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Abstract To allow a routinely use of brain–computer

interfaces (BCI), there is a need to reduce or completely

eliminate the time-consuming part of the individualized

training of the user. In this study, we investigate the pos-

sibility of avoiding the individual training phase in the

detection of movement intention in asynchronous BCIs

based on movement-related cortical potential (MRCP).

EEG signals were recorded during ballistic ankle dorsi-

flexions executed (ME) or imagined (MI) by 20 healthy

subjects, and attempted by five stroke subjects. These

recordings were used to identify a template (as average

over all subjects) for the initial negative phase of the

MRCPs, after the application of an optimized spatial fil-

tering used for pre-processing. Using this template, the

detection accuracy (mean ± SD) calculated as true posi-

tive rate (estimated with leave-one-out procedure) for ME

was 69 ± 21 and 58 ± 11 % on single trial basis for

healthy and stroke subjects, respectively. This performance

was similar to that obtained using an individual template

for each subject, which led to accuracies of 71 ± 6 and

55 ± 12 % for healthy and stroke subjects, respectively.

The detection accuracy for the MI data was 65 ± 22 %

with the average template and 60 ± 13 % with the indi-

vidual template. These results indicate the possibility of

detecting movement intention without an individual train-

ing phase and without a significant loss in performance.

Keywords EEG signal processing � Movement-related

cortical potential � Stroke rehabilitation �Motor imaginary �
Subject training

1 Introduction

A brain–computer interface (BCI) provides an alternative

communication channel for healthy or disabled users from

their brains to external environment. A BCI system can

detect changes of the state of mind from the on-going EEG

and control an external device (e.g., text-entry system,

prosthesis, and computer game). Since no peripheral nerves

or muscles are involved in this process, BCI systems may

be used as an assistive technology for patients with severe

motor disabilities, such as stroke or locked-in patients [4].

In classic BCI approaches, the systems require exten-

sive, sometimes frustrating, training by the subjects [1, 6].

Nevertheless, recently, the training time for classification

of movement tasks has been shown to be reduced to

\30 min [3, 14], without significant loss in performance

with respect to longer training strategies [10]. Moreover, a

subject-independent calibration (training) of a BCI system

has been also proposed for a two-class classification task

[7].
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In recent years, BCI research has gained interest in the

field of rehabilitation [4, 16]. A BCI system can be used

either for controlling an assistive device to replace a lost

motor function [e.g., functional electric stimulation (FES)

or robotic limbs] [2, 17] or for inducing task-specific

neuroplasticity for motor recovery (neuromodulatory

effect) [5]. For neuromodulatory applications, there is a

need to artificially establish a causal relation with short

latency between the movement intention and stimulation of

muscle afferents [8]. For this purpose, the movement

intention has to be detected by a self-paced BCI system

with short latency. Long individualized training is not

desirable in these applications because it may interfere with

the neuromodulatory effect of the main intervention phase.

In this study, we focused on the detection of movement

intention and we contribute to the development of a self-

paced BCI system that does not require an individual

training. Moreover, since the number of EEG channels

should be reduced for clinical BCI applications [7, 12], we

also focus on a processing method using a single Laplacian

derivation (based on optimized linear combination of input

channels). The general concept that allows subject-inde-

pendent training is similar to that used in previous studies

[7, 10], although those studies addressed classification of

different movements, whereas we focus on the detection of

movement intention for self-paced BCI. To limit the

latency of detection, we use movement-related cortical

potentials (MRCPs) as the brain signals on which the

system operates. The initial negative phase of the MRCP

indeed precedes the movement by *1.5 s. The subject-

independent training paradigm for detection of MRCPs is

tested on healthy and stroke subjects and compared the

performance with the individualized training approach.

2 Methods

2.1 Subjects

Twenty healthy subjects (23.3 ± 5.2 years) and five stroke

patients (44.2 ± 20.1 years, 4 males, 2 left side affected)

participated in the experiments. Infraction was the cause of

stroke for two patients whereas the others had been diag-

nosed with hemorrhage. On average, 54.2 ± 29 days from

the stroke event had passed before the data collection

sessions. Lesions were located by CT or MRI scans. Three

patients had their right sides affected and were diagnosed

with hemorrhage whereas the remaining two had the left

side affected and were diagnosed with infarction. The

degree of disability was evaluated by Functional Indepen-

dence Measure (FIM�). The FIM is widely used in reha-

bilitation settings to assess the general level of disability of

a patient. The score consists of 18 items e.g. self-care,

Sphincters, mobility, locomotion, communication, psy-

chological, cognitive functions. Each item is rated on a 7

point ordinal scale (minimum total score is 18, maximum

total is 126 points). None of the healthy subjects had

known sensory–motor deficiencies or any history of psy-

chological disorders. All subjects gave their informed

consent before participation and the procedures were

approved by the local ethics committee of Nordjylland,

Denmark (N-20100067).

2.2 Procedures

The subjects were seated comfortably in a chair, with the

right leg secured in a custom made fixture. A pair of surface

EMG electrodes was mounted on the tibialis anterior (TA)

muscle of the right side (dominant in all cases). Surface

EMG signals were recorded in bipolar derivation, amplified

with gain 1 k (healthy subjects: EMG-16 amplifier, OT

Bioelettronica; stroke patients: BrainAmp EXG, Brain

Products). The EMG signals were sampled at 1,000 Hz for

healthy subjects and 2,500 Hz for the patients. Different

amplification systems were used for healthy subjects and

patients since patients were assessed in a clinical setting.

The reference electrode was placed at the ankle. Monopolar

EEG signals were recorded (EEG amplifiers, Nuamps

Express, Neuroscan and BrainAmp DC, Brain Products for

healthy subjects and stroke patients, respectively) from Ag/

AgCl scalp electrodes (EC80, Easy cap) (healthy) and from

an active electrode cap (actiCAP, Brain Products, Germany)

(patients). The electrodes were located at the International

10–20 system locations FP1, F3, F4, FCz, Pz, P3, P4, C3, C4,

and Cz. The right ear lobe was used as a reference and the

ground electrode was placed at nasion.

Healthy subjects were instructed to perform ballistic

ankle dorsiflexions, at random intervals. No external

stimuli or cues were presented to the subjects for task

executions. They were instructed to reach a torque level

corresponding to 20–30 % of the maximum voluntary

contraction (MVC). This procedure resulted in a fully self-

paced set of executed movements (ME). In each experi-

mental session, on average 2–3 runs of *5 min duration

each were recorded, with rest periods of 2–3 min in

between. In each run, the subjects performed on average 15

trials.

The same healthy subjects also performed motor imag-

ination (MI) with the same paradigm as described above on

a separate day. In this experimental session, the subjects

were asked to imagine the kinematics of ballistic ankle

dorsiflexion without executing it. In this session, four runs

of 5 min duration were performed. During the first two

runs, the subjects performed the real movements, to

develop their strategies of MI of ballistic ankle dorsiflex-

tion. During the last two runs, they performed self-paced
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imaginary dorsiflexion. MI in this fully self-paced para-

digm was identified with the press of a button by the

subjects with their left thumb, approximately 2 s after

the MI. The button press could potentially interfere with

the detection of the MI task; however, for self-paced MI

protocols, there is no standardized approach for the event

labeling. Therefore, this study opted for this simple and

relatively accurate event labeling technique.

To preliminarily validate the clinical applicability of the

proposed approach, experiments were also performed on

five hospitalized stroke patients. The patients were

instructed to randomly attempt ballistic dorsiflexions of the

right ankle, at a pace that they felt comfortable. No external

stimuli or cues were presented to the subjects. A total of

five runs of approximately 5 min duration were recorded

with rest periods of 3–5 min in between.

The proposed detector is based on a template matching

approach (matched filter; see Sect. ‘‘Signal analysis’’). The

template for the matched filter was built from the entire

data set (excluding the test subject), therefore it was built

without individual training (global detector, GD). This

detector was compared with a detector built by a subject-

specific calibration (individualized detector, ID). For the

healthy group data sets, the training set for the individu-

alized detector (ID) was built from the first one/two runs

and tested on the remaining runs. For stroke patients, the

initial two runs were used as training set and the last three

runs were used as testing set for the ID. The global detector

(GD) was tested in a similar fashion with a leave-one-out

validation method. According to this procedure, the data of

all but one subject were used for building the detector

which was tested on the left-out subject. All the runs of the

subject being tested were considered as testing data set

(TST1) in one validation session. Moreover, for direct

comparison with the ID approach, the GD was also tested

for the testing subject only on the run(s) used for testing the

ID (TST2-GD), such that the testing sets of TST2-GD were

identical to the respective ID cases. In this way, the testing

was executed on exactly the same data for the ID and the

GD. For the MI data, separate templates were built for each

session. For this purpose, the self-paced real movement

(run 1 and 2) were used as training data sets, whereas the

last two runs of self-paced MI were used as testing data sets

for ID, as done in Ref. [14]. For GD, all the real movement

runs of all the subjects, except the one being tested, were

used as training set and the MI runs of the subject being

tested were used as testing data set.

2.3 Signal analysis

The EEG signals were band-pass filtered from 0.05 to

10 Hz, and then down-sampled to 20 Hz. The details of the

spatial filtering and detector algorithm are presented in Ref.

[14], where an individualized approach was used. In

summary, the analysis was divided in two steps: MRCP

template extraction and detection. First, the coefficients for

an optimized spatial filter (OSF) were computed to maxi-

mize the signal-to-noise ratio (SNR). The initial negative

phase of the MRCPs (from the start of the depression phase

to its peak negativity, as illustrated in Fig. 1) in the spa-

tially-filtered channel of the training data was used as

template. The extracted MRCP template was used to detect

movement intentions in the test data set by a matched filter.

Before the detection of movement in the test set, a receiver

operating characteristic (ROC) curve was obtained by

varying the detection threshold. The threshold was selected

at the knee of the ROC so that a balance between true

positive rate (TPR) and number of false positives (FPs)

could be obtained. The detector decision was based on a

2-s sliding window, with 200 ms shift.

A movement was identified in the EEG traces of the test

data set when two of the three consecutive windows

crossed the threshold corresponding to a desired false

Healthy Subjects

Stroke patients

Fig. 1 Normalized individual and global MRCP. MRCP obtained

with OSF for healthy and stroke subjects. The solid line shows the

average across all subjects. The dashed lines show the individual

MRCPs. The initial negative phase of the MRCP (part before the
vertical dashed line) was used as template for the matched filter
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alarm probability. The following performance parameters

were calculated: TPR (%), FPs per minute, and latencies

(detection time with respect to the onset of the events). For

the calculation of the latency, the reference movement

onset (event) was estimated as the time instant when the

rectified EMG signal amplitude crossed a threshold equal

to one-tenth of its maximum during the ME. For stroke

patients, the residual EMG signal was used in the same way

as in healthy subjects to mark an event. For the MI data of

healthy subjects, the latency could not be computed.

Epochs with EOG activity exceeding 125 lV were

discarded.

Paired t tests were applied to investigate the potential

differences in the performance indexes and latencies

between TST1 and ID and between TST2 and ID with

TPR, in both the healthy and stroke subject group.

3 Results

The TPR (%) and FPs per minute of the GD with TST1 and

TST2 as test data set and the ID are presented in Fig. 2 for

healthy subjects and stroke patients.

For ME, the average (across all healthy subjects) TPR

obtained with the GD for the TST1 and TST2 data were

67 ± 21 and 69 ± 20 %, respectively, while the TPR of

ID (71 ± 6 %) was slightly higher than that of the GD. The

FPs per minute of the GD were 2.8 ± 1.7 (TST1) and

2.7 ± 1.3 (TST2), which was higher than those of the ID

(1.9 ± 1.2). On the contrary, the average detection latency

relative to the onset of movement obtained by the GD was

-196 ± 162 ms (TST1) and -199 ± 147 ms (TST2),

which was shorter than the latency of the ID (-85 ±

122 ms) (negative latencies indicate that the detection is

leading the actual movement onset). The paired t test for

the ME data did not reveal significant differences in TPR

between TST1 and ID, nor between TST2 and ID

(P [ 0.05). For FP, paired t test revealed significant dif-

ference between GD and ID for both TST1 and TST2

(P \ 0.05). Further, the latency was significantly better

with the GD approach both when comparing TST1 and ID

(P = 0.03) and TST2 and ID (P = 0.02).

For MI, the average TPR obtained with GD was

65 ± 22 % which was slightly greater than that of ID

(60 ± 13 %) (Fig. 2). The FPs per minute were 4.0 ± 1.7

with GD and 2.7 ± 2.8 with ID. Paired t test did not find

statistical difference in the performance indexes between

GD and ID for the MI data.

For stroke patients, the average TPR obtained with GD

were 60 ± 11 and 58 ± 12 % for TST1 and TST2, which

was slightly higher than that of ID (55 ± 12 %). The FPs

per minute of the GD were 4.1 ± 3.9 and 4.3 ± 4.1, for

TST1 and TST2, respectively, which were greater than that

of ID (1.7 ± 1.5). The average latency was 152 ± 239 and

162 ± 252 ms, for TST1 and TST2, respectively, with the

GD, and 57 ± 140 with ID. In stroke patients, the mor-

phology of MRCPs was different from that in healthy

subjects as seen in Fig. 1b. Paired t test revealed no sta-

tistical difference (P [ 0.05) for TPR, FP, and latencies in

stroke patients across detector types.

4 Discussion

To allow the use of BCI technology in clinical settings, the

time for system setup calibration and optimization (train-

ing) has to be minimized. In this study, we introduced a

method for the detection of movement intention from

MRCPs that does not require an individual training on the

subject but rather makes use of an ensemble dataset of

previously collected signals from a population of subjects.

In this way, the individual training phase is not needed. We

compared this subject-independent detector with an indi-

vidualized detector. The results indicated that the perfor-

mance (TPR) with the proposed GD did not decline

substantially as compared to that of the ID for data col-

lected from a healthy and a stroke population. In addition,

it was observed that the latency in detection was shorter in

the healthy population when using the GD approach with

respect to the ID. This result can be explained by the fact

that the use of a MRCP template from a larger database

may have reduced the high inter-subject and inter-session

variability in the MRCP template. The stroke patient’s data

Fig. 2 Performance for healthy and stroke subjects. Results from

healthy motor execution (ME) and motor imagination (MI) (N = 20)

and stroke patients (N = 5) testing data set with the TPR (%)

(mean ± SD) and FPs per minute (mean ± SD). TST1 represents all

the runs of the subject being tested with global detector (GD), TST2
are the identical testing run(s) as used for testing of the ID in motor

execution/attempted task in healthy and stroke subjects, respectively
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showed the same trend, although not statistically significant

which could be because of the smaller subject sample size

and different pathological conditions of the individual

patients.

There are only few studies which have used subject-

independent training methods for BCIs. The works

described in Refs. [11, 13] are based on sensorimotor

rhythms (SMR) cue-based system for classification of two

predefined movement imaginations (left vs. right hand

movement). In both studies, a subject-independent training

method exhibited a slight performance decrease as com-

pared to that of individualized training approach. Contrary

to these studies, our focus was on self-paced detection of

movement intentions in healthy and stroke subjects.

With respect to other approaches for detecting move-

ment imaginations (for e.g., based on beta rebound [15]),

the proposed method provides the unique possibility of

detecting/predicting motor intentions with short latency

[14]. This is particularly useful for applications in neuro-

modulation, where the delay between the intention of

action and the resulting feedback from the system is critical

(within hundreds of ms from the movement onset) to

induce changes in cortico-spinal excitability based on

associative type of long-term potentiation (LTP), as shown

in Refs. [11, 13]. Moreover, the detection accuracy and rate

of false positives are in the same range as compared to that

of [13] to induce changes in cortico-spinal excitability.

Therefore, the proposed method can be potentially used to

trigger peripheral muscle stimulation or any other assistive/

restorative system for rehabilitation purposes. When

interpreting the results on the MI task, it is necessary to

consider that the motor task of button press of *2 s after

MI, for event marking, could potentially interfere with the

MI detection.

The significant difference observed between latencies

obtained from healthy ME task with GD and ID could be

due to the fact that GD was built from a larger training data

set as compared to ID. Moreover, the data of the present

study (Fig. 1) show that the temporal and spatial profiles

associated with the MRCPs are consistent across subjects,

so that more data in the training set will result in template

with greater SNR. Finally, the coefficient optimization

process of OSF is signal (data) driven [14], which will

provide better spatial optimization for better template and

this will result in shorter latencies. It has to be noted that

the detection latencies for stroke patients were positive

which was likely due to the morphological differences in

stroke and healthy MRCPs [9]. Generally because of stroke

or other neurological disorders, sensorimotor integration is

disturbed and this may result in delayed onset of reafferent

potential, which is also evident from the MRCP shape

after the onset in Fig. 1b. Because the lesion sites can be

very different among stroke patients, potentially the GD

approach might be better to build the detector from a group

of subjects to counteract the inter-subject variability. There

was indeed a trend for better performance with the GD

approach in stroke patients.

In conclusion, this study demonstrates that it is possible

to eliminate the conventional method of calibration for

detection of intentional control during self-paced BCI’s

based on single channel in healthy subjects and stroke

patients.
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