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Anisotropy is one of the most peculiar aspects of cortical bone mechanics;

however, its anisotropic mechanical behaviour should be treated only

with strict relationship to the length scale of investigation. In this study,

we focus on quantifying the orientation and size dependence of the spatial

mechanical modulation in individual secondary osteons of bovine cortical

bone using nanoindentation. Tests were performed on the same osteonal

structure in the axial (along the long bone axis) and transverse (normal

to the long bone axis) directions along arrays going radially out from

the Haversian canal at four different maximum depths on three secondary

osteons. Results clearly show a periodic pattern of stiffness with

spatial distance across the osteon. The effect of length scale on lamellar

bone anisotropy and the critical length at which homogenization of

the mechanical properties occurs were determined. Further, a laminate-

composite-based analytical model was applied to the stiffness trends

obtained at the highest spatial resolution to evaluate the elastic constants

for a sub-layer of mineralized collagen fibrils within an osteonal lamella

on the basis of the spatial arrangement of the fibrils. The hierarchical

arrangement of lamellar bone is found to be a major determinant for

modulation of mechanical properties and anisotropic mechanical

behaviour of the tissue.
1. Introduction
Cortical bone is a heterogeneous, hierarchical composite material with

important structural features spanning multiple length scales, each of which

contributes to macroscopic biomechanical function [1–5]. At the microstruc-

tural level, both in humans and in many other large vertebrates, a

particularly critical determinant of the mechanical properties of the whole

tissue are concentric lamellar cylindrical structures called secondary osteons

(figure 1a–c) [6,7].

The detailed lamellar structure within individual secondary osteons was

interrogated via synchrotron X-ray texture measurements and consists of

three-dimensional helicoids of mineralized collagen fibrils [6]. Transmission

electron microscopy [7–10] revealed that the mineralized collagen fibrils that

make up one sub-layer of the lamellar unit have an internal crystalline structure.

Within each lamella, which typically has a approximately 3–7 mm thickness,

the long axis of the collagen fibrils rotates from a direction roughly parallel

to the osteonal axis at one lamellar boundary (referred to as ‘thick’ sub-layers

or sub-lamellae, approx. 2–4 mm thick) to a direction approximately

perpendicular to it at the opposite lamellar boundary (referred to as ‘thin’

sub-layers or sub-lamellae, approx. 1–2 mm thick.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2012.0953&domain=pdf&date_stamp=2013-02-06
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Figure 1. (a) Optical microscopy image of osteonal bovine bone tissue parallel to the osteonal axis (axial direction). (b) Optical microscopy image of osteonal bovine
bone tissue normal to the osteonal axis (transverse direction). (c) Scanning electron microscopy image of a region surrounding an individual osteon parallel to the
osteonal axis. (d ) Home-built sample stage enabling the testing of two orthogonal orientations within the same osteon. (e) Illustration of the indentation test
directions (A and T1) with respect to the osteonal microstructure (in red). (Online version in colour.)
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The mechanical characterization of individual osteons

was performed in tension, compression and torsion [11–

13], as well as with ultrasound [14]. Instrumented indentation

was also applied to evaluate the elastic properties of lamellar

bone within the osteonal structure along multiple orien-

tations [15–17]. These studies identified anisotropic
elasticity of individual osteons, where the axial direction

was stiffer than the transverse direction with an anisotropic

ratio (axial/transverse) of approximately 1.5, similar to the

value found for macroscopic cortical bone [2,3] and lower

than the expected value for individual mineralized collagen

fibrils (approx. 2.0) [18].



Table 1. Nomenclature.

A axial indentation direction w.r.t. the global coordinate system

A, T1, T2 global coordinate system (osteons)

a1, a2 semi-axes lengths of the elliptical projected area of contact

a1, a2, a3 indentation coordinate system for the Swadener – Pharr model

B Barnett – Lothe tensor

C stiffness tensor

Cijhk stiffness tensor coefficients

E uniaxial Young’s modulus

EL uniaxial Young’s modulus along the mineralized collagen fibrils long axis direction

EP uniaxial Young’s modulus perpendicular to the mineralized collagen fibril long axis for a transversely isotropic material model

EP 1, EP 2 uniaxial Young’s moduli perpendicular to the mineralized collagen fibril long axis for an orthotropic material model

GLP shear modulus for a mineralized collagen fibril in the L – P plane for a transversely isotropic material model

GLP1 ; GLP2 ; GP 1 P 2 shear moduli for a mineralized collagen fibril in the L – P1, L – P2 and P1 – P2 planes for an orthotropic material model

L longitudinal indentation direction w.r.t. the local coordinate system

L, P1, P2 local coordinate system (mineralized collagen fibrils)

M indentation modulus

MA indentation modulus in the axial direction

MT indentation modulus in the transverse direction

M0 oscillatory function mean value

Mexp experimental indentation modulus

Mcomp indentation modulus computed with the Swadener – Pharr method

P perpendicular indentation direction w.r.t. the local coordinate system

T transverse indentation direction w.r.t. the global coordinate system

r radial position across the osteon

ri locations corresponding to the peaks and valleys of the stiffness modulation in the axial and transverse directions

r, s, t orthogonal reference system for the Swadener – Pharr model

w lamellar width

g angle between the direction t and the a1 axis

DM oscillatory function amplitude

u angle between the long axis of the mineralized collagen fibrils and the loading direction

nLP, nPP Poisson’s ratios for a mineralized collagen fibril in the L – P and perpendicular (P – P) planes for a transversely isotropic

material model

nP 1L; nP 2L; nP 2P1;

nLP1; nLP2 ; nP1P2

Poisson’s ratios for a mineralized collagen fibril in the L – P1, L – P2 and P1 – P2 planes for an orthotropic material model
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Considering the hierarchical structural features of bone

[6], different characteristic sizes which may also play func-

tional roles in bone exist at different length scales [19–21].

In a recent study, Yao et al. [21] adopted AFM-based

nanoindentation to identify a characteristic length scale of

approximately 200 nm within one sub-layer of the lamellar

unit; at a higher level, spatially controlled nanoindentation

experiments within individual osteons allowed Gupta et al.
[19] to identify a larger characteristic length scale owing

to the periodicity of the osteonal lamellae, with thicker

sub-lamellae of higher stiffness alternating with thinner

sub-lamellae of lower stiffness. The spatial variation of

indentation modulus within a lamella was attributed to

the rotation of the inherently anisotropic collagen fibrils

[19,22] and variations in the mineral content [19].
Nevertheless, an experimentally validated analytical

model that directly links the nano-scale rotational arrange-

ments of collagen fibrils and the corresponding anisotropic

elasticity is still missing.

In this study, we focus on quantifying the orientation and

size dependence of the spatial mechanical modulation in

individual secondary osteons of bovine cortical bone using

nanoindentation. Experiments were carried out in two

orthogonal orientations within the same individual osteon.

Tests were performed at four different maximum penetration

depths to study the effect of indentation area on mechanical

modulation. An analytical model that assumes the inherent

anisotropy of the mineralized collagen fibrils as well as

their orientation was introduced to estimate the elastic

constants of a sub-layer of mineralized collagen fibrils.



Table 2. Summary of the indentation tests carried out in this work. The
procedure explained below has been performed in both the axial (A) and
transverse (T1) directions on three secondary osteons.

number of indentations
rows 3 columns

maximum
depth (nm)

spacing
(mm)

41 � 3 50 0.5

31 � 3 100 1

21 � 3 200 2

21 � 3 300 3
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2. Material and methods
In the following, the Haversian canal axis is referred to as the ‘axial’

direction (A), whereas the plane perpendicular to this axis is referred

to as the ‘transverse’ direction (T1, T2). Similarly, the long axis of

the mineralized collagen fibrils is herein referred to as the ‘longi-

tudinal’ direction (L), while the plane perpendicular to this axis is

referred to as the ‘perpendicular’ direction (P1, P2). Thus, A, T1, T2

represents a global coordinate system based on the whole secondary

osteon; whereas, L, P1, P2 represents a local coordinate system

related to the mineralized collagen fibrils (table 1).

2.1. Sample preparation and characterization
Samples were kept under conditions close to the physiological

one until the tests; to this purpose no alcohol dehydration, freez-

ing, embedding, thermal drying, long-term storage in ambient

conditions or chemical fixation were used. Adult lamellar bone

obtained from a 30 month old cow was harvested from between

the tibial metaphysis and diaphysis. Approximately 5 mm cubic

specimens were obtained using a diamond-impregnated annular

wafering saw (Isomet 5000, Buehler, Inc., Lake Bluff, IL, USA)

running at 400–600 r.p.m. under constant water irrigation. In

order to expose the osteons’ Haversian canal, the first two cuts

were performed along the transverse directions and the second

ones along the axial directions. The samples were then polished

using a metallographic polishing wheel and adhesive papers

with successively smaller Al2O3 particle grit sizes. Samples

were rinsed copiously with de-ionized (DI) water followed by

ultrasonication in DI water between polishing intervals.

The cutting and polishing procedures were performed the day

after harvesting.

From optical (Nikon Eclipse L150, figure 1a,b) and scanning

electron microscopy (JEOL SEM 6320FV, figure 1c), the average

osteonal diameter was found to be approximately 200 mm and

the average thickness of the first four or five individual lamellae

around the Haversian canal is 5.01 + 0.10 mm. Contact mode

atomic force microscope (AFM, MFP-3D, Asylum Research, Inc.,

Santa Barbara, CA, USA) imaging was performed to assess the

r.m.s. surface roughness achieved with the polishing procedure,

which was quantified as 6.0 + 0.7 nm on several 2 � 2 mm areas

in different locations on the three osteonal structures.

Finally, samples were fixed into the groove of a home-built

sample holder that allows for mechanical testing of the same

osteonal structure in different directions with respect to the

osteonal axis (figure 1d,e).

2.2. Nanoindentation experiments
All instrumented indentation experiments were conducted in the

osteonal region of cortical bone shortly after harvesting and over

a short enough time period so that no significant modification of

the sample state was ensured; to this purpose the statistical invar-

iance of experimental data over time (the whole time span of the

testing period) was checked (data not shown). The effect of

hydration state was neglected at this stage, as the bone samples

were tested in ambient conditions (208C and 50% relative humid-

ity). A Triboindenter (Hysitron, Inc., Minneapolis, MN, USA)

was used with a Berkovich diamond tip. The tip area function

and machine compliance were calibrated on a fused silica refer-

ence sample by performing 100 indentations between 100 to

10 000 mN maximum forces [23].

Experiments were performed in displacement control along

arrays going radially out from the Haversian canal edge to the

external region of the osteon at four different maximum

depths: 50, 100, 200 and 300 nm. The experimental procedure is

detailed in table 2. The displacement rates of the indentation

experiments were 20 and 100 nm s21 in the loading and unload-

ing branches of the indentation curve, respectively. An automatic
preliminary thermal drift correction was applied before each

indentation. Preliminary investigations were performed to

ensure that time-dependent effects were minimal (see [24] for

further details). This experimental procedure was used on three

secondary osteons in both the axial and transverse directions

(A and T1, respectively, in figure 1a–e). A total of approximately

2000 indentations were carried out.

The Oliver–Pharr method [25] was adopted to obtain the

indentation modulus M from the unloading portion of each

test. An unloading segment range between 95 and 40 per cent

of maximum load was chosen for data fitting.

2.3. Empirical formulation for stiffness modulation
The oscillatory function

MðrÞ ¼ DM
2

sin
2pr
w
þ c

� �
þM0 ð2:1Þ

was adopted to fit the stiffness modulation along the inden-

tation paths. In equation (2.1), r is the radial position across

the osteon, r ¼ 0 being the Haversian canal inner edge; w is the

mean value of the experimentally observed lamellar width

(5.01 mm); DM is the oscillatory function amplitude; M0 is its

mean value.

2.4. Anisotropic analytical models
The spatial modulation of stiffness at the lowest maximum

indentation depth probed (50 nm) was fitted to an analytical

model that assumes the inherent anisotropy of the mineralized

collagen fibrils and allows for the evaluation of the effective stiff-

ness of the sub-lamellae as a function of collagen fibril

orientation. The orientation-dependent uniaxial Young’s mod-

ulus E of an individual sub-lamella was obtained by applying

the rotation formula [19,26,27]

EðuÞ ¼ cos4ðuÞ
EL

þ sin4ðuÞ
EP

þ 1

GLP
� 2

nLP

EL

� �
cos2ðuÞ sin2ðuÞ

� ��1

;

ð2:2Þ

where u is the angle between the long axis of the mineralized

collagen fibrils (longitudinal direction, L) and the loading direc-

tion, EL is the uniaxial Young’s modulus along the mineralized

collagen fibrils long axis direction (longitudinal direction, L), EP

is the uniaxial Young’s modulus perpendicular to the mineralized

collagen fibril axis (perpendicular directions, P1 and P2), GLP is the

shear modulus and nLP is the Poisson’s ratio. The model assumes

that individual collagen fibrils and uniformly oriented planar

layers of fibrils are transversely isotropic (P1 ¼ P2 ¼ P) [28–30].

The uniaxial Young’s moduli were directly estimated from

the experimental nanoindentation loading–unloading curves

by using the analytical model for anisotropic elastic contact intro-

duced by Delafargue & Ulm [31]. This model relates the
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indentation moduli of the mineralized collagen fibril sub-lamel-

lae in the longitudinal (L) and perpendicular (P1, P2) directions

to the material stiffness tensor coefficients for individual collagen

fibril layers (Cijhk ¼ Cijhk(EL, EP, GPL, nLP, nPP,), nPP being the

Poisson’s ratio in the isotropy plane). The model holds for

transversely isotropic and orthotropic solids under rigid conical

indentation along the three principal material symmetry direc-

tions. For a transversely isotropic material model, the

indentation modulus M in the axis of symmetry direction (here

named as direction 3, corresponding to the longitudinal collagen

fibril axis direction L) is explicitly related to Cijhk with the

following expression:

M3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111C3333 � C2

1133

C1111

1

C2323
þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1111C3333 þ C1133

p
� ��1

s
:

ð2:3Þ

For the indentation directions normal to the axis of sym-

metry (directions 1 and 2, corresponding to the perpendicular

collagen fibril axes direction P1 ¼ P2 ¼ P), the indentation

moduli M1, M2 are as follows:

M1 ¼M2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1111 � C2
1122

C1111

C1111

C3333

� �1=2

M3

s
: ð2:4Þ

The above formulae were applied at those indentation

locations for which indentation direction is assumed to be

aligned with a principal material direction (i.e. in the case of

indentation of thick and thin sub-lamellae). Using the indenta-

tion moduli M1 and M3 calculated from nanoindentation data

via the Oliver–Pharr method, equations (2.3) and (2.4) were

solved for EL and EP. The Poisson’s ratios yLP, yPP were assumed

according to literature data ([18], see equation (3.1)) and the shear

modulus GLP was related to the remaining parameters (see

equation (3.1)).

For validation purposes, the Swadener–Pharr method [32]

was used to compute the indentation moduli M in all the direc-

tions of the space for a given stiffness tensor C, as obtained from

the solutions of equations (2.2)–(2.4):

M¼ 4pÐ 2p
0 ðB

�1ðtðgÞ;CÞ : ½a3�a3�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1=a2Þcos2 gþða1=a2Þsin2g

q
Þdg:
ð2:5Þ

In this formulation, B is the Barnett–Lothe tensor related

to stiffness tensor C; (r, s, t) is an orthogonal reference system;

(a1, a2, a3) is the indentation coordinate system; g is the angle

between the direction t and the a1 axis; a1 and a2 are the

semi-axes lengths of the elliptical projected area of contact.
3. Results
3.1. Mechanical modulation at the lamellar level
The average loading–unloading indentation curves obtained in

the two orthogonal directions at the four maximum penetration

depths are reported in figure 2. The curves show how the

indentation response of the tissue depends on the global orien-

tation direction (A versus T ). A good repeatability of the

loading branch for increasing loads was obtained between

tests at different maximum depth. The mean value and

standard deviation of maximum load at 50, 100, 200, and

300 nm are 107 (+10) mN, 326 (+29) mN, 1004 (+69) mN,

and 1984 (+104) mN, respectively, in the axial direction, and

110 (+19) mN, 263 (+29) mN, 648 (+77) mN, and 1354

(+218) mN, respectively, in the transverse direction. The

corresponding coefficient of variation (COV, defined as the
ratio between the standard deviation and the mean value)

ranges between approximately 0.17 (at 50 nm maximum

depth, transverse direction) and approximately 0.05 (at 300 nm

maximum depth, axial direction). The tissue indentation

modulus ranges from 26.24 (+1.68) GPa to 19.73 (+0.73) GPa

in the axial direction and from 23.59 (+3.55) GPa to 15.39

(+1.04) GPa in the transverse direction. The corresponding

COV ranges between approximately 0.15 (at 50 nm maximum

depth, transverse direction) and approximately 0.04 (at 300 nm

maximum depth, axial direction).

The indentation modulus M shows a periodic alternating

trend of stiffness with spatial distance radially across the

osteon for both the axial (figure 3) and transverse (figure 4) direc-

tions, consistent with results reported in Gupta et al. [19]. The

coefficient of determination (R2) for fits of the experimental

data (figures 3 and 4) to equation (2.1) ranged between 0.61

and 0.01. Higher correlations were found for data taken at the

smaller depths (50 nm), whereas smaller values corresponded

to indentations carried out at 300 nm depths in both directions.

All the obtained R2 values are reported in the caption of figures

3 and 4. Further, a power analysis has been carried out on the

data of figures 3 and 4. A statistically significant difference

(one-way ANOVA, p , 0.001) was found between the peaks

and the valleys of the modulation at 50 and 100 nm maximum

depth in both the axial and transverse direction, as well as for

the 200 nm, axial direction experiments ( p , 0.05). Instead, no

statistically significant difference ( p . 0.05) was found at
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200 nm maximum depth in the transverse direction and

at 300 nm maximum depth.

The mean value, M0, and the amplitude of the modu-

lation, DM, depend on maximum depth and orientation of

the indentation tests (figure 5). The mean values M0 show

the tissue to be stiffer when loaded in the axial direction com-

pared with the transverse direction (figure 5a): indeed,

anisotropy ratios, calculated as axial versus transverse inden-

tation moduli mean values, vary between approximately 1.1

at lower maximum indentation depths (50 and 100 nm) to

approximately 1.3 at higher maximum indentation depths

(200 and 300 nm). Simultaneously, the spatial modulation

of the mechanical properties is higher in the transverse com-

pared with the axial direction (i.e. higher DM, figure 5b). A

decrease in the indentation moduli mean values is observed

between 50 and 200 nm maximum depths, this decay being

more pronounced in the transverse (approx. 35%) than in

the axial (approx. 22%) direction. Instead, no statistically sig-

nificant difference (one-way ANOVA, p . 0.05, n ¼ 9) is

noticeable within the same direction between 200 and

300 nm (figure 5a). The amplitude of the stiffness modulation

(figure 5b) decreases with the indentation depth as well. The

transverse amplitude is approximately two times higher than

the axial at 50 nm indentation depth, whereas the trends in

the two directions are similar beyond 100 nm depth:

indeed, at higher indentation depths (200 and 300 nm), the

amplitude values in both directions vanish and the difference

between the amplitude values becomes negligible, as the two
datasets show no statistically significant difference

( p . 0.05, n ¼ 9).

3.2. Estimation of EL, EP and E(u) from the anisotropic
analytical models

It is expected that carrying out indentations spatially from the

Haversian canal edge to the osteonal external boundary will

result in the angle u continuously changing along the radial

path owing to the spiral twisting of the mineralized collagen

fibrils within a single lamella. EL and EP were estimated from

indentation data at the lowest maximum indentation depth

(50 nm, where both the spatial and depth resolution of the

experiments were the highest, figures 3a and 4a) using the

Delafargue & Ulm [31] model. Because this approach is

valid only in the principal material symmetry directions,

the analysis was carried out at spatial locations across the

osteon where the indentation loading axis was parallel and

perpendicular to the mineralized collagen fibrils long axis,

that is at the nine different points ri (with ri ¼ 0, 2.5, 5, 7.5,

10, 12.5, 15, 17.5 and 20 mm radial distances from the Haver-

sian canal edge) corresponding to the peaks and valleys of

the stiffness modulation in the axial and transverse directions

(figures 3a and 4a). Thus, the indentation moduli MA(ri) and

MT(ri) estimated from the Oliver–Pharr method represent

the left-hand side of the system of equations (2.3)–(2.4). In

order to simultaneously calculate the uniaxial elastic

moduli EL(ri) and EP(ri), the three remaining material
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constants nPP(ri), nLP(ri) and GLP(ri) were set to

nPPðriÞ ¼ 0:358; nLPðriÞ ¼ 0:315;

and GLPðrÞi ¼
ELðriÞ þ EPðriÞ

2

� 1

2� ð1þ ððnLPðr1Þ þ nPLðr1ÞÞ=2ÞÞ :

ð3:1Þ

Here, nPP(ri) and nLP(ri) are average values from literature [18]

and refer to the mechanical properties of a single sub-lamella.

This procedure was applied to the nine couples of indentation

moduli MA(ri) and MT(ri), enabling the identification of the

nine corresponding couples of uniaxial elastic moduli EL(ri)

and EP(ri) reported in figure 6a,b (bars).

The analytical model in equation (2.2) was then adopted

to calculate E(u) in the axial and transverse directions

(figure 6a,b, sinusoidal curves), thus allowing the prediction

of the stiffness at any arbitrary angle with respect to the

fibril axis for the two experimental trends. In both cases,

the Poisson’s ratio nLP was set to the corresponding literature

values for a sub-layer in an osteonal lamella found by Yoon &

Cowin [18]; also, the periodicity of the modulation was set to

the experimentally observed lamellar width (5.01 mm).

Results of this fitting are provided in table 3. The small discre-

pancy (approx. 6%) in EL between the axial and transverse

directions means that the mineralized collagen fibrils belong-

ing to the thick and thin sub-lamellae maintain similar

longitudinal mechanical properties. EP exhibited a much

higher discrepancy between axial and transverse direction
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Figure 6. Spatial modulation (bars) of the uniaxial elastic moduli E obtained
by using the Delafargue – Ulm approach [31] at 50 nm maximum penetration
depth in the axial (a) and transverse (b) directions. Maxima correspond to EL

(longitudinal to collagen fibril long axis) and minima correspond to EP (trans-
verse to collagen fibril long axis). Standard deviations refer to n ¼ 9
measurements. Fitting with the analytical model in equation (2.2) is also
shown: the fitting results, together with the coefficient of determination
values R2, are reported in table 3. Note ordinate does not start at zero.

Table 3. Results of fitting with equation (2.2) [19,26,27] independently applied to the 50 nm maximum depth data in terms of uniaxial elastic moduli E
(figure 7) in the axial and transverse directions. The y LP values (bold typed) were assumed from Yoon & Cowin [18] to perform the fitting. The coefficient of
determination R2 is given in the last column.

indentation direction EL (GPa) EP (GPa) GLP (GPa) yLP (2) R2 (2)

axial 27.70 22.60 9.26 0.301 0.88

transverse 26.17 17.98 8.16 0.330 0.86
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(approx. 23%), indicating that the transverse properties of the

mineralized collagen fibrils are different in the thick and thin

sub-lamellae.
3.3. Elastic constants for a sub-layer within an osteonal
lamella

A set of orthotropic elastic parameters for a mineralized col-

lagen fibrils sub-layer was inferred from the previous fittings

by properly merging the two datasets reported in table 3. In

the proposed set of elastic parameters (table 4), the uniaxial

Young’s modulus EL corresponds to the mean value of the

Young’s moduli evaluated along the fibrils long axis in thin

and thick layers; instead, uniaxial Young’s moduli EP1 and

EP2, as well as the shear moduli GLP1 and GLP2, are directly

obtained from the previous fittings. The remaining entries
of the stiffness tensor, i.e. the shear modulus and the

Poisson’s ratio in the P1–P2 plane, GP1P2 and yP1P2; were

taken from literature [18]. For comparison purposes, the set of

orthotropic elastic for a sub-layer in an osteonal lamella

obtained by Yoon & Cowin [18] are included in table 4.
3.4. Validation of the experimental and analytical
procedures

In order to validate the above procedure, the indentation

moduli trends in the axial and transverse directions at

50 nm depth were calculated through the Swadener–Pharr

method [32] using the set of elastic parameters reported in

table 3 (transversely isotropic model) and in table 4 (orthotro-

pic model). The indentation moduli are computed using 58
spacing for u, corresponding to approximately 140 nm spa-

cing in the radial paths. The computed values, compared

with the experimental measures obtained at 50 nm maximum

depth (figures 3a and 4a) and the fitting to the oscillatory

function of equation (2.1), are shown in figure 7. Both

material models agree reasonably well with the experimental

values, as evidenced by the coefficients of determination R2

(reported in figure 7 caption) ranging between 0.59 and 0.62.

Results from the application of the Swadener–Pharr

method are also presented in tables 5 and 6, where the inden-

tation moduli mean value and amplitude of the modulation

calculated with the oscillatory function best fitting the data

(see eq. (2.1)) are compared with the computed mean value

and amplitude of the oscillatory trends (dotted lines in

figure 7). The percentage differences between the experimental

and the computed indentation values are lower for the ortho-

tropic elastic behaviour (below 5%) than the transversely

isotropic behaviour, where differences up to approximately

20 per cent were found. The two pieces of evidence above—

i.e. the fact that the coefficient of determination R2 associated

to the Swadener–Pharr prediction with an orthotropic

material model is similar to the R2 values obtained via

equation (2.1), and the low discrepancy in terms of indentation

moduli mean value and amplitude of the modulation between

the experimental and the computed data for and orthotropic

model—support both the reliability of the elastic parameters

obtained through application of equation (2.2) to the data

and the assumption of orthotropy to model the elastic mechan-

ical behaviour of a sub-layer of mineralized collagen fibrils

within an osteonal lamella.
4. Discussion
The aim of the study was to determine the orientation and

size-dependent mechanical properties of individual second-

ary osteons in cortical bone, as well as to investigate the



Table 4. Set of orthotropic elastic parameters for a sub-layer of mineralized collagen fibrils within an osteonal lamella, inferred by properly merging the two
datasets in the axial and transverse directions reported in table 3. The GP1 P2 ; yP1 P2 ; yLP1 and yLP2 parameters (bold typed) were assumed from Yoon & Cowin
[18]. For comparison purposes, the set of orthotropic elastic parameters for one sub-layer of the lamellar unit obtained by Yoon & Cowin [18] is reported also.
The relationships EL . EP 2 . EP 1 and nP2 P1 . nP2 L . nP1 L are maintained, as well as GLP2 . GLP1 :

EP 1 (GPa) EP 2 (GPa) EL (GPa) GP 1P2 (GPa) GLP 1 (GPa) GLP 2 (GPa)

present work 17.98 22.60 26.94 7.2 8.16 9.26

Yoon & Cowin [18] 16.40 18.07 22.80 7.2 7.1 8.4

nP 1P2 (2) nP 2P1 (2) nP 1L (2) nP 2L (2) nLP1 (2) nLP2 (2)

present work 0.334 0.420 0.220 0.253 0.330 0.301

Yoon & Cowin [18] 0.334 0.381 0.237 0.247 0.330 0.301
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Figure 7. Comparison between the indentation moduli trends obtained experimen-
tally (bars) and the ones computed with the Swadener – Pharr method [32] (dots)
with a approximately 140 nm spacing in the (a) axial and (b transverse) directions.
The fitting to the oscillatory function of equation (2.1) (dashed line) is shown as well.
The input parameters for the Swadener – Pharr method are reported in tables 3 and 4
for transversely isotropic (TI) and orthotropic (ORTH) material models, respectively. In
the axial direction (a), the coefficient of determination R2 values are 0.59 and 0.60 for
the transversely isotropic and orthotropic model, respectively; whereas, in the trans-
verse direction (b), R2 values are 0.62 and 0.61 for the transversely isotropic and
orthotropic model, respectively. Note ordinate does not start at zero.
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way the constituents’ anisotropy and their arrangement in the

hierarchical structure concur in the development of the aniso-

tropic mechanical behaviour of the tissue. Indentation

experiments at different maximum depths showed a periodic

alternating of stiffer layers with less stiff layers in which the

indentation modulus mean values, as well as the amplitude

of the modulation depend on maximum depth and orien-

tation of the indentation tests. A characteristic length owing

to the periodicity of the osteonal lamellae was quantified.
Further, the elastic constants for a sub-layer of mineralized

collagen fibrils within an osteonal lamella were identified

from the indentation moduli by applying an analytical

model that assumes inherent anisotropy of the mineralized

collagen fibrils as well as their spatial arrangement.

The smallest experimental characteristic length probed

(50 nm maximum depth, approximately 400 nm contact

diameter) is comparable to the size of a few mineralized col-

lagen fibrils and allowed the evaluation of the mechanical

properties of a single sub-layer of fibrils in the lamellar struc-

ture; whereas, the largest experimental characteristic length

sampled (300 nm maximum depth, approx. 2 mm contact

diameter) may accommodate approximately 10–20 bunches

of collagen fibrils oriented along multiple directions and,

thus, involves multiple sub-layers, whose thickness can

vary between few hundreds of nanometres to a couple of

microns [22,33–35]. These investigations enabled the identifi-

cation of a decrease in the values of indentation moduli with

the penetration depth (figure 5a) that indicates a possible size

effect in the mechanical properties of cortical bone tissue. At

the same time, decreasing values of amplitude DM (figure 5b)

indicate that the indentation experiment is involving a suffi-

cient amount of tissue volume such that homogenized

material properties are sensed by the indentation probe.

The stabilization of M0 and the decay to a negligible value

of DM occurs at approximately the same length scale. This

suggests that the homogenization process has completely

developed at approximately 300 nm maximum depth, corre-

sponding to a approximately 2 mm contact diameter

between the tissue and the indenter.

Homogenization arguments alone are not able to fully

justify the pronounced decay of the indentation moduli

with the penetration depth achieved with the experimental

tests, quantifiable in approximately 24 per cent and approxi-

mately 34 per cent reductions in the axial and transverse

directions, respectively. Instead, the decrease in indentation

modulus with indentation depth may be explained by con-

sidering peculiar deformation and failure mechanisms of

bone tissue at the nano-structural level, such as shear transfer

between mineral particles via intermediate ductile organic

layers [36], slippage at the collagen–mineral interface [37],

phase transformation of the mineral phase [38] and sacrificial

bond disruption between fibrils [39]. In particular, Gupta

et al. [40,41] showed that critical interfacial shear strength

between the fibril and the interfibrillar matrix layer is

exceeded when the bone is compressed above the yield

point. When this happens, the matrix flows past the fibrils,



Table 6. Comparison between the indentation moduli mean value and amplitude of the modulation calculated with the oscillatory function in equation (2.1)
and computed by the Swadener – Pharr method [32] in the axial and transverse direction. Percentage discrepancies are calculated as in table 4. The orthotropic
material model is used.

indentation direction M0
eq. (2.1) (GPa) M0

comp (GPa) DMeq. (2.1) (GPa) DMcomp (GPa) eM0(%) eDM (%)

axial 26.19 25.80 2.48 2.43 21.51 22.02

transverse 23.56 24.13 5.53 5.77 2.38 4.34

Table 5. Comparison between the indentation moduli mean value and amplitude of the modulation calculated with the oscillatory function in equation (2.1)
and computed by the Swadener – Pharr method [32] in the axial and transverse directions. Percentage discrepancies are calculated as
eMO
¼ jMcomp

0 2 Meq. (2.1)
0 j/Meq. (2.1)

0 and eDM ¼ jDMcomp 2 DMequation (2.1)j/DMeq. (2.1). The transversely isotropic material model is used.

indentation direction M0
eq. (2.1) (GPa) M0

comp (GPa) DMeq. (2.1) (GPa) DMcomp (GPa) eM0(%) eDM (%)

axial 26.19 27.00 2.48 2.97 3.07 19.76

transverse 23.56 23.15 5.53 5.01 21.78 29.40

P1

P1

L

L

P2
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T2
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thin sub-
lamella

lam
ella

thick sub-
lamella

A

Figure 8. Schematic illustration of the organization of mineralized
collagen fibrils and the plate-shaped mineral crystals within the fibrils
in a lamellar unit of osteonal bone according to the rotated plywood
model introduced by Weiner et al. [33,34]. The three local orthogonal
reference axes labelled L, P1 and P2 (relative to the axis of an individual
mineralized collagen fibril ) are provided. The three global orthogonal
reference axes A, T1 and T2 (relative to the osteonal axis) are provided
too. Not drawn to scale. (Online version in colour.)
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resulting in frictional losses and de-bonding of the fibrils and

extrafibrillar matrix. A further evidence for this mechanism is

achieved considering a single loading–unloading cycle of

bone [41], as when a bone sample is relaxed after being

deformed beyond the yield point, irreversible deformations

develop at the tissue level but not at the fibril level. If we

compare the loading and unloading stiffnesses at the tissue

level, damage induced decrease in the tissue Young’s

modulus occurs: this decay, quantified as approximately

20–25%, is consistent with the progressive diminishing of

the stiffness mean value while increasing the maximum

depth evidenced in the present work. Moreover, as the defor-

mation mechanisms mentioned above contribute in

determining a loss of integrity of the tissue, they can be con-

sidered as damage phenomena that cause a progressive

degradation of material continuity; we speculate that a

damage model can phenomenologically represents the over-

all tissue response subject to nanoindentation. Recently, a

numerical study performed by our group [42] was devoted

to the investigation of the role played by damage mechanics

in the nanoindentation of osteonal lamellar bone, and we

showed that damage models can predict the loss in mechan-

ical properties obtained in the experiments.

The results of this work show that the stiffness modulation

of the tissue is consistent with anisotropic fibrillar layers with a

specific crystal orientation. Indeed, based on the difference of

the elastic moduli in the directions perpendicular to the fibril

(EP; table 3) between the thick and thin sub-lamellae, it can

be speculated that the mineral platelets have an intrinsic orien-

tation that could play a role in determining the mechanical

properties normal to the fibrils long axis. This observation

would agree with the rotated plywood model introduced by

Weiner et al. [33,34], where collagen fibrils are rotated not

only with respect to the lamellar boundary but also around

their own axis (figure 8), as the mechanical properties obtained

for a sub-layer can be explained by the azimuthal rotation of

the fibrils around the longitudinal axis L, which changes the

crystal orientation. Further evidence that the hydroxyapatite

crystals strongly influence the elastic properties of the minera-

lized collagen fibrils along different directions is provided by

Rho et al. [43], who studied intramuscular herring bones

where mineralized collagen fibrils have a single orientation
with a variation in mineralization along the length. Results

clearly showed that the anisotropy ratio is influenced by the

mineralization, as it drops from approximately 2.1 in the fully

mineralized region to approximately 1.1 in areas at the earliest

stage of mineralization. In this case, the presence of the mineral

crystals seems to be the main aspect responsible for the differ-

ence in the elastic properties along different directions.

As already said in the §2, the bone samples were tested in

ambient conditions. Although samples still retain a signifi-

cant degree of hydration in this condition, in general an

artificial increase in stiffness and reduction in ductility com-

pared with the native state could results. However,
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Hengsberger et al. [44] adopted instrumented indentation to

compare dry and wet samples at different length scales,

which are comparable to the ones investigated here. Basically,

what they found is that: (i) thick lamellae exhibited a signifi-

cant decrease in indentation modulus with increasing

indentation depth, as reported in this study and (ii) the com-

parative trends of indentation depth and lamella type were

similar for dry and physiological conditions. Thus, the

effect of testing dry instead of wet samples seems the same

at multiple length scales. Therefore, relative modulations in

mechanical properties are expected to remain valid, as well

as the comparison between the mechanical properties at the

different experimental characteristic length probed and

along different directions. Anyway, future developments

will consider the application of the present experimental–

analytical procedure to tests in conditions closer to the

physiological ones.
20120953
5. Conclusion
In this work, the hierarchical arrangement of lamellar bone

was found to be a major determinant for modulation of

mechanical properties and anisotropic mechanical behaviour

of the tissue. In more detail:

— the size effect on lamellar bone anisotropic mechanical be-

haviour, evidenced by the decline of indentation modulus

versus probe size, and the critical length at which hom-

ogenization of the mechanical properties occurs were

determined by measuring the spatial modulation of

indentation response;
— by using a laminate-composite-based analytical model,

the elastic constants for a sub-layer of mineralized col-

lagen fibrils within an osteonal lamella were determined

on the basis of their spatial arrangements and were vali-

dated through direct comparison of the experimental

indentation moduli and the predicted ones computed by

the Swadener–Pharr model.
The structural complexity of bone tissue requires that the

assessment of its mechanical properties involves multiple

hierarchical levels, from the macroscopic scale down to the

micro- and nano-structural level till the most basic com-

ponents. Understanding structure–property relationships

and the effects of structural features on the biomechanical

properties of bone would enable not only the development

of more accurate models for analysis of implants and poten-

tial bone-replacement materials, but also the progress in

designing bioinspired structural materials that take advan-

tage of the mechanical design principles found in nature.

These latter topics undoubtedly represent fascinating

long-term scientific goals in the materials science and

engineering field.
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