

radius relation and multi-scale aspects; (ii) is a fully

connected network within a regular domain for ease of sim-

ulation. The vascular model consists of a set of vessels

defined nodally, where each node encodes spatial and radial

data and these fields are interpolated between the nodes by

linear Lagrange basis functions (Fig. 1a).

We assume that the flow in each vessel is governed by

Poiseuille’s law [15]. Specifically, the vessel flow rate,

Q, is given by

Q ¼ pr4

8ll
Mp; ð2Þ

where r is the vessel radius (assumed constant along the

vessel, with value equal to the mean of the vessel nodal radii),

l is the vessel length, l is the dynamic viscosity of the fluid

assumed throughout to be 0.0035 Pa s, and 4p is the

difference of the pressure between the vessel’s end nodes.

Conservation of mass is enforced at each junction via

X

i2T ;j2S

LijQj ¼ 0; ð3Þ
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where T is the set of internal nodes, S is the set of vessels,

and the matrix {L} is defined to be

Lij ¼
þ1; if for node i; segment j is incoming:
�1; if for node i; segment j is outgoing:
0; if node i is not part of segment j:

8
<

: ð4Þ

2.1.2 Darcy system

The multi-compartment Darcy system is a generalisation of

the classical single compartment Darcy model to N porous

compartments [5, 16]. The Darcy system for compartment

i 2 ½1;N� is1

wi þKi � rpi ¼ 0 in X; ð5aÞ

r � wi ¼ si �
XN

k¼1

bi;kðpi � pkÞ in X; ð5bÞ

where subscripts i and k are compartment indices, w and

p denote the Darcy velocity and pore pressure, respectively,

K is a permeability tensor of the material, s is a source

field, and b is the array of inter-compartment coupling

coefficients. The source field, s, can be spatially distributed

to represent flow entering the Darcy compartment from

proximal branches not included in the Darcy parameteri-

sation. For the purposes of this study, however, it has been

deemed to be an external factor to the Darcy parameteri-

sation process and thus has not been included. An example

of its intended use within a general perfusion modelling

scenario can be seen in Michler et al. [16]. bi;k 2 R
þ
0 for

i; k ¼ 1; . . .;N; and in order to conserve fluid mass across

the system we require b to be symmetric. Thus, inter-

compartment flow is provided for via volumetric source

terms, scaled by the relevant pressure differences, whereas

intra-compartment flow represents the flow for the set of

vessels within a defined scale range and a given compart-

ment. Further discussion on how the values of b are

determined is deferred until Sect. 2.5.

For a general perfusion problem, Eq. (5) are set on an

open bounded domain X � R
nd with spatial dimension nd

and a piece-wise smooth boundary oX: For the synthetic

network simulations, X ¼ ½�1; 1�3 mm, and the solution is

determined via the finite element method. The system is

further complemented with zero flux BCs across oX;
thereby treating the tissue volume as an isolated block.

Clearly this implies a compatibility condition for this static

domain of

XN

i¼1

Z

X

si dx ¼ 0: ð6Þ

The multi-scale nature of vascular trees makes the use of a

single porous compartment Darcy model inadequate if one

is interested in the flow characteristics at the smaller scales

due to the close spatial proximity of vessels with widely

varying length and pressure scales. Thus, the approach

taken is to employ multiple porous compartments with

Table 1 Compartmental statistics for the synthetic network used in the simulations of Sect. 3.1 and depicted in Fig. 1

Cpt # No. of vessels Length Radius

Min Max Mean SD Min Max Mean SD

1 221 0.0467 0.4999 0.1538 0.0608 0.0215 0.0961 0.0295 0.0120

2 32,645 0.0033 0.2547 0.0376 0.0217 0.0041 0.0216 0.0056 0.0022

3 32,867 0.0013 0.1608 0.0252 0.0150 0.0034 0.0037 0.0034 1.4e-5

Fig. 1 a Poiseuille pressure solution for the volume-filling synthetic

network defined on X ¼ ½�1; 1�3 mm. The same vasculature is used to

parameterise the Darcy model. b, c A partition of the vascular model

in (a). Mean vessel radii of approximately 30, 6 and 3 lm were

sought for compartments 1(b), 2(c), and 3(d), respectively

1 Einstein summation is not in use
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each compartment representing a different range of vas-

cular scale, thereby reducing the variance of material

properties per compartment.

Note that the simulations using the synthetic vasculature

are not deemed to be general perfusion problems, and thus

different BCs from those described above will be applied

as described in Sect. 2.6.

2.2 Vascular partition

In order to parameterise the Darcy domains, the vascular

model is partitioned into associated distinct groups of

vessels. In general, experimentally derived networks are

not sufficiently regular to apply a simple metric such as

radius for this partitioning purpose, as distal vessels in a

non-idealised network may have a larger or similar radius

in comparison to proximal vessels. Hence the need for a

more robust partitioning metric that conserves the natural

order of the discrete blood flow, i.e. proximal vessels

should be used to parameterise proximal Darcy compart-

ments. This metric, often called the hierarchic parameter

(f) field, is defined such that distal terminal nodes have

f ¼ 0 and the proximal terminal node has f ¼ 1: Thus,

every point of the vascular model has f 2 ½0; 1�: In this

work, the definition of f is based on the network mor-

phology via a normalised distal vessel length metric, i.e. f
at a node is the sum of the distal vessel lengths divided by

the total network’s vessel length.

Hence, if one desires N porous compartments then N - 1

distinct, increasing f values are chosen, in addition to

{0, 1}, to form an ordered vector Z of dimension N ? 1. The

ith vascular group is defined to be all vessels with average f
value 2 ½Zi; Ziþ1Þ: This same group is used to parameterise

the permeability tensor field for the Darcy compartment i.

Motivated by the network statistics (see Table 1), mean

vessel radii of approximately 30, 6 and 3 lm were sought for

compartments 1, 2, and 3, respectively. The use of a standard

root-mean-square cost function based on the desired values

yields a partition defined by the hierarchic parameter array of

Z = [1, 0.019879, 0.000118, 0], whereby compartment i

vessels are defined by those with average f value in the range

[Zi, Zi?1) (Fig. 1b, c). Clearly the vascular grouping is likely

to change if one uses a different metric to define the f field.

However, if the parameterisation process is robust it will still

be able to parameterise the Darcy fields for any other suitable

vascular partition.

2.3 Averaged discrete fields

An important assumption underpinning the hypothesis of

this work is that the local vessels encode all the necessary

information to determine the local permeability tensor.

Therefore, in order to parameterise a point x 2 X for the

Darcy compartment i, only the vessels of the associated

vascular group and within the spherical RVE centred at x;

denoted RVE(x), are considered.

The same RVE is used to derive a spatially averaged

discrete pressure for the ith Darcy compartment at x 2 X
via

piðxÞ ¼
P

v2ViðxÞ Pv volvP
v2ViðxÞ volv

; ð7Þ

where ViðxÞ is the set of vessels assigned to Darcy

compartment i within RVE(x), volv is the volume of the

vessel, and Pv is the average nodal pressure for the vth

vessel within ViðxÞ: The discrete pressure is averaged in

this manner in order to provide a comparison with the

continuum model pressures, as the discrete pressure is only

defined along the vessel cross-sections whereas the Darcy

model has a pressure defined over all of X: The spatial

averages of the other discrete fields of interest are defined

in a similar fashion. The porosity of compartment

i, denoted /i is defined to be

/iðxÞ ¼
PViðxÞ

v¼1 volv

volRVEðxÞ
; ð8Þ

where volRVEðxÞ is the volume of the RVE within X; and

thus the porosity of the material is

/f ðxÞ ¼
XN

i¼1

/iðxÞ: ð9Þ

Finally, the value of the discrete mass flux from

compartment i to k, where i [ k without loss of

generality, is also required. The set of all vessels within

the RVE that belongs to compartment k but share a node

with a compartment i vessel is denoted by ci,k. Then the

flux traversing from compartments i to k is

Qi;kðxÞ ¼
X

v2ci;kðxÞ

pr4
v

8llv
ð4pvÞ: ð10Þ

2.4 Determination of permeability

Without loss of generality, one assumes for the following

discussion that there is a single porous domain with an

associated distribution of vessels within it. The following

three methods for parameterising the permeability tensor

field are considered:

(i) porosity-scaled isotropic The vascular beds have

frequently been treated as an isotropic porous medium

[3, 8, 30], despite the fact that biological networks are

rarely isotropic. Vessels with radii in the order of

millimeters are clearly directional as their purpose is

to rapidly distribute flow over a large volume [27], and
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capillaries with vascular radii in the order of microns

are well-known to lie parallel to the myocytes in

organised sheets [12]. Furthermore, the scale of the

isotropic permeability is often taken to be constant

across the domain, i.e.

KðxÞ ¼ kI; ð11Þ

where k 2 R
þ; and the identity tensor I is assigned a unit of

mm2 Pa-1 s-1. This approach fails to take into account

known heterogeneities in vascular scale and density across

the heart. In this work, we scale the identity tensor by the

spatially varying porosity field, thus

KðxÞ ¼ /ðxÞI; ð12Þ

where / is the porosity for this general domain. The benefit

of including this method is twofold: (A) it is useful to

quantify the error involved when making the isotropic

assumption, and (B) it provides a reference solution against

which the following two methods can be judged.

(ii) Huyghe and Van Campen Huyghe and van Campen

(HvC) [9] derived an expression for a 4D (3D for

intra-compartmental flow, and inter-compartmental

flow constituting the extra dimension) permeability

tensor based on the Slattery–Whitaker spatial aver-

aging theorem [23, 36]. The formulation was for use

in a deforming porous media model, and to the best of

our knowledge, is the first attempt to utilise the

detailed geometry of the underlying vascular network

to parameterise the permeability tensor field. Notably,

this formulation was only applied to a 2D idealised

network. While the work of HvC focused on a 4D

Darcy model and the derivation of the permeability

field for this framework, we implemented the 3D

spatial aspect of their 4D permeability tensor given

entry-wise by:

Kij ¼
p

128volRVEdx0l

X

ns

d4 4 xi 4 xj

l
; i; j ¼ 1; 2; 3;

ð13Þ

where dx0 is an infinitesimal element of their hierarchic

parameter, ns is the set of vessels within the hierarchic

parameter range dx0, and d is the vessel diameter. 4xi is

the difference in spatial coordinate i between the vessel end

points. Re-examining Eq. (2) and recasting the Poiseuille

conductance, Cp in terms of vessel diameter

Q ¼ CpMP; where Cp ¼
pd4

128ll
; ð14Þ

one can see that Eq. (13) makes the implicit assumption of

Poiseuille flow in parallel vessels, with additional modifi-

cations for the creation of a permeability tensor. Crucially,

the averaging theorem employed in their derivation is exact

only in the limit of infinite vessel density, and until this

work the results obtained for coarse networks using this

method have not been shown to yield reasonable approxi-

mations vis-a-vis continuum and discrete pressure

comparisons.

(iii) projected-PCA. Principal components analysis

(PCA) is a technique of deducing orthogonal vectors

that lie parallel to the vectors of largest data

variance, and it is generally applied as a dimensional

reduction tool for large data sets. For this study, the

PCA technique has been specifically tailored for the

purpose of permeability derivation from vascular

networks. It provides a realistic alternative to the

HvC method that can also yield anisotropic perme-

ability fields. In order to determine KðxÞ; the vessels

within RVE(x) are first extracted. Each local vessel

is translated such that the node closest to x is mapped

to the origin, 0: The vessel is re-scaled such that its

length is equal to the value of the vessel’s Poiseuille

conductance, C. In this fashion, a data set is

constructed such that each vessel contributes one

datum that is length C from 0; and this vector is

oriented parallel to the original vessel direction. The

zero-mean step of the PCA method is applied by

duplicating each datum via reflection through 0: The

covariance matrix is then calculated from each

dimension of the data set in the standard manner

[10]. The resulting eigenvectors upon eigendecom-

position of the covariance matrix are the principal

components of the data set. Finally, the vessel

orientation vector is projected onto the orthogonal

eigenvector basis, the projections are normalised

such that the sum of the projected lengths equal the

vessel conductance, and then this normalised value is

added to each associated eigenvalue of KðxÞ:
We note that all of the above methods result in a

symmetric positive definite tensor field, and have the

correct physical units of mm2 Pa-1 s-1.

2.5 Determination of pressure-coupling coefficients

With regard to the inter-compartmental conductivities, i.e.

the b fields, one can continue with the Poiseuille flow

analogy, as outlined in Eq. (10). If we consider the con-

nectivity between two compartments, i and k say, then we

can conclude that, per unit fluid density, we have

bi;kðpi � pkÞ ¼ ~q; ð15Þ

where ~q is a Darcy volumetric source, and so has units of

mm3 s-1 (see Eq.(5)b). This implies that bi,k has units of

mm3 Pa-1 s-1. It would be an open question as to the

appropriate formulation for b if one utilised local vessel
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data only i.e. determine a form for Cðr; lÞ which is defined

to be the function of proportionality between bi,k and the

cross-sectional area of the vessels connecting the two

Darcy compartments, or equivalently

bi;kðxÞ ¼
X

v2ci;k

pr2
v Cðrv; lvÞ: ð16Þ

However, clearly the network pressure is a function of the

entire network morphology. Thus, there may not exist such

a function C; which depends on the local vessel

morphology alone, that can adequately represent the

inter-compartment coupling. Hence, we use the Poiseuille

model to aid in the derivation of the b field, as the

Poiseuille pressure field uses data from the entire network

morphology in the construction of the Poiseuille network

matrix [19]. From the perspective of the Darcy model, bi,k

can be viewed as the local constant of proportionality

between the fluid flux transfer, and the difference of the

Darcy pressures. Or, from the discrete model perspective,

bi;kðxÞ ¼
0 if piðxÞ � pkðxÞ ¼ 0:

Qi;kðxÞ
jpiðxÞ�pkðxÞj

; otherwise:

(
ð17Þ

where Qi,k is the spatially averaged mass flux between

vessel groups associated to compartments i and k (Eq. (10)).

Henceforth, the method of b determination used to produce

the results presented in Sect. 3 is given by Eq. (17), and the

fields themselves are visualised in Fig. 2.

2.6 Simulation protocol

A root-mean-square (rms) error metric is employed to

provide a method of comparison between the Darcy pres-

sure, p, and averaged discrete pressure, p: The scalar

pressure fields rather than the vector velocity fields are

chosen for the simulation comparisons as it allows for the

definition of a simpler and more transparent error metric.

The effect of BCs used in the discrete/continuum models,

in particular the difference between input and output

pressures, on this metric should be reduced as much as

possible. Thus, when comparing p to a spatially varying

field f say, p is first normalised between 0 and 1. The same

normalising transformation is applied to f, and the error

between the two fields is defined to be

rmspf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPc
m¼1ðpðxmÞ � f ðxmÞÞ2

n

s

; ð18Þ

where there are n points chosen from X at which the two

fields are compared, and xm are the coordinates of the mth

point to be compared. BC pressures of 13.3 and 8 kPa for

the discrete model are applied at the root node and the

remaining terminal nodes, respectively, for the 3-com-

partment simulations of Sect. 3. These values match the

pressures applied by Vankan et al. [32], but it is worth

stating here that the definition of the metric used to com-

pare parameterisation methods normalises the pressure

fields thus reducing the significance of the actual pressure

BCs used (see Eq. (18)). In practice, the only fields com-

pared to the averaged discrete pressure are the Darcy

pressure (p), and the Poiseuille pressure (~p) which is

evaluated at the vascular model nodes. With respect to

Darcy pressure comparisons, and unless otherwise stated,

the set of points n is taken to be a regular grid distributed

over X with a grid spacing of 0.125 mm. For the Poiseuille

pressure comparisons, n is defined to be a random selection

of 1,000 vascular nodes, distributed over X;from the vas-

cular compartment of interest.

The forthcoming simulations are focused on the issue of

Darcy parameterisation, and hence they are not deemed to

Fig. 2 Using a three-compartment Darcy model requires three scalar

pressure-coupling fields. Non-trivial values for any bi,j such that |i -

j| [ 1 allow for coupling between non-neighbouring compartments

i and j. By construction of the synthetic network, b1,3 is zero on

X:a b1,2 field. b b2,3 field
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be general perfusion problems. Thus, BCs suited to this

particular aim are applied. Specifically, zero flux BCs are

imposed on compartment 2 as the Darcy velocity and

pressure are being solved for in the usual manner. How-

ever, we do not solve for these quantities in compartments

1 and 3. Instead, Dirichlet pressure conditions are imposed

across X; and these are taken to be the averaged pressure

values of the same vascular compartments via Eq. (7). In

this manner, the testing framework compares the Darcy

pressure for compartment 2 against the average discrete

pressure of the vascular compartment 2 vessels, and uses

the parameterised fields b1,2, b2,3 and K2; thereby reducing

our problem to the smallest number of parameterised fields.

Note that b1;3ðxÞ ¼ 0 8 x 2 X as the algorithm for con-

structing the synthetic network ensures that there is no

connection between vessels of compartments 1 and 3.

Importantly, initial simulations revealed that none of the

three permeability parameterisation methods provide the

optimal scaling in terms of reducing the rms error. Thus in

the following results sections, all K tensor fields are scaled

by the constant that yields the lowest rms error for each

individual method. The fact that our current solution sys-

tem is simplified to just one compartment on which we

solve for the Darcy state variables allows for the optimal

scaling to be calculated via a gradient descent optimisation

algorithm. The improvement in rms error afforded by this

additional step is discussed further in Sect. 3.

3 Results

3.1 RVE radius

RVE size is an important parameter with respect to rmspp;

and a suitable size is dependent on the particular material

application. For this application, it is dependent on the

vascular scale and density of the Darcy compartment being

parameterised, however, a suitable RVE radius is not

obvious a priori. The RVE size should ensure a desired

level of smoothness in the averaged field, but also capture

the feature of interest.

To investigate the effect of RVE radius on the contin-

uum pressure solution, we evaluate rmspp for parameteri-

sations defined using various RVE radii values. These

results show that the error for all three parameterisation

methods decreases with increasing radius (Fig. 3a).

Moreover, the rate of decreasing error with increasing RVE

radius is itself decreasing. This trend towards a plateau in

error is to be expected, as both the spatially averaged

pressure and permeability tensor value will tend towards

the compartment average as the RVE radius increases. This

convergence to the compartment average is demonstrated

by the increased smoothness of the spatially averaged

Poiseuille pressure (Fig. 3 b). The application of a larger

averaging window allows the continuum solution, which is

guaranteed to be smooth due to its use of interpolating

functions, to better approximate the p field. We note with

interest that the smoothness of the Darcy solution actually

decreases from an RVE radius of 0.133–0.16 mm. Obvi-

ously, as the averaged pressure field becomes smoother

with increasing RVE radius, the difference between the

average discrete pressure field and the actual discrete

pressure field existing on the vascular model increases.

This is an important factor that is often overlooked during

the application of spatial averaging techniques. Figure 4a

demonstrates this general increase in error, and a clear

linear trend is observed between rms~pp and the RVE radius.

This trend is explained by the high correlation between the

majority of the individual average discrete pressure values

at the comparison points and the RVE radius used

(Fig. 4b). The minority of nodes that do not display this

high correlation must have one or more vessels in the

periphery of the averaging window of significantly differ-

ent pressure than that of the particular node itself. Yet

again this trend does not hold within the RVE radius range

of 0.133–0.16 mm. Thus, in choosing a RVE radius for a

given vascular compartment, a suitable balance must be

sought between increasing the smoothness of p and the

divergence of p from the Poiseuille pressure ~p: Further-

more, the RVE radius is bounded below by the smallest

value that provides total volume coverage. In contrast to

this result, there is no supremum bound on the size of the

RVE, though of course one risks removing heterogeneities

of interest at larger RVE sizes. In their paper, Vankan et al.

[31] use a radius of approximately 13 % of the domain

length. Of the radius lengths simulated, 0.2667 mm is the

closest to this proportion and one can be confident that it is

within a stable range of averaging window size. Figure 3

not only shows that the HvC method performs better than

the other two methods with respect to the quantitative rms

error metric, but also produces a qualitative match to the

spatially averaged discrete pressure, as seen in Fig. 5.

3.2 K parameterisation and vessel density

The sensitivity of the K parameterisation methods with

respect to vessel density is now examined via comparison

of their rmspp values, as defined in Eq. (18). Not only

should the optimum method have the lowest error, but it

should also be robust against varying vascular partitions.

Thus, Fig. 6a compares the errors over a varying vessel

density range for the second Darcy compartment. The

vascular partition specified by Fig. 1 yields a compartment

2 vessel radius range between 0.004 and 0.022 mm. The
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four data points for Fig. 6a were created by transferring

vessels with radii less than 0.01, 0.008, 0.006 and 0.005,

respectively, from compartment 2 into compartment 3.

There are three main points to note: (i) all three

methods display decreasing rms error with increasing

sampling domain radius, (ii) the HvC method consistently

yields a significantly lower error than either of the other

two methods, and (iii) the porosity-scaled isotropic

method performed as well as the projected-PCA method.

This latter point suggests that the synthetic network is

inherently isotropic due to its volume-filling nature. We

hypothesised that this last point occurred due to an

intrinsic isotropic feature of the volume-filling network

generation algorithm. In order to test this hypothesis, and

apply our parameterisation process to a more realistic

network, in Sect. 3.4 the three K parameterisation

methods are applied to a confocal microscopy imaged rat

capillary network [21].

3.3 Independence from Poiseuille pressure boundary

conditions

It remains to be shown that the HvC K and b parameteri-

sation methods are robust against changes in the Poiseuille

model BCs. The inter-compartment connectivity array b
has been defined specifically with this need in mind, hence

it uses local flux per unit pressure difference. As such, it

should not require re-parameterisation when a change in

pressure BC occurs, which would clearly be an untenable

scenario for a dynamic large-scale perfusion model.

In order to demonstrate this independence, the pressure

BCs at vascular terminal nodes in the subdomain

Fig. 3 a Plot of the rms error between the discrete and continuum

models for varying RVE radius comparing the three K parameteri-

sation methods tested. b The reduction in the rms error is seen to be

closely correlated with the smoothness of the Darcy (parameterisation

via HvC method) and averaged Poiseuille pressure solutions. Our

‘unsmoothness’ metric, W; is defined via summation of the discrete

Laplacian kernel, A, convolved with the local pressure array, pij;

centred at the mesh node indexed by ij of the finite element model of

X; i.e. for the Darcy pressure we have W ¼
Pm

i¼1

Pm
j¼1 A �

pij; where A;pij 2M3�3 and there are m nodes in each dimension

of the finite element mesh representation of X

Fig. 4 a Error measures demonstrating the difference between the

actual nodal pressure of the discrete flow model, ~p; versus the

spatially averaged pressure for a changing RVE radius. The error was

calculated using a random selection of 1,000 vascular nodes from

vascular compartment 2, and the p values evaluated at the same

spatial coordinates. The linearity of the plot in a is due the high

correlation of the individual nodal points with respect to the RVE

size. The absolute value of correlation between the pressure from

selected vascular nodal points and the RVE radius is shown in b
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S = [0,1]3 mm of X are varied, while the remaining vas-

cular terminal nodes are kept at 8kPa. Clearly S � X ¼
½�1; 1�3 mm and moreover S represents a significant pro-

portion of the tissue volume X:The Darcy parameter fields

are derived with all vascular terminal nodes at 8 kPa. The

pressure at the vascular terminal nodes within S is then

varied over the range 7–9 kPa, with the only change in the

Darcy model being the Dirichlet pressure BCs applied on

Darcy compartments 1 and 3.

Two trends are visible in Fig. 6b. Firstly, and most

importantly, there is no increase in the rms error across the

boundary pressure range tested, in particular for 8–9 kPa.

This demonstrates the independence of the parameterisa-

tion from the discrete BCs used to define the b array.

Fig. 5 Darcy pressure results

using the Huyghe and Van

Campen method for

determining K2: a and c show

the Darcy pressure field for

internal isosurfaces and the

external surface of X;
respectively. Similarly, b and

d show the average discrete

pressure field resulting from the

Poiseuille model, also on the

internal isosurfaces and the

external surface of X,

respectively

Fig. 6 a Plot of the rms error between the discrete and continuum

models for the three K parameterisation methods as the vessel density

is varied. The axis displays the logarithm to the base 2 of the number

of vessels in vascular compartment 2. b Terminal nodes in the

subdomain S = [0, 1]3 mm were subjected to varying Dirichlet

pressure BCs. The parameterisation of the Darcy model was done

using a homogeneous output pressure of 8 kPa. Subsequently, only

the Darcy Dirichlet pressure BCs are varied amongst the simulations.

The decreasing rms error for output pressures \8 kPa is due to the

normalisation step within the rms error estimation
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Secondly, the decrease in rms error for boundary pressures

less than 8 kPa is explained by the normalisation step in

calculating the rms error. As the averaged discrete pres-

sures are spread over a relatively wider range for these

boundary pressure values, the normalisation step decreases

the variance of the pressure discrepancies, thereby yielding

a rms error that decreases in conjunction with the linearly

decreasing discrete pressure BC.

3.4 Anisotropic networks

To further examine the merits of each K parameterisation

method, we consider the anisotropic network shown in

Fig. 7. This vascular model was constructed from confo-

cal data of a rat left ventricle tissue wedge, with average

radii of 5.3 ± 2.3 lm [13]. This network has a clear

preference of vessel direction, with the vessels (predom-

inantly capillaries) being generally aligned with the local

myofibres, as well as being organised into inter-weaving

sheets. A cube of side length 0.67 mm (dictated by the

overall block size) was selected from the block, and all its

connected components were extracted to form a subnet-

work. The extracted subnetwork is not partitioned into

multiple vascular groups as (i) the vast majority of vessels

are of the same scale, and (ii) testing the hypothesis that

the introduced anisotropy will separate the projected-PCA

and porosity-scaled permeability parameterisation meth-

ods, with respect to rmspp; can be done without a multi-

compartment system. Pressure BCs of 2 and 1 kPa were

assigned to all terminal nodes on two opposing faces, the

remaining terminal nodes are constrained to zero flux.

These pressure values are motivated by being close to

typical capillary pressures, but as stated previously, the

actual values used are not significant due to the normal-

isation step in the definition of the rms value (see

Eq. (18)). The averaged Poiseuille pressure was calculated

at regular grid points, which was simultaneously param-

eterised using the various K parameterisation methods. In

order to match these conditions as closely as possible in

the Darcy model, the face e1 = 0 has a Dirichlet pressure

BC value of 2 kPa and the opposing face has a Dirichlet

pressure BC value of 1 kPa (see Fig. 7c). The remaining

four faces have zero flux conditions imposed. These BCs

reflect the fact that the Poiseuille flow is constricted by

virtue of its own BCs to yield a predominant flow parallel

to the local e1 axis, and flow can only leave the domain

through the face e1 = 1.

The results displayed in Table 2 demonstrate that once

more the HvC method has the lowest rmspp error of the

three methods. Furthermore, a significantly smaller rms

error is obtained from the projected-PCA method in com-

parison to the isotropic assumption, suggesting that the

local vessel directionality is more effectively captured by

the former method.

4 Discussion

In this study, 3D Darcy porous domains have been success-

fully parameterised using 1D vascular data and a combination

of new and previously existing averaging methods. Both

idealised and physiologically realistic networks were used to

quantitatively compare the three methods to the average

Poiseuille pressure via a root-mean-square error metric. The

quantitative and qualitative results of Figs. 3 and 5, respec-

tively, justify the original hypothesis, i.e. that a Darcy pres-

sure within a reasonable error tolerance with respect to a

discrete pressure model can be obtained via spatial averaging

of 3D vascular networks. In practice, a ‘reasonable’ value of

the error tolerance is application dependent and when mod-

elling perfusion in a more realistic scenario, e.g. using a

whole-organ anatomical vascular model, it may be more

relevant to consider the error propagated through to the Darcy

velocity fields. We note that PCA has been successfully used

for determining material parameters within geomechanics

studies [6, 11]. A key strength of PCA is its ability to easily

and robustly extract the primary directions along which the

data varies the most. In relation to flow modelling, these

directions are naturally the principal flow directions. Despite

this clear connection to permeability tensors, the HvC method

was shown to be the optimum method across the range of our

simulation study, which included varying vessel density and

RVE size. This is most likely due to its rigorous mathematical

foundation, but importantly, it was also better for relatively

coarse vascular networks where the assumptions underlying

the HvC method may not hold (see Sect. 2.4(ii)), particularly

the homogeneous distribution of the averaged fields within

the RVE. Clearly the vascular densities simulated were

within a range where the HvC method is applicable.

Furthermore, we have characterised a significant pro-

portion of the rms error to vessel density relationship for

our synthetic network. The vascular density results of

Fig. 6a indicate that this property of the underlying net-

work is a key factor in deciding a priori what parameteri-

sation method to apply, or indeed whether or not the

continuum approach is appropriate in the first instance.

Varying vascular density as per Sect. 3.2 is effectively

equivalent to altering the hierarchic parameter vector entry

z3. This demonstrates the robustness of the parameterisa-

tion method for this particular network, and a more com-

prehensive study of hierarchic parameter vector

perturbation is currently underway on an anatomical vas-

cular model. We also showed that the derivation of the

inter-compartment coupling fields b was robust in relation

to discrete pressure BCs. This is a critical finding with
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respect to the future application of the Darcy parameteri-

sation to dynamic perfusion models.

The challenging issue of choosing the optimal number

of Darcy compartments, N, is very much problem depen-

dent. With respect to whole-organ anatomical vascular

models, the choice of N is limited by the number of vessels

obtainable from the experimental data and image pro-

cessing. In this sense it is related to the vascular density,

the applicability of Darcy’s Law, and the impact of N on

the overall perfusion results.

We believe that our 3D Darcy model plus volumetric

sources for inter-compartment connectivity is more repre-

sentative of the perfusion process in tissues than the pio-

neering 4D Darcy model of Huyghe and Van Campen [9]

as we use global network data in the definition of the inter-

compartment coupling field b (see Eq. (17)). While they do

use a discrete pressure field in the definition of one of their

hierarchic parameter fields, this merely determines which

vessels belong to each compartment, and is not used in the

determination of the parameter values themselves.

4.1 Limitations

The application of Darcy’s Law to a branching network

does not strictly satisfy the assumptions of its derivation

via homogenisation, i.e. the requirement of a spatially

periodic microstructure. However, one should recall that

Darcy’s Law originated as a phenomenologically derived

constitutive equation. The merits of applying a Darcy

approach for perfusion modelling should be judged by the

simulation outcomes. Of course, one could assume that as

the vessel scale increases one is moving further away from

a state where it is appropriate to apply the Darcy model. At

which point this transition occurs is currently being

investigated.

In common with many spatial averaging techniques, a

limitation of our parameterisation process is the choice of

RVE size. In Sect. 3, Fig. 3 shows a decrease in rms error

with increasing smoothness of the averaged discrete pres-

sure. Concomitantly, Fig. 4 reveals the divergence of the

averaged discrete pressure from the true Poiseuille solu-

tion. The decreased smoothness of the Darcy solution from

RVE radius of 0.133–0.16 mm is an indication of fluctu-

ations in the parameterised fields. This is an undesired

feature within the spatial averaging technique, and thus an

RVE of this size is deemed to be unsuitable. We suggest

that the RVE size should be chosen based on analysis of

these two relationships to yield an RVE based upon a

desired error tolerance and faithfulness to the discrete

pressure over the network. The RVE should also be of a

sensible size with respect to any available clinical valida-

tional data, e.g. the RVE radius should be smaller than the

in-plane resolution of the perfusion imaging data (typically

with an in-plane resolution of 1–1.5 mm), as otherwise the

model is averaged over a larger volume than the data we

wish to compare to. Moreover, an unsuitably large RVE

size can produce various undesired artifacts, e.g. constant

porosity across X;or the creation of unphysiological flow

paths. The error metric results presented have been com-

puted on a 16 9 16 9 16 mesh. To test for convergence,

the Darcy parameterisation methods were applied to a finer

mesh (32 9 32 9 32), the results of which were found to

Fig. 7 a A vascular model resulting from a confocal study of a rat

LV tissue wedge. b The depicted cube shows the location of the

extracted vessels of Case 1 in relation to the sample in a (see also

Table 2). c Poiseuille pressure was solved on the extracted

subnetwork with pressure BCs on two opposing faces (input pressure

of 2 kPa and outflow pressure of 1 kPa), and no flux conditions on all

other terminal nodes. Note that the subnetwork has been rotated from

the view in b

Table 2 rmspp values for the anisotropic networks extracted from

confocal imaging data of a rat left ventricle tissue wedge

Case /I PCA HvC

1 1.239e-01 1.085e-01 9.330e-02

2 1.189e-01 1.049e-01 9.773e-02

Observe that the projected-PCA method has outperformed the

porosity-scaled isotropic permeability assumption. Case 1 is illus-

trated in Fig. 7. Case 2 is another extracted subnetwork from the

wedge that does not share any vessel with the Case 1 network
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be qualitatively the same as those on the coarser mesh

(results not shown).

RVE size is also sensitive to the hierarchic parameter, f;
and hence the vascular partition. The f field relies on the

quality and type of the vascular model. A poorly seg-

mented network with missing subtrees would yield vessels

with unusually small f value compared to vessel radius. Of

course these could be easily detected via statistical tests on

the network. If vascular loops are present in the arterial

network model then f could be defined via a discrete

pressure solution [32].

As stated previously in Sect. 3, all K tensor fields have

been individually scaled by a constant in order to yield the

lowest rms error for each method. While this is not a

serious computational burden, work is ongoing to develop

an analytically derived scale that is dependent on the

vascular anatomy with the aim of making this post-pro-

cessing step redundant or at least obtaining a closer starting

point for the optimisation algorithm. The fact that a

reduction in rms error is achieved by this step is indicative

that the validity of the assumptions implicit in the K

parameterisation methods may not strictly apply. One

could consider the rescaling as a manner of accounting for

the facts that there are a finite number of vessels in the

compartment and that not all vessels are actually in par-

allel. Furthermore, rather than being a hindrance, the

exciting possibility of using the K rescaling in the future as

a metric to guide the optimisation of the number of com-

partments to be employed is being investigated.

4.2 Towards clinical relevance

The perfusion model presented currently considers flow

within the closed section of the circulatory system only, i.e.

all fluid mass that enters the tissue exits via the venous

system. The application of our perfusion model is focused

on flow behaviour over the relatively short time frame of 1

or 2 s, and thus the effect of the lymphatic system is

neglected. However, we recognise the importance of the

lymph system for understanding a number of known

pathophysiologies. Thus, if perfusion is, in future, mod-

elled over a longer time frame, such as a day, then extra

porous compartments could be added to model lymphatic

flow, provided suitable experimental data can be obtained

to parameterise the permeabilities of these additional

compartments.

We verified that the porosity-scaled isotropic method

produced larger rms errors, in comparison to methods that

used directional vessel data, when anisotropy was known to

be present in the network. However, it is worth noting that

this error converges towards the HvC error with increasing

RVE size (Fig. 3), yielding a 22 % increase in the porosity-

scaled isotropic error over the HvC error at our preferred

RVE radius of 0.2667 mm. This could allow for the use of

the less complex porosity-scaled isotropic method for

parameterising models where detailed vascular data is not

available. In the near future, it may even be possible to

determine in vivo total macroscale porosity measures of

tissue, using a combination of high resolution MRI and

intravascular contrast agents.

This paper outlines a method for parameterising a static

perfusion model. Clearly K would need to alter if the

network undergoes deformation and/or dynamic changes in

intramyocardial stress, as one would expect in a beating

heart [24]. Geometric changes can be accounted for within

this process by appropriate transformations utilising the

deformation gradient tensor and porosity changes. Provid-

ing for realistic coupling between the mechanical stress and

intravascular pressures is likely to involve complex

extensions to the usual strain-energy constitutive equations.

Modelling autoregulation, within a dynamic perfusion

model, represents a more formidable challenge. Such an

addition would increase the complexity and non-linearity

of the model significantly, but incorporation of this sym-

pathetic response is a long-term goal for the future mod-

elling of tissue perfusion.

While this paper focuses on a tissue domain that is

perfused by a single network, our methods naturally extend

to the case of multiple distinct perfusion regions existing

within a contiguous tissue domain. Evidence for such dis-

tinct perfusion regions has been provided by direct visu-

alisation of cryomicrotome data [28]. Indeed, in a previous

paper, a single arterial subnetwork was extracted for use in

a perfusion model from a whole-organ arterial tree [5]. The

obvious extension to this work is to simulate perfusion

within a tissue volume supplied by numerous arterial

subnetworks whereby the Darcy domains are spatially

partitioned into the distinct perfusion regions. This model

can easily be extended to consider a subdomain of the

organ volume, and in this scenario the zero flux BCs could

be relaxed, e.g. to simulate the presence of a collateral

vessel.

In recognition of its critical role in organ perfusion and

pathological perfusion diseases, the microcirculation net-

works can be incorporated into the perfusion model as

another Darcy compartment. However, while there is a lack

of whole-organ anatomical capillary network data, this

could be overcome via estimating vessel directions through

correlations with tissue structural data such as the local

fibre/sheet/sheet-normal axes. Principal flow directions

within the microcirculatory compartment, defined using

this existing data, would be an important addition to our

perfusion model.

Once fundamental parameterisation questions have been

resolved, one can then simulate more clinically realistic

scenarios, using patient-specific, CT-derived large
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epicardial vessel models to provide the volumetric source

driving the multi-compartment Darcy perfusion model. The

latter component of which has already been shown to be

able to be simulated within a clinically relevant timescale

[16].

Finally, throughout this study, the tissue and accompa-

nying vascular network have been treated in a general

manner. Thus, this method and the findings with respect to

sampling domain size and vessel density sensitivities are

applicable to perfusion models of various tissue types

which are clearly of interest, e.g. lung [18], kidney [35],

brain [1], etc. Intra-species variability of same organ and

same phenotype vascular networks has yet to be studied on

a statistically significant scale, primarily due to the expense

of such a survey. Nevertheless, this is an important future

step if we wish to utilise averaged permeability fields

within a generic perfusion model of the given organ.

Ultimately, the combination of this multi-compartment

Darcy model, an experimentally derived vascular model,

and extracted microsphere data from the same tissue vol-

ume used to provide the vascular model would potentially

form the ideal experimental validation of our methodology.
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