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Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap)

and albumin–apatite (AlbAp) composite layers were prepared on titanium

(Ti) using a supersaturated calcium phosphate solution supplemented

with laminin (0, 5, 10, 20 and 40 mg ml21) or albumin (800 mg ml21). With

an increase in the concentrations of laminin in the supersaturated calcium

phosphate solutions, the amounts of laminin immobilized on the Ti

increased. The number of human umbilical vein endothelial cells

(HUVECs) adhered to the laminin–apatite composite layers were remark-

ably higher than those to the untreated Ti, Ap layer and AlbAp composite

layer. The number of cells adhered to the L40Ap was 4.3 times the untreated

Ti. Moreover, cells adhered to the laminin–apatite composite layers showed

significantly higher cell retention under the physiological shear stress for 1 h

and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer.

The number of cells remaining on the L40Ap under the physiological shear

stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite

composite layer is a promising interfacial layer for endothelialization of

blood-contacting materials.
1. Introduction
Antithrombogenicity is the first consideration for blood-contacting materials [1].

For example, although titanium (Ti) cardiac-assist devices exhibit favourable

thromboresistance in short-term usage [2–4], they suffer from the risk of throm-

bogenesis in long-term usage [5]. Thromboresistance of Ti cardiac-assist devices

has been improved by surface coating using 2-methacryloyloxyethyl phosphoryl-

choline polymer [6,7], TiO2 [8], hydroxyapatite [9] and diamond-like carbon

[10], and by surface-immobilized molecules including albumin [11], heparin

[12], poly(ethylene glycol) [13] and chitosan [14]. Even today, however, most

blood-contacting materials cause thrombogenesis in long-term usage.

Fast or prior endothelialization on the surface of the cardiac-assist devices is

another promising strategy to inhibit thrombogenesis in long-term usage, as

was indicated by earlier studies [15,16]. The formation of a monolayer of endo-

thelial cells (ECs) on the material surface inhibits thrombogenesis by regulating

coagulation cascade, the cellular components of the blood (leucocytes, platelets

etc.) and complement cascade (vascular tone, fibrinolysis etc.) [17]. The chal-

lenges of endothelialization on the material surface are efficient cell adhesion,

growth and retention under shear stress [18,19]. In addition, maintaining a con-

fluent layer of healthy EC on the surface is an essential issue for long-term
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Table 1. Supersaturated calcium phosphate solutions.

total volume
(ml)

32.0 Ringer’s
(ml)

32.0 Ringer’s-
laminin (ml)

32.0 Ringer’s-
albumin (ml)

32.0 Klinisalz B
(ml)

Alkalinizer
(ml)

3 1.25 – 2.45 0 – 1.20 0 – 0.48 0.28 0.27
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application of cardiac-assist devices. In this context, it should

be noted that as high as 30 per cent of cells detached from

well-endothelialized vascular prostheses in 30 min after

implantation in dogs [18]. Therefore, improvement in bond-

ing strength between ECs and Ti surface is crucial for the

development of endothelialized Ti that has a long-term

antithrombogenic property.

Surface modification of biomaterials with adhesive peptide

sequences has been proposed to improve EC adhesion, spread-

ing and retention under the shear stress [20–24]. Laminin,

which is the major adhesive glycoprotein in the basement

membrane, can promote cell adhesion and be involved in

cell migration, proliferation and differentiation [25–27]. How-

ever, the biomolecules are highly susceptive to physiological

diffusion and degradation processes, leading to a short

half-life [28,29]. Ap is a promising matrix for biomolecules to

maintain their bioactivity and to induce persistent signalling

[30–37]. Besides, Ap, as the main inorganic component of

human hard tissues, has good biocompatibility and has been

reported to show good thromboresistance [9]. In the present

study, a laminin–apatite composite layer was prepared on Ti

to improve in vitro EC adhesion and retention.
2. Material and methods
2.1. Preparation of Ti specimens
Commercially available Ti plate (Nilaco Co., Japan) was cut into

square pieces of 10 � 10 � 1 mm3 using a boron carbide blade

(RCA 005, Refine Saw). The Ti plates were ultrasonically washed

with acetone, ethanol and ultrapure water for 30 min. After

being washed, the Ti plates were heated at 3008C for 3 h in air.

The heat-treated Ti was then sterilized at 1508C for 2 h before

being coated with Ap, albumin–apatite (AlbAp) composite and

laminin–apatite composite layers.

2.2. Preparation of supersaturated calcium
phosphate solutions

A calcium-containing solution (4.5 mM Ca2þ, �2.0 Ringer’s) was

obtained by mixing Ringer’s solution (Otsuka Pharmaceutical

Co., Ltd, Japan, 2.25 mM Ca2þ) and Conclyte-Ca (Otsuka

Pharmaceutical Co., Ltd, 500 mM Ca2þ). Laminin solution at a

concentration of 100 mg ml21 (2.0 Ringer’s-laminin) and albumin

solution at a concentration of 5 mg ml21 (2.0 Ringer’s-albumin)

were prepared by dissolving laminin (Sigma-Aldrich, USA)

and albumin (Invitrogen, USA) in the calcium-containing sol-

ution (4.5 mM Ca2þ, �2.0 Ringer’s). A phosphate-containing

solution (20 mM PO4
32, �2.0 Klinisalz B) was obtained by

mixing Klinisalz B (I’rom Pharmaceutical Co., Ltd, Japan,

10 mM PO4
32) and Conclyte solution-PK (Otsuka Pharmaceutical

Co., Ltd, Japan, 500 mM PO4
32). An alkalinizer Bifil (Ajinomoto

Pharmaceuticals Co., Ltd, Japan, 166 mM NaHCO3) was used as

received without changing its original concentration. All the sol-

utions used in this study were infusion fluids clinically available

in Japan. The merits of using clinically approved pharmaceutical

formulations are that they are sterile and endotoxin-free, and

have a low regulatory barrier for clinical applications [30–35].
2.3. Formation of apatite, laminin – apatite composite
and albumin – apatite composite layers on
Ti plates

The sterilized Ti plates were immersed in 3 ml of supersaturated cal-

cium phosphate solution supplemented with albumin or laminin

solution at the mixing ratio shown in table 1, at 378C for 48 h. The

chemical compositions of the supersaturated calcium phosphate

solutions used are shown in table 2. The Ti plates immersed in

the supersaturated calcium phosphate solutions are designated as

Ap, L5Ap, L10Ap, L20Ap, L40Ap and AlbAp depending on lami-

nin or albumin concentrations as shown in table 2. After immersion,

the Ti plates were taken out from the solution and gently washed

twice by immersing in 10 ml of sterilized ultrapure water.

2.4. Quantitative analysis of calcium, phosphorus,
laminin, and albumin in apatite, laminin – apatite
composite and albumin – apatite composite layers

The coated Ti plates were immersed in 3 ml of 0.4 M hydrochloric

acid solution at room temperature for 12 h to extract the calcium,

phosphorus, laminin and albumin completely by dissolving the

layers. The calcium and phosphorus were measured using an

inductively coupled plasma atomic emission spectrometer

(SPS7800, Seiko Instruments, Inc., Japan). The amounts of laminin

and albumin in the hydrochloric acid solution were measured

using a Bio-Rad protein assay reagent kit (Bio-Rad Laboratories,

Inc., Japan) in accordance with the manufacturer’s instructions.

2.5. Characterization of the apatite, laminin – apatite
composite and albumin – apatite composite layers

The surface morphology of the layers on the Ti plates was

observed under a scanning electron microscope (SEM: XL30,

FEI Company Ltd) at an accelerating voltage of 10 kV after

being coated with gold. The phase composition of the Ap, lami-

nin–apatite composite and AlbAp composite layers were

analysed by thin-film X-ray diffractometry (TF-XRD) employing

a Cu Ka X-ray at 40 kV and 300 mA using a thin-film X-ray

diffractometer (Model RINT 2400, Rigaku, Japan).

2.6. Adhesion of human umbilical vein endothelial
cells to Ti, Ap, L5Ap, L10Ap, L20Ap, L40Ap
and AlbAp

A 1.0 ml bolus of serum-free EC basal medium-2 (EBM-2, Lonza,

USA) containing 2 � 104 human umbilical vein endothelial cells

(HUVECs) was added onto the Ti, Ap, L5Ap, L10Ap, L20Ap,

L40Ap and AlbAp specimens in wells of a 24-well cell culture

plate. After being incubated in a humidified atmosphere of 5

per cent CO2 at 378C for 1 h, the specimens were gently rinsed

with phosphate-buffered saline (PBS(–)) twice. The specimens

seeded with HUVECs were then transferred to the wells of a

new 24-well plate with 1 ml of fresh serum-free EBM-2 sup-

plemented with 2 mM cell tracker green 5-chloromethyl

fluorescence diacetate (CTG, Invitrogen, USA) agent. The CTG

agent was used to stain the HUVECs adhered to the surface of
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Figure 1. Scheme of in vitro HUVECs retention evaluation system (HUVECs were subjected to physiological shear stress then observed using a fluorescence microscope).

Table 2. Chemical components of supersaturated calcium phosphate solutions.

components Ap L5Ap L10Ap L20Ap L40Ap AlbAp

Naþ (mM) 138.75 138.75 138.75 138.75 138.75 138.75

Kþ (mM) 7.37 7.37 7.37 7.37 7.37 7.37

Ca2þ (mM) 3.68 3.68 3.68 3.68 3.68 3.68

Mg2þ (mM) 0.22 0.22 0.22 0.22 0.22 0.22

Cl2 (mM) 134.27 134.27 134.27 134.27 134.27 134.27

H2PO4
2 (mM) 0.90 0.90 0.90 0.90 0.90 0.90

HPO4
22 (mM) 0.94 0.94 0.94 0.94 0.94 0.94

HCO3
2 (mM) 15.09 15.09 15.09 15.09 15.09 15.09

CH3COO2 (mM) 1.80 1.80 1.80 1.80 1.80 1.80

laminin (mg/ml) 0 5 10 20 40 0

albumin (mg/ml) 0 0 0 0 0 800
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specimens. After incubation in a humidified atmosphere of 5 per

cent CO2 at 378C for 45 min, the specimens were gently washed

with PBS to remove the residual CTG agent. The cells adhered to

the specimens were observed under a fluorescence microscope

(BX51, Olympus, Japan). For each specimen, 20 pictures from

different samples were taken to count the number of HUVECs

adhered to the specimen surface.

2.7. Cell retention under the physiological shear stress
An in vitro circulation system was used to assess the retention of

HUVECs adhered to the specimens under the physiological

shear stress. As shown in figure 1, the in vitro circulation

system consisted of a reservoir (Senko Medical Instrument

Mfg. Co., Japan) containing PBS(–) solution, a centrifugal

blood pump (HCF-MP23, Senko Medical Instrument Mfg. Co.,

Japan) and a special chamber holding the specimens seeded

with HUVECs connected by polyvinyl chloride tubing (Senko
Medical Instrument Mfg. Co., Japan) [38]. Prior to the cell reten-

tion study, 1 � 105 HUVECs were seeded on the specimens and

cultured by EBM-2 with serum in a humidified atmosphere of

5 per cent CO2 at 378C for one week. The cell culture medium

was exchanged for a fresh one every 2 days. The cells were

stained with CTG agent and observed under a fluorescence

microscope. Then the specimens seeded with HUVECs were

put in the special chamber of the in vitro circulation system to

study cell retention on the Ti, Ap, AlbAp and L40Ap under

physiological shear stress. The working parameters of the

in vitro circulation system were as follows: pressure, 190 mm

Hg; flow rate, 4 l min21 (shear stress at tube wall, 0.7 Pa);

temperature, 378C. After 1 h and 2 h exposure to the physio-

logical shear stress, the retained cells on the specimens were

observed under a fluorescence microscope. Cell retention on

the specimen surfaces was evaluated by comparing the cell

numbers before and after being subjected to the physiological

shear stress.
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Figure 2. XRD patterns of Ap, L5Ap, L10Ap, L20Ap, L40Ap and AlbAp on Ti.
An asterisk denotes apatite and a T denotes titanium.
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2.8. Data analysis
Statistical comparisons were performed by Student’s t-test for

multiple comparisons. Statistical significance for p , 0.05 and

p , 0.01 were denoted by one and two asterisks respectively.
3. Results
3.1. Phase composition and surface morphology of

apatite, laminin – apatite composite and
albumin – apatite composite layers

The XRD patterns for Ap, laminin–apatite composite and

AlbAp composite layers on Ti are shown in figure 2. Weak

and broad peaks were present at 25.88 and 31.88 (ICDD

NO. 09-432), which denoted that the layers on the Ti were

composed of poorly crystalline Ap.

The surface morphology of Ap, laminin–apatite composite

and AlbAp composite layers on the Ti is shown in figure 3.

The Ti without immersion in the supersaturated calcium phos-

phate solution exhibited a smooth surface (figure 3, Ti). After

immersing in the supersaturated calcium phosphate solutions

at 378C for 48 h, continuous and homogeneous layers were

formed on the whole Ti surface. The layers were composed

of fine flake-like crystals, with thickness of about 20 nm and

length of 200 nm, which have been identified as poorly crystal-

line Ap (figure 2). The laminin–apatite composite and AlbAp

composite layers exhibited structure similar to Ap layer.

3.2. Chemical compositions of apatite, laminin – apatite
composite and albumin – apatite composite layers

The amount of Ap deposited on the Ti surfaces was assessed

by measuring the amounts of calcium (Ca) and phosphorus

(P) after dissolution of Ap, laminin–apatite composite and

AlbAp composite layers. As shown in figure 4, compared

to Ap, the L5Ap, L10Ap, L20Ap and L40Ap prepared by

immersion in the supersaturated calcium phosphate solution

supplemented with various concentrations of laminin (5, 10,

20 and 40 mg ml21) showed no obvious difference in calcium

and phosphorus deposition (calcium, from 38.46 + 6.40 to

42.86 + 8.10 mg/sample; phosphorus, from 16.73 + 2.42 to

19.01 + 3.23 mg/sample). However, with regard to AlbAp

prepared by immersion in the supersaturated calcium
phosphate solution containing 800 mg ml21 albumin, the cal-

cium and phosphorus deposited on the Ti significantly

decreased (calcium, 23.02 + 7.34; phosphorus, 10.45 +
2.86) by comparison with Ap.

Figure 5 shows the amounts of laminin and albumin

coprecipitated with Ap on the Ti surface. The amounts of

laminin precipitated on the Ti surface increased with an

increase in initial laminin concentration in the supersaturated

calcium phosphate solution. When the laminin concentration

in the solution was 5, 10, 20 and 40 mg ml21, the amount of

laminin precipitated on Ti surfaces was 0.79 + 0.61, 2.78 +
1.35, 8.39 + 3.84 and 20.69 + 3.71 mg/sample, respectively.

The amount of albumin precipitated on the Ti surface was

81.70 + 24.59 mg/sample.

3.3. Effect of apatite, laminin – apatite composite and
albumin – apatite composite layers on human
umbilical vein endothelial cells adhesion

Figure 6a shows typical fluorescent images of HUVECs

adhered to the surfaces of Ti, Ap, L5Ap, L10Ap, L20Ap,

L40Ap and AlbAp specimens after being cultured for 1 h.

The HUVECs adhered to the specimen surfaces were

spherical. The stretched pseudopodia were observed on the

cells adhered to the surface of L20Ap (data not shown) and

L40Ap (figure 6a, L40Ap-H). However, no obvious pseudopo-

dia were observed on the cells adhered to untreated Ti, Ap and

AlbAp (figure 6a, Ti-H, Ap-H and AlbAp-H). The numbers of

HUVECs adhered to the surfaces of the Ti, Ap, L5Ap, L10Ap,

L20Ap, L40Ap and AlbAp specimens after 1 h of culture are

shown in figure 6b. The number of cells adhered to the Ap

was slightly larger than that to the untreated Ti. AlbAp

showed slightly more cell adhesion than untreated Ti and

Ap. The number of cells adhered to the surfaces of L5Ap,

L10Ap, L20Ap, L40Ap was markedly higher than that to the

untreated Ti, Ap and AlbAp. The number of cells adhered to

the surfaces of laminin–apatite composite layer increased

with an increase in amount of laminin precipitated on the Ti

surface (0–40 mg ml21). The number of cells adhered to the

L40Ap reached the maximum value of 2.3 � 103 cm22, which

was 4.3 times as large as the untreated Ti. Based on the cell

adhesion results, Ti, Ap, AlbAp and L40Ap were selected for

the following cell retention test.

3.4. Human umbilical vein endothelial cells retention
under the physiological shear stress

Cell retention on the surfaces of Ti, Ap, AlbAp and L40Ap

specimens was studied using an in vitro circulation system

producing a physiological shear stress of 0.7 Pa, which corre-

sponded to that in the human blood vessels. Typical

fluorescent images of HUVECs adhered to the Ti, Ap,

AlbAp and L40Ap specimens before and after exposure to

the physiological shear stress are shown in figure 7a. After

being subjected to the physiological shear stress for 1 h, sig-

nificant cell detachment was observed on the surfaces of Ti,

Ap and AlbAp, while only a small amount of cell detachment

was observed on the L40Ap. After the specimens had been

exposed to the physiological shear stress for 2 h, most of

the cells had detached from the Ti, Ap and AlbAp surfaces,

but most cells remained on the L40Ap surface. The number

and percentage of cell retention on the specimens are
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shown in figure 7b,c, respectively. The cell retention on

L40Ap was significantly higher than those on Ti, Ap and

AlbAp. After exposure to physiological shear stress for 1 h,

the percentage of cell retention on the Ti, Ap, AlbAp and

L40Ap was 15.47 + 29.74%, 29.11 + 24.16%, 9.21 + 6.67%
and 87.02 + 8.76%, respectively. After 2 h, cell retention on

the Ti, Ap, AlbAp and L40Ap decreased to 5.88 + 12.55%,

6.10 + 7.32%, 0.31 + 0.58% and 56.04 + 19.18%, respect-

ively. After evaluation of cell retention under flow

conditions, the coatings (Ap, L5Ap, L10Ap, L20Ap, L40Ap
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8
and AlbAp) still homogeneously covered the surface of Ti as

observed by SEM. The morphology of coatings (Ap, LAp etc.)

before and after flow conditions were almost same as

observed by SEM (data not shown). The coating strength is

enough for the flow conditions.
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4. Discussion
Laminin–apatite composite layers were prepared on the Ti

surface. HUVECs adhering to the laminin–apatite composite

layers after 1 h of culture (4.3 times maximum), and remain-

ing under physiological shear stress for 2 h (9.5 times

maximum), were significantly higher than those on untreated

Ti, Ap and AlbAp composite layers.

Ap, laminin–apatite composite and AlbAp composite

layers were successfully formed on the commercially available

Ti plates by using a metastable supersaturated calcium phos-

phate solution supplemented with laminin and albumin.

Low-crystalline Ap was formed by consuming calcium and

phosphate ions in the supersaturated calcium phosphate sol-

utions. The carboxyl and hydroxyl groups of the laminin or

albumin molecule can bind to the calcium ions in the solutions

and on the growing calcium phosphate [39]. The amounts

of laminin precipitated in the Ap increased with increasing

laminin concentration in the supersaturated calcium phosphate

solution (figure 5). The albumin incorporated into the crystal

lattice of Ap enhanced the layer’s hardness and resistance to

abrasion [40]. The laminin immobilized in the Ap layer

increased the shear stress of layer under the wet condition [41].

Cell adhesion is the first step reaction at HUVECs-bioma-

terial interface, which is followed by cell migration,

proliferation and final endothelialization. Cell adhesion

plays an important role in fast endothelialization of biomater-

ial surface. Adhesion of mammalian cells to a biomaterial

surface is mediated by a protein layer from biological fluids

or extracellular matrix so that the cell first interacts with

protein when contacting with biomaterial surface [42]. More-

over, the cell adhesion is regulated and mediated by

membrane proteins with a main family being integrins

which present a very high selectivity towards the extracellu-

lar matrix proteins [42]. Laminin has been found to interact

with at least eight integrins (alb1, a2b1, a3bl, a6b1, a7bl,

a9b1, aVb3 and a6b4). Therefore, laminin can promote

adhesion of diverse cells by interacting with integrin and

non-integrin receptors on the cell surface [43,44]. a6b1 and

a6b4 integrins, which are present in the EC surface, are the

main laminin receptors [45]. The integrin a6b1 plays an

important role in mediating adhesion of EC to the laminin

[46], while a6b4 supports the effect of laminin on modulation

of EC function relevant to angiogenesis [45]. Therefore, the

number of HUVECs adhering to the surface of laminin–

apatite composite layers increased with the increasing

amount of laminin incorporated in the Ap on the Ti surface.
The retention of HUVECs on the artificial cardiovascular

materials under the physiological shear stress is a crucial

index for long-term usage. The major issue of endothelializa-

tion on biomaterial surfaces is low retention of HUVECs

under fluid shear stress [18,19]. Pratt et al. [47] reported that

cells not tightly adhered to the material surface were easily

washed away when exposed to fluid shear stress. Therefore,

the cell–material reaction was the main factor that affected

cell adhesion under shear stress. We evaluated the cell reten-

tion on the surfaces of Ti, Ap, AlbAp and L40Ap under the

physiological shear stress, which was generated by an in
vitro circulation system with a centrifugal blood pump.

HUVECs were subjected to the shear stress at 0.7 Pa for 1

and 2 h, respectively. A mass of cells on the Ti were removed

under the physiological shear stress due to lacking in func-

tional groups on the Ti to interact with HUVECs. The

L40Ap displayed markedly improved cell retention under

physiological shear stress, compared to untreated Ti, Ap,

and AlbAp. The laminin played a major role in the promotion

of shear stability of HUVECs, which may be attributed to

mediation of laminin on cellular activity. In this study, we

focused on preparing the EC layer in vitro and evaluating

cell adhesion and retention in vitro. This technique may also

be interesting for forming EC layers in vivo. Therefore, in

future work, dynamic cell seeding techniques in vitro
will be used to mimic in situ endothelialization before

in vivo study.
5. Conclusions
Ap, laminin–apatite composite and AlbAp composite layers

were prepared on the Ti surface by supersaturated calcium

phosphate solutions supplemented with laminin and albu-

min, respectively. Supplementing laminin did not obviously

influence the amount of Ap deposited on the Ti surface.

The amounts of laminin precipitated in the laminin–apatite

composite layers increased with increasing initial laminin

concentration in the supersaturated calcium phosphate sol-

ution. The number of cells adhered to the laminin–apatite

composite layers were significantly higher than those to the

untreated Ti, Ap layer and AlbAp composite layer. Moreover,

cells remaining on the laminin–apatite composite layer under

physiological shear stress for 1 and 2 h were significantly

higher than those on untreated Ti, Ap and AlbAp composite

layers. Cells on L40Ap showed 4.3 times greater adhesion

after 1 h of culture and 9.5 times greater retention under

physiological shear stress for 2 h than those on untreated

Ti. The laminin–apatite composite layer can be used for

endothelialization of blood-contacting materials.

F.H. received a China Scholarship Council (CSC) scholarship
(2011615041).
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