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The identification of undiagnosed disease outbreaks is critical for mobilizing

efforts to prevent widespread transmission of novel virulent pathogens.

Recent developments in online surveillance systems allow for the rapid com-

munication of the earliest reports of emerging infectious diseases and

tracking of their spread. The efficacy of these programs, however, is inhib-

ited by the anecdotal nature of informal reporting and uncertainty of

pathogen identity in the early stages of emergence. We developed theory

to connect disease outbreaks of known aetiology in a network using an

array of properties including symptoms, seasonality and case-fatality ratio.

We tested the method with 125 reports of outbreaks of 10 known infectious

diseases causing encephalitis in South Asia, and showed that different

diseases frequently form distinct clusters within the networks. The approach

correctly identified unknown disease outbreaks with an average sensitivity

of 76 per cent and specificity of 88 per cent. Outbreaks of some diseases,

such as Nipah virus encephalitis, were well identified (sensitivity ¼ 100%,

positive predictive values ¼ 80%), whereas others (e.g. Chandipura ence-

phalitis) were more difficult to distinguish. These results suggest that

unknown outbreaks in resource-poor settings could be evaluated in real

time, potentially leading to more rapid responses and reducing the risk of

an outbreak becoming a pandemic.
1. Introduction
Despite the enormous social, demographic and economic impact of emerging

infectious diseases [1], and billions of dollars spent to control them, there has

been limited progress in the development of tools for early intervention that

could prevent the emergence and spread of pathogens in the initial stages of

an epidemic [2–6]. This is an acute problem in resource-poor nations that

have limited surveillance capacity and often lack laboratory facilities to

diagnose unusual outbreaks.

To address this issue, online databases and surveillance reporting net-

works have been developed to identify and monitor the emergence and

spread of infectious agents. These include tools to aid in the clinical diagnosis

of single cases of infectious diseases [7–13], tools that process unverified
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Figure 1. The method to cluster disease reports of similar properties, here
demonstrated using a network consisting of six outbreak reports of bacterial
meningitis and six of NiV encephalitis: (a) each outbreak report is associated
with a single network node (circle). (b) Edges (lines) between nodes are cre-
ated if the two reports represented share a symptom or other property. Edges
are thicker if more symptoms are shared, and the size of a node represents
the total number of symptoms/properties shared with other nodes. Edge
length, however, is not significant. (c) Each symptom and outbreak property
is then given a weight, and the edge thickness (or edge weight) is now repre-
sentative of the sum over all the weights of symptoms/properties shared
between the two disease reports at the end of the edge. The symptom weights
are optimized for greatest clustering of reports. The size of a node now represents
the sum over the weights of all edges connected to it, which can be interpreted
as the amount of information contained in the report that is relevant for the clus-
tering of reports. (d ) An algorithm for community detection finds two clusters:
edges that connect two nodes within the same cluster are black, and ones that
connect two nodes in two different clusters grey. In this case, the algorithm suc-
cessfully distinguished between bacterial meningitis (red) and NiV encephalitis
(cyan). Note that in all figures, lengths of edges and positions of nodes have
no meaning as such, and have been chosen based on an algorithm for optimal
visualization [24].
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epidemic intelligence using specific keywords, e.g. Health-

Map.org [14,15] and Google Flu Trends [16], those that

compile verified outbreak data, e.g. GLEWS (Global Early

Warning System for major animal diseases including zoo-

noses, http://www.glews.net) [17], GAINS (Global Animal

INformation System, http://www.gains.org) and Global

Infectious Disease and Epidemiology Network (GIDEON)

[7] and those that disseminate expert-moderated outbreak

reports and anecdotal information, e.g. ProMED-mail [18].

To the best of our knowledge, no decision support tool

exists for the rapid and inexpensive assessment of outbreaks,

particularly in the face of minimal information and limited

resources to make the clinical assessments necessary to

parametrize one of the existing diagnostic models.

We developed a method based on network theory

to evaluate potential causes of outbreaks of disease. While

many statistical approaches exist for assigning multivariate

data records into categories, e.g. Bayesian network analysis or

discriminant functions analysis [19], the method we present

here has the advantage of allowing for multiple equitable sol-

utions for symptom assignment. Our method employs an

ensemble of adequate solutions and this ensemble allows one

to assess certainty of outbreak diagnosis assignment.

Network theory is the study of relationships between enti-

ties (‘nodes’) and connections between these entities (‘edges’)

[20]. Network theory has previously been used effectively to

describe social and biological datasets [21,22], and it has

been shown to be a useful tool for cluster analysis [23].

Here, we consider outbreaks as nodes, and create an edge

between any two outbreaks if they share symptoms, or have

similar properties such as case-fatality ratio (CFR) or season-

ality (figure 1). We give an edge greater weight if the two

outbreaks at either end are more similar in that sense (see

the electronic supplementary material for details). Groups of

outbreaks that are more strongly connected to each other

than to other outbreaks in the network can be said to form a

‘cluster’ or, more commonly in network theory, a ‘commu-

nity’. If outbreaks of different diseases were perfectly

distinguishable on the basis of the properties we consider,

each disease would form a single and distinct cluster of out-

breaks of that disease. In that case, we could use this to link

unidentified outbreaks to those of known aetiological agents

with similar properties (e.g. seasonality, CFR and symptoms)

by adding them to the network and testing which cluster they

are most similar to (in the sense that they are strongly con-

nected to outbreaks within that cluster). We applied this

method to 125 previously identified outbreak reports of 10

different diseases causing encephalitis in South Asia. We

then analysed 97 outbreaks of encephalitis in South Asia

reported on ProMED-mail that were reported without a

definitive diagnosis. We associated each of them with one of

the 10 diseases based on which cluster in the network they

are most strongly linked to. As such, our approach uses a

novel interpretation of an abstract network to link (unidenti-

fied) outbreaks to those of known aetiological agents with

similar properties (e.g. seasonality, CFR and symptoms). We

chose South Asia as it has been identified as an emerging

infectious disease ‘hotspot’ [25] and has a history of recent

pathogen emergence, including those causing encephalitis,

e.g. Nipah virus (NiV) encephalitis, Japanese encephalitis

and cerebral malaria [25]. Furthermore, investigations into

encephalitis outbreaks in South Asia have been limited and

diagnoses are sometimes controversial [26].
2. Material and methods
2.1. Differential diagnosis of diseases in South Asia
Our aim was to develop a method that could be used to identify

the pathogens causing undiagnosed outbreaks of encephalitis

in South Asia. We first built a library of potential pathogens,

and then developed a model to quantify associations between

the symptoms, seasonality and CFR caused by infection with

these pathogens.

We used the GIDEON online database to create a library of

potential diseases and pathogens and to establish a differential

diagnosis for diseases in South Asia with encephalitis as a symp-

tom. The GIDEON database contains a diagnostic module that

uses information on symptoms, country, incubation period and

laboratory tests to construct a ranked differential diagnosis [27].

Using common characteristics of outbreaks reported in ProMED-

mail, we queried GIDEON for the most likely diagnoses for such

diseases in each of the eight nations comprising the South Asian

Association for Regional Cooperation (SAARC): Afghanistan, Ban-

gladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka.

Search criteria included ‘outbreak or case cluster’, ‘severe/fatal’,

HealthMap.org
HealthMap.org
http://www.glews.net
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‘fever’, ‘neurological/headache’ and ‘neurological/encephalitis’.

For each nation, we recorded all potential diagnoses with more

than 1 per cent probability of occurrence. Potential diagnoses

with less than 1 per cent probability of occurrence and ‘first case

scenario’ diagnoses were excluded. The 10 diseases identified

and their diagnoses were compiled into an inclusive list

of differential diagnoses for the SAARC region. Two diseases,

influenza and rabies, appeared in the region-wide differential

diagnosis but were excluded from the analysis because symptoms

associated with their outbreaks are distinct and relatively easily

distinguished from encephalitides (e.g. for rabies, owing to rapid

fatality, lack of human-to-human transmission and distinct

symptoms). Two other diseases, Chandipura encephalitis and

chikungunya fever, were added to the differential diagnosis

based on their increasing incidence within the region.

We then conducted a literature search to compile a dataset

of the clinical and epidemiological features of each of the 10

diseases (see the electronic supplementary material, appendix

table S1): Chandipura encephalitis, chikungunya fever, dengue

fever, Japanese encephalitis, malaria, measles, aseptic meningitis,

bacterial meningitis, NiV encephalitis and typhoid/enteric fever.

We searched the literature for the clinical and epidemiological

features of each disease, and we restricted the results to the

SAARC nations in order to capture the seasonality and disease

aetiology in this region. For each published report, we recorded

the location of the outbreak or study, the month and year of

recorded cases, CFR, and the prevalence of symptoms among

cases (recorded as percentage of patients). Results for malaria

include only complicated and cerebral malaria, and results for

‘dengue’ include dengue fever, dengue haemorrhagic fever and

dengue shock syndrome.

2.2. Network analysis
We developed a network model to determine how outbreaks

of the same disease cluster together and how distinct they are

compared with outbreaks of other diseases, with respect to

seasonality, CFR and symptoms. Our method is based on the

assumption that in outbreaks of the same disease patients will

show similar symptoms, occur in similar times of the years,

and/or have similar CFRs. If this assumption is correct, out-

breaks will be linked by similar traits and would be clustered

into groups of the same disease (figure 1) [28]. We constructed

a network from the set of 125 diagnosed outbreak reports from

the literature of the 10 diseases selected, with each node repre-

senting a single outbreak report. A connection (edge) is created

between two outbreaks (nodes) if they share a symptom or

property, with the weight of the edge given by a weighted sum

of all symptoms/properties shared. We used a previously

developed algorithm to detect densely connected clusters of out-

breaks in networks [29]. Because some symptoms may be more

important than others in distinguishing one disease from another,

we allowed for unequal weights to each of the symptoms in

the model. We determined appropriate symptom weights using

a method that yields maximal within-cluster similarity and

between-cluster dissimilarity (called network modularity, see elec-

tronic supplementary material, appendix methods and table S2).

Because multiple sets of symptom weights could result in similar

maximal network modularity, we created an ensemble of sample

networks, each with its own set of symptom/property weights

and averaged over all of them in evaluating the outbreak reports

to increase the reliability of our analysis.

2.3. Model testing
We tested the reliability of our method by removing each of the

reference reports from the network, running the model with

the removed reference report as an ‘undiagnosed’ report, and

checking if the model-predicted diagnosis matched the actual
diagnosis. This allowed us to determine the sensitivity (pro-

portion of true positives correctly identified as such) and

specificity (proportion of true negatives correctly identified as

such) of the model for each disease. We calculated positive pre-

dictive values (PPV) and negative predictive values (NPV) for

each of the 10 diseases. PPV is the proportion of positive results

that are true positives (e.g. the proportion of outbreaks identified

by the model as dengue that were laboratory confirmed as

dengue cases), whereas NPV is the proportion of negative results

that are true negatives (e.g. the proportion of outbreaks identified

by the model as not dengue and were confirmed as something

else). We assumed that each of the 10 diseases considered was

equally likely to be the correct diagnosis for any given ‘mystery

case’ presented, and that all of our reports could be diagnosed as

one of the 10 diseases considered.
2.4. Undiagnosed outbreaks
We searched ProMED-mail for reports of undiagnosed encepha-

litis between 1994 and 2008. Search terms included ‘encephalitis’,

‘fever’, ‘mystery’, ‘undiagnosed’ and ‘unknown origin’. Search

results were again restricted to the SAARC nations. For each

ProMED-mail report, the geographic location, month and year

of the first recognized case, number of people affected, number

of deaths and clinical symptoms were recorded. We calculated

the CFR as the number of deaths per total number of cases

reported for each outbreak. For outbreaks with multiple associ-

ated incident reports over time, we recorded the total number

of reports and final diagnosis, if provided.

For the period under study (1994–2008), a sample of 99

outbreaks of undiagnosed encephalitis was selected from

ProMED-mail (see the electronic supplementary material,

appendix table S3). We removed two outbreak reports that had

incomplete information (lacking symptoms, CFR or seasonality),

reducing the dataset to 97 outbreaks. We added the undiagnosed

outbreaks to each of the sample networks, using the weights as

determined before. For each undiagnosed outbreak added, we

determined the cluster the outbreak associated best with (see

the electronic supplementary material), and recorded each dis-

ease present in that cluster. We used a bootstrap method across

the sample networks to identify the disease associated most fre-

quently with a given undiagnosed outbreak, and we consider

this as its primary diagnosis. We calculated the number of

times a disease was associated with a given outbreak out of the

total number of networks tested to determine an association

score and a corresponding 95% CI around this association.

When multiple diseases had overlapping percent association

CIs, they were all considered to be plausible diagnoses (see the

electronic supplementary material, appendix table S4), thus

increasing sensitivity but reducing specificity of our method.
3. Results
Seven communities or clusters of outbreaks were identified

based on symptoms, seasonality and CFR from associations

of the original set of 125 outbreak reports from the literature

of the 10 diseases tested (figure 2, outer ring). Ideally, each

cluster of outbreaks would consist of reports of a single dis-

ease. However, given overlapping sets of symptoms, CFR

or seasonality, most clusters included outbreaks of more

than one disease. Of the 10 diseases included in this study,

NiV infection was identified most reliably (100% sensitivity

(table 1) and 80% PPV (table 2)), and forms a distinct cluster

(figure 2). It was unique in our analysis in having a high CFR

(approx. 70%), a distinct seasonality (spring) and symptoms

of respiratory difficulty, seizure, unconsciousness, vomiting



bacterial meningitis

dengue

Japanese encephalitis

malaria

Nipah (NiV)

Chandipura

chikungunya

measles

typhoid/enteric fever

disease

aseptic meningitis

Figure 2. Visualization of the network of diagnosed outbreaks of diseases with the potential to cause encephalitis (coloured) and outbreaks of undiagnosed ence-
phalitis (white). The inner network describes the strength and relationship of individual outbreaks to each other, while the outer ring gives the composition of the
seven communities of disease that are found by the community detection algorithm. Outbreaks of the same disease (colour) tend to cluster together. The network
model acts to minimize the number of edges between outbreaks in different communities of disease and maximize the number of edges between outbreaks within
a single community of disease. Each circle, called a ‘node’, represents a single outbreak report. Lines connecting two nodes indicate shared traits between two outbreak
reports, in symptoms reported, the CFR or seasonality. Lines connecting two outbreaks within a single community are black, and lines between two outbreaks in different
communities are in grey. Thicker lines represent a greater number of shared traits and thinner lines indicate fewer shared traits. Where nodes overlap, they are strongly
connected. The size of a node (circle) representing an outbreak is proportional to the sum over the thicknesses of all edges connected to it, which can be interpreted as the
amount of information contained in the outbreak report. Note that in all figures, lengths of edges and positions of nodes have no meaning as such, and have been chosen
based on an algorithm for optimal visualization [24].
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and weakness. Other diseases with relatively high PPV were

chikungunya fever (75% PPV) on the basis of low CFR and

symptoms of nausea, joint pain, rash and myalgia, and

typhoid fever (58% PPV) based on the symptom of pneumo-

nia and low CFR (a few percent). Diseases that were

moderately difficult to identify were malaria (47% PPV) on

the basis of CFR (approx. 30%) and the symptoms of uncon-

sciousness, jaundice, acute renal failure, seizure, respiratory

difficulty and neck rigidity; and bacterial meningitis (PPV

42%) on the basis of CFR (approx. 15%) and neck rigidity.

The diseases most difficult to identify were dengue fever

(31% PPV), Chandipura encephalitis (27% PPV), Japanese

encephalitis (25% PPV) and measles (21% PPV), all of

which had properties that made them similar to other dis-

eases. As the reference dataset contained only three entries

of aseptic meningitis, the PPV of 49 per cent is tentative.

Of the 97 unidentified outbreaks from ProMED that we

analysed, our model evaluated 27 as uniquely associated

with a single disease (figure 2, white circles of the inner net-

work; electronic supplementary material, appendix table S4).

A further 38 diseases were associated with two diseases and

16 were associated with three of the 10 diseases. Of these 54

that yielded multiple diagnoses, six were associated with

NiV. Sixteen outbreaks were marked as inconclusive because

they either did not contain enough information or associated

with more than three diseases.

Since NiV was the best-identified disease in our dataset

(PPV 80%) and is relatively new and therefore easily misiden-

tified on the ground, we investigated further the possible

outbreaks of NiV (figure 3). Of the six associated with NiV
in our model, two were clinically confirmed as NiV in

follow-up studies. For the other four, two were never ident-

ified, one was diagnosed as dengue (but moderators

speculated that it may have been NiV), and one was diag-

nosed as avian influenza, which was not represented in our

reference dataset.

Attempts to identify two unknown outbreaks highlight

the importance of accurate data in the initial reports. Our

model associated two other outbreaks that were later

reported in the literature to have been diagnosed as NiV

with malaria, bacterial meningitis, Japanese encephalitis or

typhoid fever [30,31]. This misidentification resulted from

the fact that in the initial ProMED-mail reports for these

two outbreaks, the CFR was significantly lower than in

the post-outbreak data in the literature [30,31]. The CFR

may have been understated in ProMED-mail reports due

to incomplete recording or right-censoring of the CFR

when estimated during an ongoing outbreak [32]. When the

later estimates for CFR from the literature were used for

these two outbreaks, our method correctly identified them

as NiV.
4. Discussion
We developed a novel method to identify disease outbreaks

based on their similarity in properties and symptoms

reported. Our method yielded high PPV, sensitivity and

specificity for an important virulent disease, NiV, and rela-

tively high values for several other causes of encephalitis in
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South Asia. We then used this method on unidentified

reports of encephalitis outbreaks in South Asia, and ident-

ified several outbreaks as likely being caused by NiV,

which was new to the region at the time when the outbreaks

occurred. Retrospective studies of several of the NiV out-

breaks identified the causative agent, and our method

provided the correct identification in most cases, but with a

key caveat: when the original outbreak contained inaccurate

information on one or more outbreak traits (in this case, the

CFR), the method incorrectly classified the outbreaks. This

highlights the strength of the method when the original out-

break has accurate information, as well as the importance of

the quality of information in the reporting system. Unfortu-

nately, inaccurate initial estimates of the CFR are not

infrequent (and difficult to correct if they result from right-

censoring) and can lead to allocations of public health

resources that might retrospectively be considered less than

ideal, e.g. the 2009 H1N1 pandemic [33–35].

Although there are limitations to our approach, this study

provides a proof of principle for a potentially powerful

method. As just noted, the accuracy of our method relies

critically on the accuracy of the data reported and the comple-

teness of the reports. Furthermore, it is possible that some

outbreaks continued beyond the last posting of details on

ProMED-mail, and CFRs estimated during an outbreak are

known to be biased [32]. Some of these problems could be

mitigated by including data taken at different stages of out-

breaks or by comparing the unidentified outbreak reports

with identified outbreaks reported via the same source

(ProMED-mail). In addition, even with accurate information,

our method can only provide probabilities for association

with each of the diseases based on the assumption that it is
one of the diseases. However, while our method is currently

limited by the list of reference diseases provided, it can also

be used to flag reports that do not seem to fit any of these

well. If, for example, several outbreak reports for a region

were highly clustered with each other but not with any

known disease in the model, then this would be evidence

for a potentially new disease or new disease to the region,

and could be prioritized for further investigation. Similarly,

this approach may have value in determining whether

exotic pathogens have been introduced to a region either

inadvertently or deliberately. The ensuing outbreaks may

have characteristics that cause them to cluster with diseases

outside those normally encountered in a region, and an

expanded network analysis may be able to identify their

aetiology more rapidly than sample collection would allow.

This method can be applied more broadly to extend the

range of diseases as well as hosts under consideration

(e.g. zoonotic disease in wildlife reservoir hosts). Disease

communities with distinct symptoms will be the best

candidates for use with this method. Encephalitis was an

ideal candidate symptom as it was less common than a

symptom such as fever, but common enough to be shared

by a set of diseases within a single region. Diseases with

respiratory illness, on the other hand, would be significantly

more difficult to differentiate because of the ubiquitous

nature of this symptom across many possible diseases.

Further research is required to determine the full potential

of this approach and the applicability of this method to

other diseases.

A major strength of our approach is that it does not

require expert judgement or laboratory analysis and provides

a way to quickly and inexpensively assess outbreaks. A key
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direction for future research would be to compare the

approach we have proposed here to expert opinion. Compari-

sons of our method to other clustering techniques would also

be of substantial interest, but we note that an important chal-

lenge is that many other methods have substantial difficulty

with incomplete data and unequal weighting of traits,

whereas our method is able to overcome both of these

obstacles. Given the opportunistic nature of outbreak reports,

this is an important strength.

Our method has the potential to greatly increase the value

of surveillance systems such as ProMED-mail, and online sur-

veillance systems in general, which rapidly disseminate

information on outbreaks prior to the results of laboratory

diagnostics. Although our initial analysis was restricted to

ProMED-mail, it is likely that this method would also be

effective using data that have been collected by filtered

searches such as those used by HealthMap [15]. More gener-

ally, the recent increase in the number of online surveillance

tools, and their speed and efficiency at reporting novel

outbreaks, combined with our analysis approach, could

become a significant rapid identification tool for diagnosis.

With increasing availability and capacity of Internet sur-

veillance systems, our application of network theory to

outbreak assessment demonstrates the inherent, and under-

estimated value in collecting key data on novel outbreaks,

and disseminating it early and openly. There is immense

potential in using methods for automatic text recognition
combined with improvements to our method and integration

with alternative methods for cluster analysis, to extract as

much information as possible from these reports. Many

new infections such as NiV first emerge in resource-poor

regions, making an intensive and/or active surveillance

system difficult. With relatively little additional development,

the method presented here could provide a low-cost tool that

allows for the rapid, objective assessment of outbreaks of

diseases at the onset of their emergence.
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